Properties

Label 925.2.y
Level $925$
Weight $2$
Character orbit 925.y
Rep. character $\chi_{925}(193,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $220$
Newform subspaces $3$
Sturm bound $190$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(190\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(925, [\chi])\).

Total New Old
Modular forms 404 236 168
Cusp forms 356 220 136
Eisenstein series 48 16 32

Trace form

\( 220 q + 6 q^{2} + 4 q^{3} + 106 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 24 q^{14} - 102 q^{16} + 10 q^{17} + 8 q^{18} - 12 q^{19} - 12 q^{21} + 14 q^{22} + 48 q^{24} - 68 q^{27} - 14 q^{28} - 2 q^{29}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(925, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
925.2.y.a 925.y 185.u $56$ $7.386$ None 925.2.t.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$
925.2.y.b 925.y 185.u $68$ $7.386$ None 185.2.p.a \(6\) \(4\) \(0\) \(2\) $\mathrm{SU}(2)[C_{12}]$
925.2.y.c 925.y 185.u $96$ $7.386$ None 925.2.t.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(925, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)