| L(s) = 1 | + (0.567 + 0.983i)2-s + (−0.273 − 1.02i)3-s + (0.354 − 0.614i)4-s + (0.849 − 0.849i)6-s + (0.422 + 1.57i)7-s + 3.07·8-s + (1.63 − 0.941i)9-s − 1.92i·11-s + (−0.724 − 0.194i)12-s + (−0.763 + 1.32i)13-s + (−1.31 + 1.31i)14-s + (1.03 + 1.79i)16-s + (−1.14 + 0.660i)17-s + (1.85 + 1.06i)18-s + (2.17 − 0.583i)19-s + ⋯ |
| L(s) = 1 | + (0.401 + 0.695i)2-s + (−0.157 − 0.589i)3-s + (0.177 − 0.307i)4-s + (0.346 − 0.346i)6-s + (0.159 + 0.596i)7-s + 1.08·8-s + (0.543 − 0.313i)9-s − 0.579i·11-s + (−0.209 − 0.0560i)12-s + (−0.211 + 0.366i)13-s + (−0.350 + 0.350i)14-s + (0.259 + 0.449i)16-s + (−0.277 + 0.160i)17-s + (0.436 + 0.251i)18-s + (0.499 − 0.133i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.174i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 + 0.174i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.25395 - 0.197907i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.25395 - 0.197907i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 37 | \( 1 + (1.71 + 5.83i)T \) |
| good | 2 | \( 1 + (-0.567 - 0.983i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.273 + 1.02i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.422 - 1.57i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + 1.92iT - 11T^{2} \) |
| 13 | \( 1 + (0.763 - 1.32i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.14 - 0.660i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.17 + 0.583i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 4.57T + 23T^{2} \) |
| 29 | \( 1 + (-0.241 + 0.241i)T - 29iT^{2} \) |
| 31 | \( 1 + (1.00 + 1.00i)T + 31iT^{2} \) |
| 41 | \( 1 + (-6.76 - 3.90i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 5.46T + 43T^{2} \) |
| 47 | \( 1 + (1.79 - 1.79i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.870 + 3.24i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (1.40 - 5.26i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-10.4 + 2.80i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-9.45 + 2.53i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-1.65 + 2.86i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.78 - 1.78i)T - 73iT^{2} \) |
| 79 | \( 1 + (12.3 - 3.30i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (2.29 - 8.57i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (16.4 + 4.40i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 - 15.4iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.993528345283054407811218234637, −9.160391996277057736187628691423, −8.140199910774533742699992159260, −7.21037111709306340345067712633, −6.66036154036930813457319773131, −5.80216973391456581191260445382, −5.06329962031263784898955872973, −3.94206644099852454308025467809, −2.37022127154871676472205704385, −1.14552749406102607190523085503,
1.46800236244811342437560658637, 2.76650006691750133423625491489, 3.83570205923874040604848447743, 4.57071825322813606208802352219, 5.31427158269445395236243700661, 6.97423266162131548161617624705, 7.38636887664130452220665390830, 8.417185832226024280781974787350, 9.661746725231429542278612475948, 10.25013191332102709959285708493