Defining parameters
| Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 925.y (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 185 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(190\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(925, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 404 | 236 | 168 |
| Cusp forms | 356 | 220 | 136 |
| Eisenstein series | 48 | 16 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(925, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 925.2.y.a | $56$ | $7.386$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 925.2.y.b | $68$ | $7.386$ | None | \(6\) | \(4\) | \(0\) | \(2\) | ||
| 925.2.y.c | $96$ | $7.386$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(925, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)