Properties

Label 925.2.t.b.843.12
Level $925$
Weight $2$
Character 925.843
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(82,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.t (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 843.12
Character \(\chi\) \(=\) 925.843
Dual form 925.2.t.b.282.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.567972 + 0.983757i) q^{2} +(-0.273625 - 1.02118i) q^{3} +(0.354815 - 0.614557i) q^{4} +(0.849185 - 0.849185i) q^{6} +(0.422839 + 1.57806i) q^{7} +3.07799 q^{8} +(1.63013 - 0.941157i) q^{9} -1.92257i q^{11} +(-0.724662 - 0.194173i) q^{12} +(-0.763528 + 1.32247i) q^{13} +(-1.31226 + 1.31226i) q^{14} +(1.03858 + 1.79888i) q^{16} +(-1.14334 + 0.660110i) q^{17} +(1.85174 + 1.06910i) q^{18} +(2.17790 - 0.583566i) q^{19} +(1.49579 - 0.863592i) q^{21} +(1.89134 - 1.09196i) q^{22} +4.57925 q^{23} +(-0.842216 - 3.14319i) q^{24} -1.73465 q^{26} +(-3.64981 - 3.64981i) q^{27} +(1.11984 + 0.300059i) q^{28} +(0.241089 - 0.241089i) q^{29} +(-1.00617 - 1.00617i) q^{31} +(1.89822 - 3.28781i) q^{32} +(-1.96329 + 0.526063i) q^{33} +(-1.29878 - 0.749849i) q^{34} -1.33575i q^{36} +(-1.71804 - 5.83510i) q^{37} +(1.81107 + 1.81107i) q^{38} +(1.55940 + 0.417841i) q^{39} +(6.76304 + 3.90464i) q^{41} +(1.69913 + 0.980993i) q^{42} -5.46568 q^{43} +(-1.18153 - 0.682155i) q^{44} +(2.60089 + 4.50487i) q^{46} +(-1.79140 + 1.79140i) q^{47} +(1.55280 - 1.55280i) q^{48} +(3.75071 - 2.16547i) q^{49} +(0.986942 + 0.986942i) q^{51} +(0.541822 + 0.938463i) q^{52} +(0.870548 - 3.24893i) q^{53} +(1.51754 - 5.66352i) q^{54} +(1.30149 + 4.85724i) q^{56} +(-1.19186 - 2.06436i) q^{57} +(0.374105 + 0.100241i) q^{58} +(-1.40987 + 5.26170i) q^{59} +(10.4583 - 2.80230i) q^{61} +(0.418352 - 1.56131i) q^{62} +(2.17448 + 2.17448i) q^{63} +8.46687 q^{64} +(-1.63261 - 1.63261i) q^{66} +(9.45477 - 2.53340i) q^{67} +0.936868i q^{68} +(-1.25300 - 4.67625i) q^{69} +(1.65295 - 2.86299i) q^{71} +(5.01753 - 2.89687i) q^{72} +(-1.78634 + 1.78634i) q^{73} +(4.76452 - 5.00430i) q^{74} +(0.414116 - 1.54550i) q^{76} +(3.03392 - 0.812936i) q^{77} +(0.474644 + 1.77140i) q^{78} +(-12.3408 + 3.30670i) q^{79} +(0.0950223 - 0.164583i) q^{81} +8.87092i q^{82} +(-2.29888 + 8.57952i) q^{83} -1.22566i q^{84} +(-3.10436 - 5.37690i) q^{86} +(-0.312164 - 0.180228i) q^{87} -5.91764i q^{88} +(-16.4223 - 4.40035i) q^{89} +(-2.40978 - 0.645698i) q^{91} +(1.62479 - 2.81421i) q^{92} +(-0.752174 + 1.30280i) q^{93} +(-2.77976 - 0.744835i) q^{94} +(-3.87685 - 1.03880i) q^{96} +15.4196i q^{97} +(4.26060 + 2.45986i) q^{98} +(-1.80944 - 3.13404i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 4 q^{2} + 8 q^{3} - 30 q^{4} - 8 q^{6} + 2 q^{7} - 12 q^{8} - 14 q^{12} + 6 q^{13} - 26 q^{16} - 12 q^{17} - 18 q^{18} + 4 q^{19} - 12 q^{21} - 6 q^{22} + 12 q^{23} - 24 q^{26} + 68 q^{27} + 26 q^{28}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.567972 + 0.983757i 0.401617 + 0.695621i 0.993921 0.110093i \(-0.0351149\pi\)
−0.592304 + 0.805714i \(0.701782\pi\)
\(3\) −0.273625 1.02118i −0.157978 0.589581i −0.998832 0.0483191i \(-0.984614\pi\)
0.840854 0.541262i \(-0.182053\pi\)
\(4\) 0.354815 0.614557i 0.177407 0.307279i
\(5\) 0 0
\(6\) 0.849185 0.849185i 0.346678 0.346678i
\(7\) 0.422839 + 1.57806i 0.159818 + 0.596449i 0.998644 + 0.0520501i \(0.0165756\pi\)
−0.838826 + 0.544399i \(0.816758\pi\)
\(8\) 3.07799 1.08823
\(9\) 1.63013 0.941157i 0.543377 0.313719i
\(10\) 0 0
\(11\) 1.92257i 0.579676i −0.957076 0.289838i \(-0.906399\pi\)
0.957076 0.289838i \(-0.0936014\pi\)
\(12\) −0.724662 0.194173i −0.209192 0.0560528i
\(13\) −0.763528 + 1.32247i −0.211764 + 0.366787i −0.952267 0.305267i \(-0.901254\pi\)
0.740502 + 0.672054i \(0.234588\pi\)
\(14\) −1.31226 + 1.31226i −0.350717 + 0.350717i
\(15\) 0 0
\(16\) 1.03858 + 1.79888i 0.259646 + 0.449720i
\(17\) −1.14334 + 0.660110i −0.277302 + 0.160100i −0.632201 0.774804i \(-0.717848\pi\)
0.354899 + 0.934904i \(0.384515\pi\)
\(18\) 1.85174 + 1.06910i 0.436459 + 0.251990i
\(19\) 2.17790 0.583566i 0.499644 0.133879i −0.000190628 1.00000i \(-0.500061\pi\)
0.499835 + 0.866121i \(0.333394\pi\)
\(20\) 0 0
\(21\) 1.49579 0.863592i 0.326407 0.188451i
\(22\) 1.89134 1.09196i 0.403235 0.232808i
\(23\) 4.57925 0.954839 0.477420 0.878675i \(-0.341572\pi\)
0.477420 + 0.878675i \(0.341572\pi\)
\(24\) −0.842216 3.14319i −0.171917 0.641601i
\(25\) 0 0
\(26\) −1.73465 −0.340193
\(27\) −3.64981 3.64981i −0.702407 0.702407i
\(28\) 1.11984 + 0.300059i 0.211629 + 0.0567058i
\(29\) 0.241089 0.241089i 0.0447691 0.0447691i −0.684368 0.729137i \(-0.739922\pi\)
0.729137 + 0.684368i \(0.239922\pi\)
\(30\) 0 0
\(31\) −1.00617 1.00617i −0.180714 0.180714i 0.610953 0.791667i \(-0.290787\pi\)
−0.791667 + 0.610953i \(0.790787\pi\)
\(32\) 1.89822 3.28781i 0.335560 0.581208i
\(33\) −1.96329 + 0.526063i −0.341766 + 0.0915758i
\(34\) −1.29878 0.749849i −0.222738 0.128598i
\(35\) 0 0
\(36\) 1.33575i 0.222624i
\(37\) −1.71804 5.83510i −0.282443 0.959284i
\(38\) 1.81107 + 1.81107i 0.293795 + 0.293795i
\(39\) 1.55940 + 0.417841i 0.249704 + 0.0669081i
\(40\) 0 0
\(41\) 6.76304 + 3.90464i 1.05621 + 0.609803i 0.924381 0.381470i \(-0.124582\pi\)
0.131828 + 0.991273i \(0.457915\pi\)
\(42\) 1.69913 + 0.980993i 0.262181 + 0.151370i
\(43\) −5.46568 −0.833509 −0.416754 0.909019i \(-0.636832\pi\)
−0.416754 + 0.909019i \(0.636832\pi\)
\(44\) −1.18153 0.682155i −0.178122 0.102839i
\(45\) 0 0
\(46\) 2.60089 + 4.50487i 0.383480 + 0.664207i
\(47\) −1.79140 + 1.79140i −0.261302 + 0.261302i −0.825583 0.564281i \(-0.809154\pi\)
0.564281 + 0.825583i \(0.309154\pi\)
\(48\) 1.55280 1.55280i 0.224128 0.224128i
\(49\) 3.75071 2.16547i 0.535816 0.309353i
\(50\) 0 0
\(51\) 0.986942 + 0.986942i 0.138200 + 0.138200i
\(52\) 0.541822 + 0.938463i 0.0751372 + 0.130141i
\(53\) 0.870548 3.24893i 0.119579 0.446275i −0.880010 0.474956i \(-0.842464\pi\)
0.999589 + 0.0286809i \(0.00913067\pi\)
\(54\) 1.51754 5.66352i 0.206511 0.770708i
\(55\) 0 0
\(56\) 1.30149 + 4.85724i 0.173919 + 0.649076i
\(57\) −1.19186 2.06436i −0.157865 0.273431i
\(58\) 0.374105 + 0.100241i 0.0491223 + 0.0131623i
\(59\) −1.40987 + 5.26170i −0.183549 + 0.685016i 0.811387 + 0.584509i \(0.198713\pi\)
−0.994936 + 0.100506i \(0.967954\pi\)
\(60\) 0 0
\(61\) 10.4583 2.80230i 1.33905 0.358797i 0.482968 0.875638i \(-0.339559\pi\)
0.856081 + 0.516841i \(0.172892\pi\)
\(62\) 0.418352 1.56131i 0.0531307 0.198287i
\(63\) 2.17448 + 2.17448i 0.273959 + 0.273959i
\(64\) 8.46687 1.05836
\(65\) 0 0
\(66\) −1.63261 1.63261i −0.200961 0.200961i
\(67\) 9.45477 2.53340i 1.15508 0.309504i 0.370083 0.928999i \(-0.379329\pi\)
0.785001 + 0.619495i \(0.212662\pi\)
\(68\) 0.936868i 0.113612i
\(69\) −1.25300 4.67625i −0.150843 0.562955i
\(70\) 0 0
\(71\) 1.65295 2.86299i 0.196169 0.339774i −0.751114 0.660172i \(-0.770483\pi\)
0.947283 + 0.320398i \(0.103817\pi\)
\(72\) 5.01753 2.89687i 0.591321 0.341399i
\(73\) −1.78634 + 1.78634i −0.209075 + 0.209075i −0.803874 0.594799i \(-0.797232\pi\)
0.594799 + 0.803874i \(0.297232\pi\)
\(74\) 4.76452 5.00430i 0.553864 0.581739i
\(75\) 0 0
\(76\) 0.414116 1.54550i 0.0475023 0.177281i
\(77\) 3.03392 0.812936i 0.345747 0.0926427i
\(78\) 0.474644 + 1.77140i 0.0537429 + 0.200571i
\(79\) −12.3408 + 3.30670i −1.38844 + 0.372032i −0.874181 0.485600i \(-0.838601\pi\)
−0.514263 + 0.857633i \(0.671934\pi\)
\(80\) 0 0
\(81\) 0.0950223 0.164583i 0.0105580 0.0182871i
\(82\) 8.87092i 0.979629i
\(83\) −2.29888 + 8.57952i −0.252334 + 0.941725i 0.717220 + 0.696847i \(0.245414\pi\)
−0.969554 + 0.244878i \(0.921252\pi\)
\(84\) 1.22566i 0.133731i
\(85\) 0 0
\(86\) −3.10436 5.37690i −0.334751 0.579806i
\(87\) −0.312164 0.180228i −0.0334675 0.0193225i
\(88\) 5.91764i 0.630823i
\(89\) −16.4223 4.40035i −1.74076 0.466436i −0.758146 0.652085i \(-0.773894\pi\)
−0.982616 + 0.185650i \(0.940561\pi\)
\(90\) 0 0
\(91\) −2.40978 0.645698i −0.252613 0.0676876i
\(92\) 1.62479 2.81421i 0.169396 0.293402i
\(93\) −0.752174 + 1.30280i −0.0779968 + 0.135094i
\(94\) −2.77976 0.744835i −0.286711 0.0768239i
\(95\) 0 0
\(96\) −3.87685 1.03880i −0.395680 0.106022i
\(97\) 15.4196i 1.56563i 0.622256 + 0.782814i \(0.286216\pi\)
−0.622256 + 0.782814i \(0.713784\pi\)
\(98\) 4.26060 + 2.45986i 0.430385 + 0.248483i
\(99\) −1.80944 3.13404i −0.181855 0.314983i
\(100\) 0 0
\(101\) 0.767212i 0.0763405i 0.999271 + 0.0381702i \(0.0121529\pi\)
−0.999271 + 0.0381702i \(0.987847\pi\)
\(102\) −0.410355 + 1.53147i −0.0406312 + 0.151638i
\(103\) 4.78539i 0.471518i 0.971812 + 0.235759i \(0.0757576\pi\)
−0.971812 + 0.235759i \(0.924242\pi\)
\(104\) −2.35013 + 4.07054i −0.230449 + 0.399150i
\(105\) 0 0
\(106\) 3.69061 0.988895i 0.358463 0.0960500i
\(107\) −3.36743 12.5674i −0.325542 1.21494i −0.913766 0.406240i \(-0.866840\pi\)
0.588225 0.808698i \(-0.299827\pi\)
\(108\) −3.53803 + 0.948011i −0.340447 + 0.0912224i
\(109\) −3.42875 + 12.7963i −0.328414 + 1.22566i 0.582421 + 0.812888i \(0.302106\pi\)
−0.910835 + 0.412771i \(0.864561\pi\)
\(110\) 0 0
\(111\) −5.48861 + 3.35106i −0.520955 + 0.318069i
\(112\) −2.39958 + 2.39958i −0.226739 + 0.226739i
\(113\) −12.6175 + 7.28470i −1.18695 + 0.685287i −0.957612 0.288060i \(-0.906990\pi\)
−0.229339 + 0.973347i \(0.573657\pi\)
\(114\) 1.35388 2.34499i 0.126803 0.219629i
\(115\) 0 0
\(116\) −0.0626210 0.233705i −0.00581421 0.0216989i
\(117\) 2.87440i 0.265738i
\(118\) −5.97701 + 1.60153i −0.550228 + 0.147433i
\(119\) −1.52514 1.52514i −0.139810 0.139810i
\(120\) 0 0
\(121\) 7.30374 0.663976
\(122\) 8.69681 + 8.69681i 0.787372 + 0.787372i
\(123\) 2.13682 7.97471i 0.192670 0.719056i
\(124\) −0.975357 + 0.261346i −0.0875896 + 0.0234696i
\(125\) 0 0
\(126\) −0.904116 + 3.37421i −0.0805450 + 0.300598i
\(127\) −4.94102 1.32394i −0.438445 0.117481i 0.0328428 0.999461i \(-0.489544\pi\)
−0.471288 + 0.881980i \(0.656211\pi\)
\(128\) 1.01252 + 1.75373i 0.0894947 + 0.155009i
\(129\) 1.49555 + 5.58146i 0.131676 + 0.491421i
\(130\) 0 0
\(131\) −0.824339 + 3.07647i −0.0720228 + 0.268793i −0.992542 0.121905i \(-0.961100\pi\)
0.920519 + 0.390698i \(0.127766\pi\)
\(132\) −0.373310 + 1.39321i −0.0324924 + 0.121263i
\(133\) 1.84180 + 3.19009i 0.159704 + 0.276616i
\(134\) 7.86230 + 7.86230i 0.679199 + 0.679199i
\(135\) 0 0
\(136\) −3.51920 + 2.03181i −0.301769 + 0.174227i
\(137\) −15.2791 + 15.2791i −1.30538 + 1.30538i −0.380674 + 0.924709i \(0.624308\pi\)
−0.924709 + 0.380674i \(0.875692\pi\)
\(138\) 3.88863 3.88863i 0.331022 0.331022i
\(139\) 8.97537 + 15.5458i 0.761281 + 1.31858i 0.942191 + 0.335077i \(0.108762\pi\)
−0.180910 + 0.983500i \(0.557904\pi\)
\(140\) 0 0
\(141\) 2.31952 + 1.33917i 0.195339 + 0.112779i
\(142\) 3.75532 0.315139
\(143\) 2.54253 + 1.46793i 0.212617 + 0.122755i
\(144\) 3.38605 + 1.95494i 0.282171 + 0.162912i
\(145\) 0 0
\(146\) −2.77191 0.742732i −0.229405 0.0614689i
\(147\) −3.23763 3.23763i −0.267036 0.267036i
\(148\) −4.19559 1.01455i −0.344875 0.0833952i
\(149\) 16.8891i 1.38361i −0.722084 0.691805i \(-0.756816\pi\)
0.722084 0.691805i \(-0.243184\pi\)
\(150\) 0 0
\(151\) −19.2569 11.1180i −1.56711 0.904770i −0.996504 0.0835434i \(-0.973376\pi\)
−0.570603 0.821226i \(-0.693290\pi\)
\(152\) 6.70355 1.79621i 0.543730 0.145692i
\(153\) −1.24253 + 2.15213i −0.100453 + 0.173990i
\(154\) 2.52291 + 2.52291i 0.203302 + 0.203302i
\(155\) 0 0
\(156\) 0.810087 0.810087i 0.0648588 0.0648588i
\(157\) 5.03393 + 1.34884i 0.401751 + 0.107649i 0.454036 0.890983i \(-0.349984\pi\)
−0.0522849 + 0.998632i \(0.516650\pi\)
\(158\) −10.2622 10.2622i −0.816417 0.816417i
\(159\) −3.55596 −0.282006
\(160\) 0 0
\(161\) 1.93628 + 7.22631i 0.152601 + 0.569513i
\(162\) 0.215880 0.0169611
\(163\) 12.7064 7.33603i 0.995241 0.574603i 0.0884042 0.996085i \(-0.471823\pi\)
0.906837 + 0.421482i \(0.138490\pi\)
\(164\) 4.79925 2.77085i 0.374759 0.216367i
\(165\) 0 0
\(166\) −9.74586 + 2.61140i −0.756426 + 0.202684i
\(167\) −18.6925 10.7921i −1.44647 0.835120i −0.448201 0.893933i \(-0.647935\pi\)
−0.998269 + 0.0588131i \(0.981268\pi\)
\(168\) 4.60401 2.65813i 0.355207 0.205079i
\(169\) 5.33405 + 9.23885i 0.410312 + 0.710681i
\(170\) 0 0
\(171\) 3.00103 3.00103i 0.229495 0.229495i
\(172\) −1.93930 + 3.35897i −0.147871 + 0.256119i
\(173\) 0.797367 + 0.213654i 0.0606227 + 0.0162438i 0.289003 0.957328i \(-0.406676\pi\)
−0.228380 + 0.973572i \(0.573343\pi\)
\(174\) 0.409458i 0.0310409i
\(175\) 0 0
\(176\) 3.45847 1.99675i 0.260692 0.150510i
\(177\) 5.75894 0.432869
\(178\) −4.99855 18.6548i −0.374657 1.39824i
\(179\) −16.5150 + 16.5150i −1.23439 + 1.23439i −0.272124 + 0.962262i \(0.587726\pi\)
−0.962262 + 0.272124i \(0.912274\pi\)
\(180\) 0 0
\(181\) −10.0502 + 17.4074i −0.747024 + 1.29388i 0.202219 + 0.979340i \(0.435185\pi\)
−0.949243 + 0.314544i \(0.898148\pi\)
\(182\) −0.733478 2.73738i −0.0543690 0.202908i
\(183\) −5.72332 9.91307i −0.423080 0.732796i
\(184\) 14.0949 1.03909
\(185\) 0 0
\(186\) −1.70886 −0.125299
\(187\) 1.26911 + 2.19816i 0.0928063 + 0.160745i
\(188\) 0.465302 + 1.73653i 0.0339356 + 0.126649i
\(189\) 4.21633 7.30289i 0.306693 0.531207i
\(190\) 0 0
\(191\) −12.5389 + 12.5389i −0.907285 + 0.907285i −0.996052 0.0887670i \(-0.971707\pi\)
0.0887670 + 0.996052i \(0.471707\pi\)
\(192\) −2.31675 8.64623i −0.167197 0.623988i
\(193\) 17.1943 1.23767 0.618837 0.785519i \(-0.287604\pi\)
0.618837 + 0.785519i \(0.287604\pi\)
\(194\) −15.1692 + 8.75793i −1.08908 + 0.628783i
\(195\) 0 0
\(196\) 3.07337i 0.219526i
\(197\) −8.61235 2.30767i −0.613604 0.164415i −0.0613857 0.998114i \(-0.519552\pi\)
−0.552219 + 0.833699i \(0.686219\pi\)
\(198\) 2.05542 3.56009i 0.146072 0.253005i
\(199\) 7.61077 7.61077i 0.539513 0.539513i −0.383873 0.923386i \(-0.625410\pi\)
0.923386 + 0.383873i \(0.125410\pi\)
\(200\) 0 0
\(201\) −5.17413 8.96186i −0.364955 0.632121i
\(202\) −0.754750 + 0.435755i −0.0531041 + 0.0306596i
\(203\) 0.482393 + 0.278510i 0.0338574 + 0.0195476i
\(204\) 0.956714 0.256351i 0.0669834 0.0179481i
\(205\) 0 0
\(206\) −4.70766 + 2.71797i −0.327998 + 0.189370i
\(207\) 7.46478 4.30979i 0.518838 0.299551i
\(208\) −3.17195 −0.219935
\(209\) −1.12195 4.18716i −0.0776066 0.289632i
\(210\) 0 0
\(211\) 1.64325 0.113126 0.0565629 0.998399i \(-0.481986\pi\)
0.0565629 + 0.998399i \(0.481986\pi\)
\(212\) −1.68777 1.68777i −0.115917 0.115917i
\(213\) −3.37593 0.904577i −0.231315 0.0619806i
\(214\) 10.4507 10.4507i 0.714393 0.714393i
\(215\) 0 0
\(216\) −11.2341 11.2341i −0.764383 0.764383i
\(217\) 1.16235 2.01325i 0.0789054 0.136668i
\(218\) −14.5358 + 3.89487i −0.984491 + 0.263794i
\(219\) 2.31297 + 1.33539i 0.156296 + 0.0902374i
\(220\) 0 0
\(221\) 2.01605i 0.135614i
\(222\) −6.41401 3.49615i −0.430480 0.234646i
\(223\) 13.8186 + 13.8186i 0.925365 + 0.925365i 0.997402 0.0720369i \(-0.0229499\pi\)
−0.0720369 + 0.997402i \(0.522950\pi\)
\(224\) 5.99098 + 1.60528i 0.400289 + 0.107257i
\(225\) 0 0
\(226\) −14.3327 8.27502i −0.953400 0.550446i
\(227\) −18.4016 10.6242i −1.22136 0.705151i −0.256150 0.966637i \(-0.582454\pi\)
−0.965207 + 0.261487i \(0.915787\pi\)
\(228\) −1.69155 −0.112026
\(229\) −3.48912 2.01445i −0.230568 0.133118i 0.380266 0.924877i \(-0.375832\pi\)
−0.610834 + 0.791759i \(0.709166\pi\)
\(230\) 0 0
\(231\) −1.66031 2.87575i −0.109241 0.189210i
\(232\) 0.742069 0.742069i 0.0487192 0.0487192i
\(233\) −2.25220 + 2.25220i −0.147547 + 0.147547i −0.777021 0.629475i \(-0.783270\pi\)
0.629475 + 0.777021i \(0.283270\pi\)
\(234\) −2.82771 + 1.63258i −0.184853 + 0.106725i
\(235\) 0 0
\(236\) 2.73338 + 2.73338i 0.177928 + 0.177928i
\(237\) 6.75349 + 11.6974i 0.438686 + 0.759827i
\(238\) 0.634131 2.36661i 0.0411046 0.153404i
\(239\) −5.13865 + 19.1777i −0.332392 + 1.24050i 0.574277 + 0.818661i \(0.305283\pi\)
−0.906669 + 0.421843i \(0.861383\pi\)
\(240\) 0 0
\(241\) 2.89066 + 10.7881i 0.186204 + 0.694922i 0.994370 + 0.105967i \(0.0337939\pi\)
−0.808166 + 0.588955i \(0.799539\pi\)
\(242\) 4.14832 + 7.18510i 0.266664 + 0.461876i
\(243\) −15.1513 4.05977i −0.971955 0.260435i
\(244\) 1.98859 7.42153i 0.127307 0.475114i
\(245\) 0 0
\(246\) 9.05883 2.42731i 0.577570 0.154759i
\(247\) −0.891138 + 3.32577i −0.0567017 + 0.211614i
\(248\) −3.09699 3.09699i −0.196659 0.196659i
\(249\) 9.39030 0.595086
\(250\) 0 0
\(251\) −6.77562 6.77562i −0.427673 0.427673i 0.460162 0.887835i \(-0.347791\pi\)
−0.887835 + 0.460162i \(0.847791\pi\)
\(252\) 2.10788 0.564805i 0.132784 0.0355794i
\(253\) 8.80391i 0.553497i
\(254\) −1.50393 5.61273i −0.0943647 0.352174i
\(255\) 0 0
\(256\) 7.31671 12.6729i 0.457294 0.792057i
\(257\) −0.306484 + 0.176949i −0.0191180 + 0.0110378i −0.509529 0.860454i \(-0.670180\pi\)
0.490411 + 0.871492i \(0.336847\pi\)
\(258\) −4.64137 + 4.64137i −0.288959 + 0.288959i
\(259\) 8.48166 5.17846i 0.527025 0.321774i
\(260\) 0 0
\(261\) 0.166104 0.619909i 0.0102816 0.0383714i
\(262\) −3.49470 + 0.936403i −0.215904 + 0.0578512i
\(263\) −5.22227 19.4898i −0.322019 1.20179i −0.917275 0.398255i \(-0.869616\pi\)
0.595256 0.803536i \(-0.297051\pi\)
\(264\) −6.04300 + 1.61922i −0.371921 + 0.0996559i
\(265\) 0 0
\(266\) −2.09218 + 3.62377i −0.128280 + 0.222187i
\(267\) 17.9742i 1.10001i
\(268\) 1.79777 6.70939i 0.109817 0.409841i
\(269\) 6.49930i 0.396269i 0.980175 + 0.198135i \(0.0634883\pi\)
−0.980175 + 0.198135i \(0.936512\pi\)
\(270\) 0 0
\(271\) −2.12937 3.68817i −0.129350 0.224040i 0.794075 0.607820i \(-0.207956\pi\)
−0.923425 + 0.383779i \(0.874622\pi\)
\(272\) −2.37492 1.37116i −0.144001 0.0831388i
\(273\) 2.63751i 0.159629i
\(274\) −23.7091 6.35282i −1.43232 0.383788i
\(275\) 0 0
\(276\) −3.31841 0.889165i −0.199745 0.0535214i
\(277\) −0.285590 + 0.494657i −0.0171595 + 0.0297211i −0.874478 0.485066i \(-0.838796\pi\)
0.857318 + 0.514787i \(0.172129\pi\)
\(278\) −10.1955 + 17.6592i −0.611487 + 1.05913i
\(279\) −2.58716 0.693228i −0.154889 0.0415025i
\(280\) 0 0
\(281\) 30.2609 + 8.10837i 1.80521 + 0.483705i 0.994772 0.102118i \(-0.0325620\pi\)
0.810439 + 0.585823i \(0.199229\pi\)
\(282\) 3.04245i 0.181176i
\(283\) −0.533664 0.308111i −0.0317230 0.0183153i 0.484055 0.875038i \(-0.339164\pi\)
−0.515778 + 0.856722i \(0.672497\pi\)
\(284\) −1.17298 2.03166i −0.0696036 0.120557i
\(285\) 0 0
\(286\) 3.33498i 0.197202i
\(287\) −3.30207 + 12.3235i −0.194915 + 0.727433i
\(288\) 7.14608i 0.421087i
\(289\) −7.62851 + 13.2130i −0.448736 + 0.777233i
\(290\) 0 0
\(291\) 15.7463 4.21920i 0.923063 0.247334i
\(292\) 0.463988 + 1.73163i 0.0271528 + 0.101336i
\(293\) 9.54988 2.55888i 0.557910 0.149492i 0.0311641 0.999514i \(-0.490079\pi\)
0.526746 + 0.850023i \(0.323412\pi\)
\(294\) 1.34616 5.02393i 0.0785096 0.293002i
\(295\) 0 0
\(296\) −5.28810 17.9604i −0.307364 1.04393i
\(297\) −7.01701 + 7.01701i −0.407168 + 0.407168i
\(298\) 16.6148 9.59255i 0.962469 0.555682i
\(299\) −3.49638 + 6.05591i −0.202201 + 0.350222i
\(300\) 0 0
\(301\) −2.31110 8.62515i −0.133210 0.497146i
\(302\) 25.2589i 1.45348i
\(303\) 0.783464 0.209929i 0.0450089 0.0120601i
\(304\) 3.31170 + 3.31170i 0.189939 + 0.189939i
\(305\) 0 0
\(306\) −2.82290 −0.161375
\(307\) 12.7533 + 12.7533i 0.727869 + 0.727869i 0.970195 0.242326i \(-0.0779104\pi\)
−0.242326 + 0.970195i \(0.577910\pi\)
\(308\) 0.576883 2.15296i 0.0328710 0.122676i
\(309\) 4.88676 1.30940i 0.277998 0.0744893i
\(310\) 0 0
\(311\) 6.30945 23.5472i 0.357776 1.33524i −0.519179 0.854665i \(-0.673762\pi\)
0.876955 0.480572i \(-0.159571\pi\)
\(312\) 4.79983 + 1.28611i 0.271737 + 0.0728116i
\(313\) −0.462994 0.801929i −0.0261700 0.0453277i 0.852644 0.522493i \(-0.174998\pi\)
−0.878814 + 0.477165i \(0.841664\pi\)
\(314\) 1.53220 + 5.71826i 0.0864673 + 0.322700i
\(315\) 0 0
\(316\) −2.34653 + 8.75737i −0.132003 + 0.492640i
\(317\) 6.85107 25.5685i 0.384794 1.43607i −0.453696 0.891156i \(-0.649895\pi\)
0.838491 0.544916i \(-0.183438\pi\)
\(318\) −2.01969 3.49820i −0.113258 0.196169i
\(319\) −0.463509 0.463509i −0.0259515 0.0259515i
\(320\) 0 0
\(321\) −11.9122 + 6.87752i −0.664875 + 0.383866i
\(322\) −6.00918 + 6.00918i −0.334878 + 0.334878i
\(323\) −2.10487 + 2.10487i −0.117118 + 0.117118i
\(324\) −0.0674306 0.116793i −0.00374615 0.00648852i
\(325\) 0 0
\(326\) 14.4338 + 8.33333i 0.799412 + 0.461540i
\(327\) 14.0055 0.774507
\(328\) 20.8166 + 12.0184i 1.14940 + 0.663608i
\(329\) −3.58440 2.06945i −0.197614 0.114093i
\(330\) 0 0
\(331\) −9.40727 2.52067i −0.517070 0.138549i −0.00915915 0.999958i \(-0.502915\pi\)
−0.507911 + 0.861410i \(0.669582\pi\)
\(332\) 4.45693 + 4.45693i 0.244606 + 0.244606i
\(333\) −8.29237 7.89503i −0.454419 0.432645i
\(334\) 24.5185i 1.34159i
\(335\) 0 0
\(336\) 3.10700 + 1.79382i 0.169501 + 0.0978612i
\(337\) 19.1912 5.14226i 1.04541 0.280117i 0.305057 0.952334i \(-0.401325\pi\)
0.740354 + 0.672217i \(0.234658\pi\)
\(338\) −6.05919 + 10.4948i −0.329576 + 0.570843i
\(339\) 10.8915 + 10.8915i 0.591544 + 0.591544i
\(340\) 0 0
\(341\) −1.93444 + 1.93444i −0.104756 + 0.104756i
\(342\) 4.65679 + 1.24778i 0.251810 + 0.0674724i
\(343\) 13.0897 + 13.0897i 0.706778 + 0.706778i
\(344\) −16.8233 −0.907052
\(345\) 0 0
\(346\) 0.242699 + 0.905765i 0.0130476 + 0.0486942i
\(347\) 10.3295 0.554517 0.277258 0.960795i \(-0.410574\pi\)
0.277258 + 0.960795i \(0.410574\pi\)
\(348\) −0.221521 + 0.127895i −0.0118748 + 0.00685589i
\(349\) 13.7141 7.91783i 0.734098 0.423832i −0.0858212 0.996311i \(-0.527351\pi\)
0.819920 + 0.572479i \(0.194018\pi\)
\(350\) 0 0
\(351\) 7.61350 2.04003i 0.406378 0.108889i
\(352\) −6.32103 3.64945i −0.336912 0.194516i
\(353\) −7.53835 + 4.35227i −0.401226 + 0.231648i −0.687013 0.726645i \(-0.741078\pi\)
0.285787 + 0.958293i \(0.407745\pi\)
\(354\) 3.27092 + 5.66540i 0.173847 + 0.301113i
\(355\) 0 0
\(356\) −8.53114 + 8.53114i −0.452150 + 0.452150i
\(357\) −1.14013 + 1.97477i −0.0603422 + 0.104516i
\(358\) −25.6268 6.86667i −1.35442 0.362915i
\(359\) 9.85969i 0.520375i −0.965558 0.260187i \(-0.916216\pi\)
0.965558 0.260187i \(-0.0837843\pi\)
\(360\) 0 0
\(361\) −12.0518 + 6.95810i −0.634305 + 0.366216i
\(362\) −22.8329 −1.20007
\(363\) −1.99849 7.45845i −0.104893 0.391467i
\(364\) −1.25184 + 1.25184i −0.0656144 + 0.0656144i
\(365\) 0 0
\(366\) 6.50137 11.2607i 0.339832 0.588606i
\(367\) −5.24797 19.5857i −0.273942 1.02236i −0.956547 0.291577i \(-0.905820\pi\)
0.682606 0.730787i \(-0.260847\pi\)
\(368\) 4.75593 + 8.23752i 0.247920 + 0.429410i
\(369\) 14.6995 0.765227
\(370\) 0 0
\(371\) 5.49510 0.285291
\(372\) 0.533765 + 0.924507i 0.0276744 + 0.0479335i
\(373\) 0.616084 + 2.29926i 0.0318996 + 0.119051i 0.980040 0.198802i \(-0.0637049\pi\)
−0.948140 + 0.317853i \(0.897038\pi\)
\(374\) −1.44163 + 2.49698i −0.0745452 + 0.129116i
\(375\) 0 0
\(376\) −5.51390 + 5.51390i −0.284358 + 0.284358i
\(377\) 0.134754 + 0.502910i 0.00694021 + 0.0259012i
\(378\) 9.57903 0.492692
\(379\) −14.3987 + 8.31312i −0.739614 + 0.427016i −0.821929 0.569590i \(-0.807102\pi\)
0.0823151 + 0.996606i \(0.473769\pi\)
\(380\) 0 0
\(381\) 5.40795i 0.277058i
\(382\) −19.4570 5.21350i −0.995508 0.266746i
\(383\) −4.50352 + 7.80032i −0.230119 + 0.398578i −0.957843 0.287292i \(-0.907245\pi\)
0.727724 + 0.685870i \(0.240578\pi\)
\(384\) 1.51383 1.51383i 0.0772523 0.0772523i
\(385\) 0 0
\(386\) 9.76590 + 16.9150i 0.497071 + 0.860953i
\(387\) −8.90978 + 5.14406i −0.452910 + 0.261487i
\(388\) 9.47625 + 5.47112i 0.481084 + 0.277754i
\(389\) 11.4603 3.07078i 0.581061 0.155695i 0.0436964 0.999045i \(-0.486087\pi\)
0.537365 + 0.843350i \(0.319420\pi\)
\(390\) 0 0
\(391\) −5.23566 + 3.02281i −0.264779 + 0.152870i
\(392\) 11.5446 6.66530i 0.583093 0.336649i
\(393\) 3.36720 0.169853
\(394\) −2.62139 9.78315i −0.132064 0.492868i
\(395\) 0 0
\(396\) −2.56806 −0.129050
\(397\) −1.62569 1.62569i −0.0815913 0.0815913i 0.665133 0.746725i \(-0.268375\pi\)
−0.746725 + 0.665133i \(0.768375\pi\)
\(398\) 11.8099 + 3.16444i 0.591974 + 0.158619i
\(399\) 2.75371 2.75371i 0.137858 0.137858i
\(400\) 0 0
\(401\) 16.9699 + 16.9699i 0.847436 + 0.847436i 0.989813 0.142377i \(-0.0454744\pi\)
−0.142377 + 0.989813i \(0.545474\pi\)
\(402\) 5.87753 10.1802i 0.293144 0.507741i
\(403\) 2.09888 0.562392i 0.104552 0.0280147i
\(404\) 0.471496 + 0.272218i 0.0234578 + 0.0135434i
\(405\) 0 0
\(406\) 0.632744i 0.0314026i
\(407\) −11.2184 + 3.30304i −0.556074 + 0.163726i
\(408\) 3.03780 + 3.03780i 0.150393 + 0.150393i
\(409\) 24.9023 + 6.67256i 1.23134 + 0.329937i 0.815102 0.579318i \(-0.196681\pi\)
0.416240 + 0.909255i \(0.363348\pi\)
\(410\) 0 0
\(411\) 19.7835 + 11.4220i 0.975850 + 0.563407i
\(412\) 2.94089 + 1.69793i 0.144887 + 0.0836508i
\(413\) −8.89941 −0.437911
\(414\) 8.47957 + 4.89568i 0.416748 + 0.240610i
\(415\) 0 0
\(416\) 2.89868 + 5.02066i 0.142120 + 0.246158i
\(417\) 13.4192 13.4192i 0.657142 0.657142i
\(418\) 3.48191 3.48191i 0.170306 0.170306i
\(419\) −29.0354 + 16.7636i −1.41847 + 0.818955i −0.996165 0.0874987i \(-0.972113\pi\)
−0.422306 + 0.906453i \(0.638779\pi\)
\(420\) 0 0
\(421\) −0.954366 0.954366i −0.0465130 0.0465130i 0.683468 0.729981i \(-0.260471\pi\)
−0.729981 + 0.683468i \(0.760471\pi\)
\(422\) 0.933319 + 1.61656i 0.0454333 + 0.0786927i
\(423\) −1.23423 + 4.60620i −0.0600102 + 0.223961i
\(424\) 2.67954 10.0002i 0.130130 0.485651i
\(425\) 0 0
\(426\) −1.02755 3.83487i −0.0497849 0.185800i
\(427\) 8.84436 + 15.3189i 0.428009 + 0.741333i
\(428\) −8.91821 2.38963i −0.431078 0.115507i
\(429\) 0.803327 2.99806i 0.0387850 0.144748i
\(430\) 0 0
\(431\) −12.1677 + 3.26032i −0.586097 + 0.157044i −0.539669 0.841877i \(-0.681451\pi\)
−0.0464282 + 0.998922i \(0.514784\pi\)
\(432\) 2.77494 10.3562i 0.133509 0.498263i
\(433\) 13.7322 + 13.7322i 0.659928 + 0.659928i 0.955363 0.295435i \(-0.0954646\pi\)
−0.295435 + 0.955363i \(0.595465\pi\)
\(434\) 2.64073 0.126759
\(435\) 0 0
\(436\) 6.64746 + 6.64746i 0.318356 + 0.318356i
\(437\) 9.97314 2.67230i 0.477080 0.127833i
\(438\) 3.03386i 0.144963i
\(439\) −8.00818 29.8869i −0.382210 1.42643i −0.842519 0.538667i \(-0.818928\pi\)
0.460309 0.887759i \(-0.347739\pi\)
\(440\) 0 0
\(441\) 4.07610 7.06001i 0.194100 0.336191i
\(442\) 1.98330 1.14506i 0.0943361 0.0544650i
\(443\) 13.3025 13.3025i 0.632023 0.632023i −0.316552 0.948575i \(-0.602525\pi\)
0.948575 + 0.316552i \(0.102525\pi\)
\(444\) 0.111980 + 4.56207i 0.00531432 + 0.216506i
\(445\) 0 0
\(446\) −5.74558 + 21.4428i −0.272061 + 1.01535i
\(447\) −17.2469 + 4.62129i −0.815750 + 0.218580i
\(448\) 3.58012 + 13.3612i 0.169145 + 0.631257i
\(449\) −28.3423 + 7.59430i −1.33756 + 0.358397i −0.855527 0.517758i \(-0.826767\pi\)
−0.482029 + 0.876155i \(0.660100\pi\)
\(450\) 0 0
\(451\) 7.50694 13.0024i 0.353488 0.612259i
\(452\) 10.3389i 0.486300i
\(453\) −6.08433 + 22.7070i −0.285867 + 1.06687i
\(454\) 24.1369i 1.13280i
\(455\) 0 0
\(456\) −3.66852 6.35407i −0.171794 0.297556i
\(457\) 5.55747 + 3.20861i 0.259968 + 0.150092i 0.624320 0.781169i \(-0.285376\pi\)
−0.364352 + 0.931261i \(0.618710\pi\)
\(458\) 4.57660i 0.213850i
\(459\) 6.58228 + 1.76372i 0.307234 + 0.0823232i
\(460\) 0 0
\(461\) 25.3037 + 6.78010i 1.17851 + 0.315781i 0.794335 0.607479i \(-0.207819\pi\)
0.384175 + 0.923260i \(0.374486\pi\)
\(462\) 1.88602 3.26669i 0.0877458 0.151980i
\(463\) −19.1066 + 33.0936i −0.887960 + 1.53799i −0.0456763 + 0.998956i \(0.514544\pi\)
−0.842283 + 0.539035i \(0.818789\pi\)
\(464\) 0.684081 + 0.183299i 0.0317576 + 0.00850944i
\(465\) 0 0
\(466\) −3.49481 0.936431i −0.161894 0.0433793i
\(467\) 13.5181i 0.625544i 0.949828 + 0.312772i \(0.101258\pi\)
−0.949828 + 0.312772i \(0.898742\pi\)
\(468\) 1.76648 + 1.01988i 0.0816556 + 0.0471439i
\(469\) 7.99569 + 13.8489i 0.369207 + 0.639485i
\(470\) 0 0
\(471\) 5.50964i 0.253871i
\(472\) −4.33956 + 16.1955i −0.199745 + 0.745457i
\(473\) 10.5081i 0.483165i
\(474\) −7.67159 + 13.2876i −0.352368 + 0.610319i
\(475\) 0 0
\(476\) −1.47843 + 0.396144i −0.0677637 + 0.0181572i
\(477\) −1.63865 6.11551i −0.0750284 0.280010i
\(478\) −21.7848 + 5.83723i −0.996415 + 0.266989i
\(479\) −0.466920 + 1.74257i −0.0213341 + 0.0796200i −0.975772 0.218789i \(-0.929789\pi\)
0.954438 + 0.298409i \(0.0964560\pi\)
\(480\) 0 0
\(481\) 9.02850 + 2.18321i 0.411664 + 0.0995457i
\(482\) −8.97105 + 8.97105i −0.408620 + 0.408620i
\(483\) 6.84957 3.95460i 0.311666 0.179941i
\(484\) 2.59147 4.48856i 0.117794 0.204026i
\(485\) 0 0
\(486\) −4.61168 17.2110i −0.209190 0.780708i
\(487\) 4.70678i 0.213285i 0.994297 + 0.106642i \(0.0340100\pi\)
−0.994297 + 0.106642i \(0.965990\pi\)
\(488\) 32.1906 8.62544i 1.45720 0.390455i
\(489\) −10.9682 10.9682i −0.496000 0.496000i
\(490\) 0 0
\(491\) 22.3671 1.00941 0.504707 0.863291i \(-0.331601\pi\)
0.504707 + 0.863291i \(0.331601\pi\)
\(492\) −4.14274 4.14274i −0.186769 0.186769i
\(493\) −0.116502 + 0.434793i −0.00524700 + 0.0195821i
\(494\) −3.77789 + 1.01228i −0.169975 + 0.0455448i
\(495\) 0 0
\(496\) 0.764990 2.85498i 0.0343491 0.128192i
\(497\) 5.21689 + 1.39786i 0.234009 + 0.0627026i
\(498\) 5.33343 + 9.23777i 0.238997 + 0.413954i
\(499\) −4.04934 15.1123i −0.181273 0.676521i −0.995398 0.0958307i \(-0.969449\pi\)
0.814124 0.580691i \(-0.197217\pi\)
\(500\) 0 0
\(501\) −5.90600 + 22.0415i −0.263860 + 0.984741i
\(502\) 2.81720 10.5139i 0.125738 0.469260i
\(503\) −5.10938 8.84970i −0.227816 0.394589i 0.729345 0.684146i \(-0.239825\pi\)
−0.957161 + 0.289558i \(0.906492\pi\)
\(504\) 6.69303 + 6.69303i 0.298131 + 0.298131i
\(505\) 0 0
\(506\) 8.66091 5.00038i 0.385024 0.222294i
\(507\) 7.97503 7.97503i 0.354183 0.354183i
\(508\) −2.56679 + 2.56679i −0.113883 + 0.113883i
\(509\) −3.43610 5.95149i −0.152302 0.263795i 0.779771 0.626065i \(-0.215335\pi\)
−0.932073 + 0.362269i \(0.882002\pi\)
\(510\) 0 0
\(511\) −3.57427 2.06361i −0.158117 0.0912886i
\(512\) 20.6728 0.913618
\(513\) −10.0788 5.81902i −0.444991 0.256916i
\(514\) −0.348149 0.201004i −0.0153562 0.00886591i
\(515\) 0 0
\(516\) 3.96077 + 1.06129i 0.174363 + 0.0467205i
\(517\) 3.44408 + 3.44408i 0.151471 + 0.151471i
\(518\) 9.91170 + 5.40267i 0.435495 + 0.237379i
\(519\) 0.872719i 0.0383081i
\(520\) 0 0
\(521\) −19.6337 11.3355i −0.860166 0.496617i 0.00390182 0.999992i \(-0.498758\pi\)
−0.864068 + 0.503375i \(0.832091\pi\)
\(522\) 0.704182 0.188685i 0.0308212 0.00825852i
\(523\) 4.24004 7.34396i 0.185404 0.321129i −0.758309 0.651896i \(-0.773974\pi\)
0.943713 + 0.330767i \(0.107307\pi\)
\(524\) 1.59818 + 1.59818i 0.0698169 + 0.0698169i
\(525\) 0 0
\(526\) 16.2071 16.2071i 0.706663 0.706663i
\(527\) 1.81459 + 0.486218i 0.0790448 + 0.0211800i
\(528\) −2.98537 2.98537i −0.129921 0.129921i
\(529\) −2.03048 −0.0882817
\(530\) 0 0
\(531\) 2.65382 + 9.90418i 0.115166 + 0.429805i
\(532\) 2.61399 0.113331
\(533\) −10.3275 + 5.96260i −0.447335 + 0.258269i
\(534\) −17.6823 + 10.2089i −0.765187 + 0.441781i
\(535\) 0 0
\(536\) 29.1017 7.79777i 1.25700 0.336813i
\(537\) 21.3837 + 12.3459i 0.922776 + 0.532765i
\(538\) −6.39373 + 3.69142i −0.275653 + 0.159148i
\(539\) −4.16327 7.21099i −0.179325 0.310599i
\(540\) 0 0
\(541\) −9.87420 + 9.87420i −0.424525 + 0.424525i −0.886758 0.462233i \(-0.847048\pi\)
0.462233 + 0.886758i \(0.347048\pi\)
\(542\) 2.41884 4.18956i 0.103898 0.179957i
\(543\) 20.5262 + 5.49997i 0.880862 + 0.236026i
\(544\) 5.01213i 0.214893i
\(545\) 0 0
\(546\) −2.59466 + 1.49803i −0.111041 + 0.0641098i
\(547\) −16.2777 −0.695983 −0.347992 0.937498i \(-0.613136\pi\)
−0.347992 + 0.937498i \(0.613136\pi\)
\(548\) 3.96864 + 14.8112i 0.169532 + 0.632701i
\(549\) 14.4110 14.4110i 0.615047 0.615047i
\(550\) 0 0
\(551\) 0.384376 0.665758i 0.0163750 0.0283623i
\(552\) −3.85672 14.3935i −0.164153 0.612626i
\(553\) −10.4363 18.0762i −0.443797 0.768679i
\(554\) −0.648830 −0.0275661
\(555\) 0 0
\(556\) 12.7384 0.540227
\(557\) 6.36833 + 11.0303i 0.269835 + 0.467368i 0.968819 0.247769i \(-0.0796975\pi\)
−0.698984 + 0.715137i \(0.746364\pi\)
\(558\) −0.787469 2.93887i −0.0333362 0.124412i
\(559\) 4.17320 7.22819i 0.176508 0.305720i
\(560\) 0 0
\(561\) 1.89746 1.89746i 0.0801109 0.0801109i
\(562\) 9.21066 + 34.3747i 0.388528 + 1.45001i
\(563\) 9.88042 0.416410 0.208205 0.978085i \(-0.433238\pi\)
0.208205 + 0.978085i \(0.433238\pi\)
\(564\) 1.64600 0.950317i 0.0693090 0.0400156i
\(565\) 0 0
\(566\) 0.699994i 0.0294229i
\(567\) 0.299901 + 0.0803582i 0.0125947 + 0.00337473i
\(568\) 5.08776 8.81225i 0.213478 0.369754i
\(569\) 28.2430 28.2430i 1.18401 1.18401i 0.205312 0.978697i \(-0.434179\pi\)
0.978697 0.205312i \(-0.0658210\pi\)
\(570\) 0 0
\(571\) −18.9395 32.8041i −0.792592 1.37281i −0.924357 0.381529i \(-0.875398\pi\)
0.131765 0.991281i \(-0.457936\pi\)
\(572\) 1.80426 1.04169i 0.0754398 0.0435552i
\(573\) 16.2355 + 9.37358i 0.678249 + 0.391587i
\(574\) −13.9988 + 3.75097i −0.584299 + 0.156562i
\(575\) 0 0
\(576\) 13.8021 7.96865i 0.575088 0.332027i
\(577\) 23.5713 13.6089i 0.981288 0.566547i 0.0786291 0.996904i \(-0.474946\pi\)
0.902659 + 0.430357i \(0.141612\pi\)
\(578\) −17.3311 −0.720880
\(579\) −4.70480 17.5586i −0.195525 0.729709i
\(580\) 0 0
\(581\) −14.5110 −0.602019
\(582\) 13.0941 + 13.0941i 0.542769 + 0.542769i
\(583\) −6.24629 1.67369i −0.258695 0.0693171i
\(584\) −5.49833 + 5.49833i −0.227522 + 0.227522i
\(585\) 0 0
\(586\) 7.94139 + 7.94139i 0.328056 + 0.328056i
\(587\) −6.06864 + 10.5112i −0.250480 + 0.433843i −0.963658 0.267139i \(-0.913922\pi\)
0.713178 + 0.700983i \(0.247255\pi\)
\(588\) −3.13847 + 0.840951i −0.129428 + 0.0346802i
\(589\) −2.77851 1.60418i −0.114487 0.0660989i
\(590\) 0 0
\(591\) 9.42622i 0.387743i
\(592\) 8.71231 9.15077i 0.358074 0.376095i
\(593\) 22.9652 + 22.9652i 0.943070 + 0.943070i 0.998465 0.0553950i \(-0.0176418\pi\)
−0.0553950 + 0.998465i \(0.517642\pi\)
\(594\) −10.8885 2.91757i −0.446761 0.119709i
\(595\) 0 0
\(596\) −10.3793 5.99251i −0.425154 0.245463i
\(597\) −9.85449 5.68949i −0.403317 0.232855i
\(598\) −7.94340 −0.324830
\(599\) −2.59862 1.50032i −0.106177 0.0613013i 0.445971 0.895047i \(-0.352858\pi\)
−0.552148 + 0.833746i \(0.686192\pi\)
\(600\) 0 0
\(601\) 7.76062 + 13.4418i 0.316562 + 0.548302i 0.979768 0.200135i \(-0.0641380\pi\)
−0.663206 + 0.748437i \(0.730805\pi\)
\(602\) 7.17241 7.17241i 0.292326 0.292326i
\(603\) 13.0282 13.0282i 0.530549 0.530549i
\(604\) −13.6653 + 7.88966i −0.556033 + 0.321026i
\(605\) 0 0
\(606\) 0.651505 + 0.651505i 0.0264656 + 0.0264656i
\(607\) −18.5157 32.0701i −0.751529 1.30169i −0.947081 0.320994i \(-0.895983\pi\)
0.195552 0.980693i \(-0.437350\pi\)
\(608\) 2.21547 8.26824i 0.0898492 0.335322i
\(609\) 0.152415 0.568820i 0.00617616 0.0230497i
\(610\) 0 0
\(611\) −1.00129 3.73685i −0.0405077 0.151177i
\(612\) 0.881739 + 1.52722i 0.0356422 + 0.0617341i
\(613\) −16.8361 4.51123i −0.680005 0.182207i −0.0977478 0.995211i \(-0.531164\pi\)
−0.582258 + 0.813004i \(0.697831\pi\)
\(614\) −5.30262 + 19.7897i −0.213996 + 0.798645i
\(615\) 0 0
\(616\) 9.33837 2.50221i 0.376254 0.100817i
\(617\) 6.18875 23.0967i 0.249150 0.929839i −0.722103 0.691786i \(-0.756824\pi\)
0.971252 0.238053i \(-0.0765092\pi\)
\(618\) 4.06368 + 4.06368i 0.163465 + 0.163465i
\(619\) −6.37727 −0.256324 −0.128162 0.991753i \(-0.540908\pi\)
−0.128162 + 0.991753i \(0.540908\pi\)
\(620\) 0 0
\(621\) −16.7134 16.7134i −0.670686 0.670686i
\(622\) 26.7483 7.16718i 1.07251 0.287378i
\(623\) 27.7760i 1.11282i
\(624\) 0.867925 + 3.23914i 0.0347448 + 0.129669i
\(625\) 0 0
\(626\) 0.525936 0.910947i 0.0210206 0.0364088i
\(627\) −3.96886 + 2.29142i −0.158501 + 0.0915107i
\(628\) 2.61505 2.61505i 0.104352 0.104352i
\(629\) 5.81612 + 5.53743i 0.231904 + 0.220792i
\(630\) 0 0
\(631\) −5.89535 + 22.0017i −0.234690 + 0.875876i 0.743598 + 0.668627i \(0.233118\pi\)
−0.978288 + 0.207249i \(0.933549\pi\)
\(632\) −37.9847 + 10.1780i −1.51095 + 0.404858i
\(633\) −0.449634 1.67806i −0.0178714 0.0666968i
\(634\) 29.0445 7.78244i 1.15350 0.309080i
\(635\) 0 0
\(636\) −1.26171 + 2.18534i −0.0500299 + 0.0866544i
\(637\) 6.61359i 0.262040i
\(638\) 0.192720 0.719241i 0.00762986 0.0284750i
\(639\) 6.22273i 0.246168i
\(640\) 0 0
\(641\) −11.7520 20.3550i −0.464175 0.803976i 0.534988 0.844859i \(-0.320316\pi\)
−0.999164 + 0.0408839i \(0.986983\pi\)
\(642\) −13.5316 7.81249i −0.534051 0.308334i
\(643\) 24.3699i 0.961055i −0.876980 0.480527i \(-0.840445\pi\)
0.876980 0.480527i \(-0.159555\pi\)
\(644\) 5.12800 + 1.37404i 0.202072 + 0.0541449i
\(645\) 0 0
\(646\) −3.26619 0.875173i −0.128507 0.0344332i
\(647\) −20.7661 + 35.9680i −0.816400 + 1.41405i 0.0919177 + 0.995767i \(0.470700\pi\)
−0.908318 + 0.418280i \(0.862633\pi\)
\(648\) 0.292478 0.506586i 0.0114896 0.0199006i
\(649\) 10.1160 + 2.71057i 0.397087 + 0.106399i
\(650\) 0 0
\(651\) −2.37394 0.636096i −0.0930422 0.0249306i
\(652\) 10.4117i 0.407755i
\(653\) −0.642043 0.370684i −0.0251251 0.0145060i 0.487385 0.873187i \(-0.337951\pi\)
−0.512510 + 0.858681i \(0.671284\pi\)
\(654\) 7.95475 + 13.7780i 0.311055 + 0.538763i
\(655\) 0 0
\(656\) 16.2212i 0.633331i
\(657\) −1.23074 + 4.59319i −0.0480158 + 0.179197i
\(658\) 4.70157i 0.183286i
\(659\) 15.9185 27.5717i 0.620098 1.07404i −0.369369 0.929283i \(-0.620426\pi\)
0.989467 0.144759i \(-0.0462406\pi\)
\(660\) 0 0
\(661\) 46.6955 12.5120i 1.81624 0.486661i 0.819932 0.572461i \(-0.194011\pi\)
0.996312 + 0.0858000i \(0.0273446\pi\)
\(662\) −2.86334 10.6861i −0.111287 0.415329i
\(663\) −2.05876 + 0.551642i −0.0799555 + 0.0214240i
\(664\) −7.07592 + 26.4077i −0.274599 + 1.02482i
\(665\) 0 0
\(666\) 3.05696 12.6418i 0.118455 0.489861i
\(667\) 1.10401 1.10401i 0.0427473 0.0427473i
\(668\) −13.2648 + 7.65841i −0.513229 + 0.296313i
\(669\) 10.3302 17.8925i 0.399390 0.691764i
\(670\) 0 0
\(671\) −5.38760 20.1068i −0.207986 0.776214i
\(672\) 6.55714i 0.252947i
\(673\) 16.5351 4.43056i 0.637380 0.170785i 0.0743635 0.997231i \(-0.476307\pi\)
0.563016 + 0.826446i \(0.309641\pi\)
\(674\) 15.9588 + 15.9588i 0.614710 + 0.614710i
\(675\) 0 0
\(676\) 7.57040 0.291169
\(677\) −31.1728 31.1728i −1.19807 1.19807i −0.974745 0.223322i \(-0.928310\pi\)
−0.223322 0.974745i \(-0.571690\pi\)
\(678\) −4.52851 + 16.9006i −0.173916 + 0.649064i
\(679\) −24.3331 + 6.52002i −0.933817 + 0.250216i
\(680\) 0 0
\(681\) −5.81408 + 21.6984i −0.222796 + 0.831486i
\(682\) −3.00172 0.804309i −0.114942 0.0307986i
\(683\) −18.4398 31.9387i −0.705580 1.22210i −0.966482 0.256736i \(-0.917353\pi\)
0.260901 0.965365i \(-0.415980\pi\)
\(684\) −0.779496 2.90912i −0.0298048 0.111233i
\(685\) 0 0
\(686\) −5.44250 + 20.3117i −0.207796 + 0.775503i
\(687\) −1.10241 + 4.11424i −0.0420595 + 0.156968i
\(688\) −5.67657 9.83210i −0.216417 0.374845i
\(689\) 3.63192 + 3.63192i 0.138365 + 0.138365i
\(690\) 0 0
\(691\) −0.520289 + 0.300389i −0.0197927 + 0.0114273i −0.509864 0.860255i \(-0.670304\pi\)
0.490071 + 0.871683i \(0.336971\pi\)
\(692\) 0.414220 0.414220i 0.0157463 0.0157463i
\(693\) 4.18059 4.18059i 0.158807 0.158807i
\(694\) 5.86687 + 10.1617i 0.222703 + 0.385734i
\(695\) 0 0
\(696\) −0.960837 0.554740i −0.0364204 0.0210274i
\(697\) −10.3100 −0.390518
\(698\) 15.5785 + 8.99422i 0.589653 + 0.340436i
\(699\) 2.91617 + 1.68365i 0.110300 + 0.0636816i
\(700\) 0 0
\(701\) −6.15868 1.65021i −0.232610 0.0623277i 0.140631 0.990062i \(-0.455087\pi\)
−0.373241 + 0.927734i \(0.621754\pi\)
\(702\) 6.33115 + 6.33115i 0.238954 + 0.238954i
\(703\) −7.14687 11.7057i −0.269549 0.441487i
\(704\) 16.2781i 0.613505i
\(705\) 0 0
\(706\) −8.56315 4.94394i −0.322278 0.186067i
\(707\) −1.21070 + 0.324407i −0.0455332 + 0.0122006i
\(708\) 2.04336 3.53920i 0.0767941 0.133011i
\(709\) −0.102970 0.102970i −0.00386711 0.00386711i 0.705171 0.709038i \(-0.250870\pi\)
−0.709038 + 0.705171i \(0.750870\pi\)
\(710\) 0 0
\(711\) −17.0049 + 17.0049i −0.637735 + 0.637735i
\(712\) −50.5477 13.5442i −1.89436 0.507591i
\(713\) −4.60752 4.60752i −0.172553 0.172553i
\(714\) −2.59025 −0.0969378
\(715\) 0 0
\(716\) 4.28964 + 16.0091i 0.160311 + 0.598290i
\(717\) 20.9900 0.783887
\(718\) 9.69954 5.60003i 0.361984 0.208991i
\(719\) −15.6399 + 9.02972i −0.583271 + 0.336752i −0.762432 0.647068i \(-0.775995\pi\)
0.179161 + 0.983820i \(0.442662\pi\)
\(720\) 0 0
\(721\) −7.55161 + 2.02345i −0.281237 + 0.0753571i
\(722\) −13.6902 7.90402i −0.509495 0.294157i
\(723\) 10.2257 5.90379i 0.380297 0.219564i
\(724\) 7.13191 + 12.3528i 0.265055 + 0.459089i
\(725\) 0 0
\(726\) 6.20222 6.20222i 0.230186 0.230186i
\(727\) 9.79831 16.9712i 0.363399 0.629426i −0.625119 0.780530i \(-0.714949\pi\)
0.988518 + 0.151104i \(0.0482828\pi\)
\(728\) −7.41727 1.98745i −0.274902 0.0736599i
\(729\) 16.0130i 0.593073i
\(730\) 0 0
\(731\) 6.24916 3.60795i 0.231134 0.133445i
\(732\) −8.12287 −0.300230
\(733\) −7.89548 29.4663i −0.291626 1.08836i −0.943860 0.330346i \(-0.892835\pi\)
0.652234 0.758018i \(-0.273832\pi\)
\(734\) 16.2868 16.2868i 0.601158 0.601158i
\(735\) 0 0
\(736\) 8.69240 15.0557i 0.320406 0.554960i
\(737\) −4.87063 18.1774i −0.179412 0.669574i
\(738\) 8.34892 + 14.4608i 0.307328 + 0.532308i
\(739\) 52.1459 1.91822 0.959110 0.283035i \(-0.0913412\pi\)
0.959110 + 0.283035i \(0.0913412\pi\)
\(740\) 0 0
\(741\) 3.64006 0.133721
\(742\) 3.12106 + 5.40584i 0.114578 + 0.198455i
\(743\) 6.78290 + 25.3141i 0.248841 + 0.928686i 0.971414 + 0.237392i \(0.0762924\pi\)
−0.722573 + 0.691294i \(0.757041\pi\)
\(744\) −2.31518 + 4.01001i −0.0848787 + 0.147014i
\(745\) 0 0
\(746\) −1.91199 + 1.91199i −0.0700030 + 0.0700030i
\(747\) 4.32721 + 16.1494i 0.158324 + 0.590874i
\(748\) 1.80119 0.0658581
\(749\) 18.4082 10.6280i 0.672621 0.388338i
\(750\) 0 0
\(751\) 53.1233i 1.93850i −0.246087 0.969248i \(-0.579145\pi\)
0.246087 0.969248i \(-0.420855\pi\)
\(752\) −5.08302 1.36199i −0.185359 0.0496667i
\(753\) −5.06517 + 8.77313i −0.184585 + 0.319711i
\(754\) −0.418205 + 0.418205i −0.0152301 + 0.0152301i
\(755\) 0 0
\(756\) −2.99203 5.18235i −0.108819 0.188480i
\(757\) 12.9392 7.47044i 0.470282 0.271518i −0.246075 0.969251i \(-0.579141\pi\)
0.716358 + 0.697733i \(0.245808\pi\)
\(758\) −16.3562 9.44324i −0.594083 0.342994i
\(759\) −8.99041 + 2.40897i −0.326331 + 0.0874402i
\(760\) 0 0
\(761\) −33.1931 + 19.1641i −1.20325 + 0.694697i −0.961277 0.275586i \(-0.911128\pi\)
−0.241974 + 0.970283i \(0.577795\pi\)
\(762\) −5.32011 + 3.07157i −0.192727 + 0.111271i
\(763\) −21.6430 −0.783530
\(764\) 3.25689 + 12.1549i 0.117830 + 0.439749i
\(765\) 0 0
\(766\) −10.2315 −0.369679
\(767\) −5.88197 5.88197i −0.212385 0.212385i
\(768\) −14.9434 4.00407i −0.539224 0.144485i
\(769\) −22.4800 + 22.4800i −0.810650 + 0.810650i −0.984731 0.174081i \(-0.944304\pi\)
0.174081 + 0.984731i \(0.444304\pi\)
\(770\) 0 0
\(771\) 0.264559 + 0.264559i 0.00952786 + 0.00952786i
\(772\) 6.10080 10.5669i 0.219573 0.380311i
\(773\) 29.6256 7.93815i 1.06556 0.285515i 0.316891 0.948462i \(-0.397361\pi\)
0.748667 + 0.662947i \(0.230694\pi\)
\(774\) −10.1210 5.84337i −0.363792 0.210036i
\(775\) 0 0
\(776\) 47.4615i 1.70377i
\(777\) −7.60896 7.24437i −0.272970 0.259890i
\(778\) 9.53005 + 9.53005i 0.341669 + 0.341669i
\(779\) 17.0078 + 4.55724i 0.609369 + 0.163280i
\(780\) 0 0
\(781\) −5.50429 3.17790i −0.196959 0.113714i
\(782\) −5.94742 3.43375i −0.212679 0.122790i
\(783\) −1.75986 −0.0628922
\(784\) 7.79085 + 4.49805i 0.278245 + 0.160645i
\(785\) 0 0
\(786\) 1.91248 + 3.31251i 0.0682159 + 0.118153i
\(787\) 17.9843 17.9843i 0.641072 0.641072i −0.309747 0.950819i \(-0.600244\pi\)
0.950819 + 0.309747i \(0.100244\pi\)
\(788\) −4.47398 + 4.47398i −0.159379 + 0.159379i
\(789\) −18.4737 + 10.6658i −0.657681 + 0.379712i
\(790\) 0 0
\(791\) −16.8308 16.8308i −0.598435 0.598435i
\(792\) −5.56943 9.64653i −0.197901 0.342775i
\(793\) −4.27926 + 15.9704i −0.151961 + 0.567126i
\(794\) 0.675939 2.52264i 0.0239882 0.0895251i
\(795\) 0 0
\(796\) −1.97684 7.37767i −0.0700672 0.261494i
\(797\) 14.1009 + 24.4236i 0.499481 + 0.865127i 1.00000 0.000599033i \(-0.000190678\pi\)
−0.500519 + 0.865726i \(0.666857\pi\)
\(798\) 4.27301 + 1.14495i 0.151263 + 0.0405307i
\(799\) 0.865665 3.23070i 0.0306250 0.114294i
\(800\) 0 0
\(801\) −30.9119 + 8.28283i −1.09222 + 0.292659i
\(802\) −7.05582 + 26.3327i −0.249150 + 0.929839i
\(803\) 3.43435 + 3.43435i 0.121196 + 0.121196i
\(804\) −7.34343 −0.258983
\(805\) 0 0
\(806\) 1.74536 + 1.74536i 0.0614777 + 0.0614777i
\(807\) 6.63697 1.77837i 0.233633 0.0626017i
\(808\) 2.36147i 0.0830763i
\(809\) 0.812619 + 3.03273i 0.0285701 + 0.106625i 0.978739 0.205112i \(-0.0657558\pi\)
−0.950168 + 0.311737i \(0.899089\pi\)
\(810\) 0 0
\(811\) −10.5095 + 18.2030i −0.369038 + 0.639192i −0.989415 0.145111i \(-0.953646\pi\)
0.620377 + 0.784303i \(0.286979\pi\)
\(812\) 0.342321 0.197639i 0.0120131 0.00693577i
\(813\) −3.18365 + 3.18365i −0.111655 + 0.111655i
\(814\) −9.62111 9.16011i −0.337220 0.321062i
\(815\) 0 0
\(816\) −0.750368 + 2.80041i −0.0262681 + 0.0980340i
\(817\) −11.9037 + 3.18959i −0.416458 + 0.111590i
\(818\) 7.57966 + 28.2877i 0.265017 + 0.989056i
\(819\) −4.53596 + 1.21541i −0.158499 + 0.0424697i
\(820\) 0 0
\(821\) 2.11926 3.67067i 0.0739627 0.128107i −0.826672 0.562684i \(-0.809769\pi\)
0.900635 + 0.434577i \(0.143102\pi\)
\(822\) 25.9496i 0.905096i
\(823\) 0.244554 0.912687i 0.00852461 0.0318143i −0.961533 0.274691i \(-0.911424\pi\)
0.970057 + 0.242877i \(0.0780911\pi\)
\(824\) 14.7294i 0.513122i
\(825\) 0 0
\(826\) −5.05462 8.75486i −0.175873 0.304621i
\(827\) 20.7030 + 11.9529i 0.719912 + 0.415642i 0.814720 0.579854i \(-0.196890\pi\)
−0.0948080 + 0.995496i \(0.530224\pi\)
\(828\) 6.11671i 0.212570i
\(829\) −2.51032 0.672639i −0.0871871 0.0233617i 0.214962 0.976622i \(-0.431037\pi\)
−0.302149 + 0.953261i \(0.597704\pi\)
\(830\) 0 0
\(831\) 0.583280 + 0.156289i 0.0202338 + 0.00542162i
\(832\) −6.46469 + 11.1972i −0.224123 + 0.388192i
\(833\) −2.85890 + 4.95177i −0.0990551 + 0.171569i
\(834\) 20.8230 + 5.57951i 0.721041 + 0.193202i
\(835\) 0 0
\(836\) −2.97133 0.796165i −0.102766 0.0275360i
\(837\) 7.34470i 0.253870i
\(838\) −32.9826 19.0425i −1.13936 0.657812i
\(839\) −18.2196 31.5573i −0.629012 1.08948i −0.987750 0.156042i \(-0.950126\pi\)
0.358739 0.933438i \(-0.383207\pi\)
\(840\) 0 0
\(841\) 28.8838i 0.995991i
\(842\) 0.396811 1.48092i 0.0136750 0.0510358i
\(843\) 33.1205i 1.14073i
\(844\) 0.583049 1.00987i 0.0200694 0.0347611i
\(845\) 0 0
\(846\) −5.23239 + 1.40201i −0.179893 + 0.0482022i
\(847\) 3.08830 + 11.5257i 0.106115 + 0.396028i
\(848\) 6.74857 1.80827i 0.231747 0.0620964i
\(849\) −0.168614 + 0.629276i −0.00578681 + 0.0215967i
\(850\) 0 0
\(851\) −7.86732 26.7204i −0.269688 0.915962i
\(852\) −1.75374 + 1.75374i −0.0600822 + 0.0600822i
\(853\) 22.4827 12.9804i 0.769792 0.444440i −0.0630083 0.998013i \(-0.520069\pi\)
0.832800 + 0.553573i \(0.186736\pi\)
\(854\) −10.0467 + 17.4014i −0.343791 + 0.595464i
\(855\) 0 0
\(856\) −10.3649 38.6824i −0.354265 1.32214i
\(857\) 40.2792i 1.37591i 0.725753 + 0.687955i \(0.241491\pi\)
−0.725753 + 0.687955i \(0.758509\pi\)
\(858\) 3.40563 0.912535i 0.116266 0.0311534i
\(859\) 3.69657 + 3.69657i 0.126125 + 0.126125i 0.767352 0.641226i \(-0.221574\pi\)
−0.641226 + 0.767352i \(0.721574\pi\)
\(860\) 0 0
\(861\) 13.4881 0.459672
\(862\) −10.1183 10.1183i −0.344630 0.344630i
\(863\) 1.83795 6.85933i 0.0625646 0.233494i −0.927562 0.373669i \(-0.878100\pi\)
0.990127 + 0.140174i \(0.0447663\pi\)
\(864\) −18.9280 + 5.07175i −0.643944 + 0.172544i
\(865\) 0 0
\(866\) −5.70964 + 21.3087i −0.194021 + 0.724098i
\(867\) 15.5802 + 4.17471i 0.529132 + 0.141780i
\(868\) −0.824838 1.42866i −0.0279968 0.0484919i
\(869\) 6.35735 + 23.7259i 0.215658 + 0.804847i
\(870\) 0 0
\(871\) −3.86864 + 14.4380i −0.131084 + 0.489212i
\(872\) −10.5536 + 39.3867i −0.357391 + 1.33380i
\(873\) 14.5123 + 25.1360i 0.491167 + 0.850726i
\(874\) 8.29336 + 8.29336i 0.280527 + 0.280527i
\(875\) 0 0
\(876\) 1.64135 0.947633i 0.0554560 0.0320176i
\(877\) 26.8398 26.8398i 0.906315 0.906315i −0.0896576 0.995973i \(-0.528577\pi\)
0.995973 + 0.0896576i \(0.0285773\pi\)
\(878\) 24.8531 24.8531i 0.838750 0.838750i
\(879\) −5.22618 9.05201i −0.176275 0.305317i
\(880\) 0 0
\(881\) −3.79357 2.19022i −0.127809 0.0737904i 0.434733 0.900560i \(-0.356843\pi\)
−0.562541 + 0.826769i \(0.690176\pi\)
\(882\) 9.26045 0.311815
\(883\) −50.6657 29.2518i −1.70504 0.984402i −0.940483 0.339840i \(-0.889627\pi\)
−0.764552 0.644562i \(-0.777040\pi\)
\(884\) −1.23898 0.715324i −0.0416713 0.0240590i
\(885\) 0 0
\(886\) 20.6420 + 5.53099i 0.693480 + 0.185817i
\(887\) −2.53298 2.53298i −0.0850491 0.0850491i 0.663302 0.748351i \(-0.269154\pi\)
−0.748351 + 0.663302i \(0.769154\pi\)
\(888\) −16.8939 + 10.3145i −0.566921 + 0.346133i
\(889\) 8.35702i 0.280286i
\(890\) 0 0
\(891\) −0.316423 0.182687i −0.0106006 0.00612024i
\(892\) 13.3954 3.58929i 0.448511 0.120178i
\(893\) −2.85608 + 4.94688i −0.0955752 + 0.165541i
\(894\) −14.3420 14.3420i −0.479668 0.479668i
\(895\) 0 0
\(896\) −2.33935 + 2.33935i −0.0781523 + 0.0781523i
\(897\) 7.14090 + 1.91340i 0.238428 + 0.0638865i
\(898\) −23.5686 23.5686i −0.786494 0.786494i
\(899\) −0.485155 −0.0161808
\(900\) 0 0
\(901\) 1.14932 + 4.28931i 0.0382893 + 0.142898i
\(902\) 17.0549 0.567867
\(903\) −8.17549 + 4.72012i −0.272063 + 0.157076i
\(904\) −38.8364 + 22.4222i −1.29168 + 0.745752i
\(905\) 0 0
\(906\) −25.7939 + 6.91146i −0.856946 + 0.229618i
\(907\) 10.6371 + 6.14134i 0.353200 + 0.203920i 0.666094 0.745868i \(-0.267965\pi\)
−0.312894 + 0.949788i \(0.601298\pi\)
\(908\) −13.0583 + 7.53922i −0.433355 + 0.250198i
\(909\) 0.722067 + 1.25066i 0.0239495 + 0.0414817i
\(910\) 0 0
\(911\) −8.69751 + 8.69751i −0.288161 + 0.288161i −0.836353 0.548191i \(-0.815317\pi\)
0.548191 + 0.836353i \(0.315317\pi\)
\(912\) 2.47568 4.28801i 0.0819781 0.141990i
\(913\) 16.4947 + 4.41974i 0.545895 + 0.146272i
\(914\) 7.28961i 0.241119i
\(915\) 0 0
\(916\) −2.47599 + 1.42951i −0.0818089 + 0.0472324i
\(917\) −5.20341 −0.171832
\(918\) 2.00348 + 7.47710i 0.0661248 + 0.246781i
\(919\) 25.2847 25.2847i 0.834065 0.834065i −0.154005 0.988070i \(-0.549217\pi\)
0.988070 + 0.154005i \(0.0492173\pi\)
\(920\) 0 0
\(921\) 9.53382 16.5131i 0.314150 0.544124i
\(922\) 7.70182 + 28.7436i 0.253646 + 0.946620i
\(923\) 2.52414 + 4.37194i 0.0830832 + 0.143904i
\(924\) −2.35642 −0.0775204
\(925\) 0 0
\(926\) −43.4081 −1.42648
\(927\) 4.50380 + 7.80081i 0.147924 + 0.256212i
\(928\) −0.335015 1.25029i −0.0109974 0.0410428i
\(929\) −6.26098 + 10.8443i −0.205416 + 0.355791i −0.950265 0.311442i \(-0.899188\pi\)
0.744849 + 0.667233i \(0.232521\pi\)
\(930\) 0 0
\(931\) 6.90497 6.90497i 0.226301 0.226301i
\(932\) 0.584992 + 2.18322i 0.0191621 + 0.0715138i
\(933\) −25.7724 −0.843751
\(934\) −13.2985 + 7.67791i −0.435141 + 0.251229i
\(935\) 0 0
\(936\) 8.84736i 0.289185i
\(937\) −11.8419 3.17302i −0.386857 0.103658i 0.0601478 0.998189i \(-0.480843\pi\)
−0.447005 + 0.894531i \(0.647509\pi\)
\(938\) −9.08266 + 15.7316i −0.296559 + 0.513656i
\(939\) −0.692230 + 0.692230i −0.0225901 + 0.0225901i
\(940\) 0 0
\(941\) −13.7869 23.8796i −0.449440 0.778452i 0.548910 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574293i \(0.981710\pi\)
\(942\) 5.42015 3.12932i 0.176598 0.101959i
\(943\) 30.9696 + 17.8803i 1.00851 + 0.582264i
\(944\) −10.9294 + 2.92853i −0.355723 + 0.0953157i
\(945\) 0 0
\(946\) −10.3375 + 5.96833i −0.336100 + 0.194047i
\(947\) −7.76600 + 4.48370i −0.252361 + 0.145701i −0.620845 0.783933i \(-0.713210\pi\)
0.368484 + 0.929634i \(0.379877\pi\)
\(948\) 9.58495 0.311305
\(949\) −0.998457 3.72629i −0.0324113 0.120961i
\(950\) 0 0
\(951\) −27.9848 −0.907469
\(952\) −4.69437 4.69437i −0.152145 0.152145i
\(953\) −35.9483 9.63231i −1.16448 0.312021i −0.375725 0.926731i \(-0.622606\pi\)
−0.788753 + 0.614710i \(0.789273\pi\)
\(954\) 5.08547 5.08547i 0.164648 0.164648i
\(955\) 0 0
\(956\) 9.96253 + 9.96253i 0.322211 + 0.322211i
\(957\) −0.346500 + 0.600156i −0.0112008 + 0.0194003i
\(958\) −1.97946 + 0.530395i −0.0639535 + 0.0171363i
\(959\) −30.5719 17.6507i −0.987219 0.569971i
\(960\) 0 0
\(961\) 28.9752i 0.934685i
\(962\) 2.98019 + 10.1219i 0.0960852 + 0.326342i
\(963\) −17.3173 17.3173i −0.558041 0.558041i
\(964\) 7.65555 + 2.05130i 0.246569 + 0.0660679i
\(965\) 0 0
\(966\) 7.78074 + 4.49221i 0.250341 + 0.144535i
\(967\) −48.6411 28.0830i −1.56419 0.903087i −0.996825 0.0796228i \(-0.974628\pi\)
−0.567368 0.823464i \(-0.692038\pi\)
\(968\) 22.4808 0.722561
\(969\) 2.72541 + 1.57351i 0.0875526 + 0.0505485i
\(970\) 0 0
\(971\) −19.7612 34.2274i −0.634167 1.09841i −0.986691 0.162607i \(-0.948010\pi\)
0.352523 0.935803i \(-0.385324\pi\)
\(972\) −7.87086 + 7.87086i −0.252458 + 0.252458i
\(973\) −20.7370 + 20.7370i −0.664798 + 0.664798i
\(974\) −4.63033 + 2.67332i −0.148365 + 0.0856588i
\(975\) 0 0
\(976\) 15.9028 + 15.9028i 0.509037 + 0.509037i
\(977\) 3.00331 + 5.20188i 0.0960843 + 0.166423i 0.910061 0.414475i \(-0.136035\pi\)
−0.813976 + 0.580898i \(0.802702\pi\)
\(978\) 4.56042 17.0197i 0.145826 0.544231i
\(979\) −8.45996 + 31.5730i −0.270381 + 1.00908i
\(980\) 0 0
\(981\) 6.45397 + 24.0866i 0.206060 + 0.769025i
\(982\) 12.7039 + 22.0038i 0.405398 + 0.702169i
\(983\) −23.1064 6.19133i −0.736979 0.197473i −0.129244 0.991613i \(-0.541255\pi\)
−0.607735 + 0.794140i \(0.707922\pi\)
\(984\) 6.57710 24.5461i 0.209670 0.782501i
\(985\) 0 0
\(986\) −0.493901 + 0.132340i −0.0157290 + 0.00421457i
\(987\) −1.13251 + 4.22658i −0.0360482 + 0.134534i
\(988\) 1.72769 + 1.72769i 0.0549651 + 0.0549651i
\(989\) −25.0287 −0.795867
\(990\) 0 0
\(991\) 18.5888 + 18.5888i 0.590492 + 0.590492i 0.937764 0.347272i \(-0.112892\pi\)
−0.347272 + 0.937764i \(0.612892\pi\)
\(992\) −5.21804 + 1.39817i −0.165673 + 0.0443919i
\(993\) 10.2963i 0.326742i
\(994\) 1.58789 + 5.92610i 0.0503649 + 0.187964i
\(995\) 0 0
\(996\) 3.33182 5.77087i 0.105573 0.182857i
\(997\) −44.7129 + 25.8150i −1.41607 + 0.817569i −0.995951 0.0898999i \(-0.971345\pi\)
−0.420120 + 0.907469i \(0.638012\pi\)
\(998\) 12.5670 12.5670i 0.397800 0.397800i
\(999\) −15.0265 + 27.5675i −0.475417 + 0.872198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.t.b.843.12 68
5.2 odd 4 925.2.y.b.732.6 68
5.3 odd 4 185.2.u.a.177.12 yes 68
5.4 even 2 185.2.p.a.103.6 yes 68
37.23 odd 12 925.2.y.b.393.6 68
185.23 even 12 185.2.p.a.97.6 68
185.97 even 12 inner 925.2.t.b.282.12 68
185.134 odd 12 185.2.u.a.23.12 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.6 68 185.23 even 12
185.2.p.a.103.6 yes 68 5.4 even 2
185.2.u.a.23.12 yes 68 185.134 odd 12
185.2.u.a.177.12 yes 68 5.3 odd 4
925.2.t.b.282.12 68 185.97 even 12 inner
925.2.t.b.843.12 68 1.1 even 1 trivial
925.2.y.b.393.6 68 37.23 odd 12
925.2.y.b.732.6 68 5.2 odd 4