Properties

Label 925.2.bb.e.876.5
Level $925$
Weight $2$
Character 925.876
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 876.5
Character \(\chi\) \(=\) 925.876
Dual form 925.2.bb.e.151.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.829326 - 0.988352i) q^{2} +(-0.303732 - 0.254862i) q^{3} +(0.0582378 - 0.330283i) q^{4} +0.511558i q^{6} +(-0.177770 + 0.0647030i) q^{7} +(-2.60943 + 1.50656i) q^{8} +(-0.493646 - 2.79960i) q^{9} +(-2.43203 - 4.21239i) q^{11} +(-0.101865 + 0.0854751i) q^{12} +(5.86686 + 1.03449i) q^{13} +(0.211379 + 0.122040i) q^{14} +(3.02277 + 1.10020i) q^{16} +(-3.55082 + 0.626106i) q^{17} +(-2.35760 + 2.80968i) q^{18} +(2.25395 - 2.68616i) q^{19} +(0.0704849 + 0.0256544i) q^{21} +(-2.14639 + 5.89714i) q^{22} +(-2.41225 - 1.39271i) q^{23} +(1.17653 + 0.207454i) q^{24} +(-3.84310 - 6.65645i) q^{26} +(-1.15832 + 2.00626i) q^{27} +(0.0110174 + 0.0624827i) q^{28} +(-6.12379 + 3.53557i) q^{29} -1.01083i q^{31} +(0.641610 + 1.76281i) q^{32} +(-0.334893 + 1.89927i) q^{33} +(3.56360 + 2.99022i) q^{34} -0.953411 q^{36} +(-4.05887 + 4.53051i) q^{37} -4.52413 q^{38} +(-1.51830 - 1.80944i) q^{39} +(-0.0118099 + 0.0669770i) q^{41} +(-0.0330994 - 0.0909397i) q^{42} -9.36105i q^{43} +(-1.53292 + 0.557937i) q^{44} +(0.624051 + 3.53917i) q^{46} +(0.984975 - 1.70603i) q^{47} +(-0.637715 - 1.10455i) q^{48} +(-5.33490 + 4.47651i) q^{49} +(1.23807 + 0.714801i) q^{51} +(0.683346 - 1.87748i) q^{52} +(-5.76016 - 2.09653i) q^{53} +(2.94352 - 0.519022i) q^{54} +(0.366400 - 0.436659i) q^{56} +(-1.36920 + 0.241426i) q^{57} +(8.57301 + 3.12032i) q^{58} +(1.34075 - 3.68368i) q^{59} +(4.72849 + 0.833760i) q^{61} +(-0.999056 + 0.838308i) q^{62} +(0.268898 + 0.465746i) q^{63} +(4.42694 - 7.66768i) q^{64} +(2.15488 - 1.24412i) q^{66} +(-11.6453 + 4.23855i) q^{67} +1.20924i q^{68} +(0.377729 + 1.03780i) q^{69} +(5.85405 + 4.91213i) q^{71} +(5.50589 + 6.56167i) q^{72} -12.9498 q^{73} +(7.84387 + 0.254325i) q^{74} +(-0.755927 - 0.900878i) q^{76} +(0.704896 + 0.591478i) q^{77} +(-0.529199 + 3.00124i) q^{78} +(4.89209 + 13.4409i) q^{79} +(-7.15091 + 2.60272i) q^{81} +(0.0759911 - 0.0438735i) q^{82} +(2.16097 + 12.2554i) q^{83} +(0.0125781 - 0.0217859i) q^{84} +(-9.25201 + 7.76336i) q^{86} +(2.76107 + 0.486852i) q^{87} +(12.6924 + 7.32796i) q^{88} +(3.16477 - 8.69512i) q^{89} +(-1.10989 + 0.195703i) q^{91} +(-0.600474 + 0.715617i) q^{92} +(-0.257622 + 0.307022i) q^{93} +(-2.50302 + 0.441350i) q^{94} +(0.254395 - 0.698945i) q^{96} +(-7.42712 - 4.28805i) q^{97} +(8.84873 + 1.56027i) q^{98} +(-10.5925 + 8.88814i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} + 6 q^{9} - 30 q^{11} + 36 q^{14} + 18 q^{19} - 24 q^{21} - 96 q^{24} + 48 q^{26} + 18 q^{29} + 54 q^{34} + 24 q^{36} + 36 q^{39} + 72 q^{41} + 84 q^{44} - 18 q^{46} + 6 q^{49} - 18 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.829326 0.988352i −0.586422 0.698871i 0.388492 0.921452i \(-0.372996\pi\)
−0.974914 + 0.222582i \(0.928552\pi\)
\(3\) −0.303732 0.254862i −0.175360 0.147144i 0.550883 0.834582i \(-0.314291\pi\)
−0.726243 + 0.687438i \(0.758735\pi\)
\(4\) 0.0582378 0.330283i 0.0291189 0.165142i
\(5\) 0 0
\(6\) 0.511558i 0.208843i
\(7\) −0.177770 + 0.0647030i −0.0671908 + 0.0244554i −0.375397 0.926864i \(-0.622494\pi\)
0.308206 + 0.951320i \(0.400271\pi\)
\(8\) −2.60943 + 1.50656i −0.922573 + 0.532648i
\(9\) −0.493646 2.79960i −0.164549 0.933201i
\(10\) 0 0
\(11\) −2.43203 4.21239i −0.733283 1.27008i −0.955472 0.295080i \(-0.904654\pi\)
0.222189 0.975004i \(-0.428680\pi\)
\(12\) −0.101865 + 0.0854751i −0.0294060 + 0.0246745i
\(13\) 5.86686 + 1.03449i 1.62717 + 0.286915i 0.911432 0.411450i \(-0.134978\pi\)
0.715742 + 0.698365i \(0.246089\pi\)
\(14\) 0.211379 + 0.122040i 0.0564934 + 0.0326165i
\(15\) 0 0
\(16\) 3.02277 + 1.10020i 0.755693 + 0.275050i
\(17\) −3.55082 + 0.626106i −0.861201 + 0.151853i −0.586770 0.809754i \(-0.699601\pi\)
−0.274431 + 0.961607i \(0.588490\pi\)
\(18\) −2.35760 + 2.80968i −0.555692 + 0.662248i
\(19\) 2.25395 2.68616i 0.517092 0.616246i −0.442799 0.896621i \(-0.646014\pi\)
0.959891 + 0.280375i \(0.0904588\pi\)
\(20\) 0 0
\(21\) 0.0704849 + 0.0256544i 0.0153811 + 0.00559825i
\(22\) −2.14639 + 5.89714i −0.457611 + 1.25728i
\(23\) −2.41225 1.39271i −0.502989 0.290401i 0.226958 0.973905i \(-0.427122\pi\)
−0.729947 + 0.683504i \(0.760455\pi\)
\(24\) 1.17653 + 0.207454i 0.240158 + 0.0423464i
\(25\) 0 0
\(26\) −3.84310 6.65645i −0.753694 1.30544i
\(27\) −1.15832 + 2.00626i −0.222918 + 0.386106i
\(28\) 0.0110174 + 0.0624827i 0.00208209 + 0.0118081i
\(29\) −6.12379 + 3.53557i −1.13716 + 0.656539i −0.945726 0.324966i \(-0.894647\pi\)
−0.191434 + 0.981506i \(0.561314\pi\)
\(30\) 0 0
\(31\) 1.01083i 0.181550i −0.995871 0.0907752i \(-0.971066\pi\)
0.995871 0.0907752i \(-0.0289345\pi\)
\(32\) 0.641610 + 1.76281i 0.113422 + 0.311624i
\(33\) −0.334893 + 1.89927i −0.0582973 + 0.330621i
\(34\) 3.56360 + 2.99022i 0.611153 + 0.512818i
\(35\) 0 0
\(36\) −0.953411 −0.158902
\(37\) −4.05887 + 4.53051i −0.667275 + 0.744812i
\(38\) −4.52413 −0.733910
\(39\) −1.51830 1.80944i −0.243123 0.289743i
\(40\) 0 0
\(41\) −0.0118099 + 0.0669770i −0.00184439 + 0.0104601i −0.985716 0.168416i \(-0.946135\pi\)
0.983872 + 0.178876i \(0.0572460\pi\)
\(42\) −0.0330994 0.0909397i −0.00510734 0.0140323i
\(43\) 9.36105i 1.42755i −0.700377 0.713773i \(-0.746985\pi\)
0.700377 0.713773i \(-0.253015\pi\)
\(44\) −1.53292 + 0.557937i −0.231096 + 0.0841121i
\(45\) 0 0
\(46\) 0.624051 + 3.53917i 0.0920113 + 0.521822i
\(47\) 0.984975 1.70603i 0.143673 0.248850i −0.785204 0.619237i \(-0.787442\pi\)
0.928877 + 0.370388i \(0.120775\pi\)
\(48\) −0.637715 1.10455i −0.0920462 0.159429i
\(49\) −5.33490 + 4.47651i −0.762128 + 0.639501i
\(50\) 0 0
\(51\) 1.23807 + 0.714801i 0.173365 + 0.100092i
\(52\) 0.683346 1.87748i 0.0947631 0.260359i
\(53\) −5.76016 2.09653i −0.791219 0.287980i −0.0853760 0.996349i \(-0.527209\pi\)
−0.705842 + 0.708369i \(0.749431\pi\)
\(54\) 2.94352 0.519022i 0.400562 0.0706299i
\(55\) 0 0
\(56\) 0.366400 0.436659i 0.0489623 0.0583510i
\(57\) −1.36920 + 0.241426i −0.181354 + 0.0319777i
\(58\) 8.57301 + 3.12032i 1.12569 + 0.409718i
\(59\) 1.34075 3.68368i 0.174551 0.479574i −0.821308 0.570484i \(-0.806755\pi\)
0.995859 + 0.0909104i \(0.0289777\pi\)
\(60\) 0 0
\(61\) 4.72849 + 0.833760i 0.605421 + 0.106752i 0.467952 0.883754i \(-0.344992\pi\)
0.137469 + 0.990506i \(0.456103\pi\)
\(62\) −0.999056 + 0.838308i −0.126880 + 0.106465i
\(63\) 0.268898 + 0.465746i 0.0338780 + 0.0586784i
\(64\) 4.42694 7.66768i 0.553367 0.958460i
\(65\) 0 0
\(66\) 2.15488 1.24412i 0.265248 0.153141i
\(67\) −11.6453 + 4.23855i −1.42270 + 0.517821i −0.934830 0.355094i \(-0.884449\pi\)
−0.487871 + 0.872916i \(0.662227\pi\)
\(68\) 1.20924i 0.146642i
\(69\) 0.377729 + 1.03780i 0.0454733 + 0.124937i
\(70\) 0 0
\(71\) 5.85405 + 4.91213i 0.694748 + 0.582962i 0.920274 0.391275i \(-0.127966\pi\)
−0.225526 + 0.974237i \(0.572410\pi\)
\(72\) 5.50589 + 6.56167i 0.648875 + 0.773300i
\(73\) −12.9498 −1.51566 −0.757832 0.652450i \(-0.773741\pi\)
−0.757832 + 0.652450i \(0.773741\pi\)
\(74\) 7.84387 + 0.254325i 0.911832 + 0.0295646i
\(75\) 0 0
\(76\) −0.755927 0.900878i −0.0867107 0.103338i
\(77\) 0.704896 + 0.591478i 0.0803304 + 0.0674052i
\(78\) −0.529199 + 3.00124i −0.0599200 + 0.339823i
\(79\) 4.89209 + 13.4409i 0.550403 + 1.51222i 0.833162 + 0.553029i \(0.186528\pi\)
−0.282759 + 0.959191i \(0.591250\pi\)
\(80\) 0 0
\(81\) −7.15091 + 2.60272i −0.794546 + 0.289191i
\(82\) 0.0759911 0.0438735i 0.00839181 0.00484502i
\(83\) 2.16097 + 12.2554i 0.237197 + 1.34521i 0.837938 + 0.545766i \(0.183761\pi\)
−0.600741 + 0.799444i \(0.705128\pi\)
\(84\) 0.0125781 0.0217859i 0.00137238 0.00237704i
\(85\) 0 0
\(86\) −9.25201 + 7.76336i −0.997670 + 0.837145i
\(87\) 2.76107 + 0.486852i 0.296018 + 0.0521960i
\(88\) 12.6924 + 7.32796i 1.35301 + 0.781163i
\(89\) 3.16477 8.69512i 0.335465 0.921681i −0.651199 0.758907i \(-0.725734\pi\)
0.986663 0.162774i \(-0.0520442\pi\)
\(90\) 0 0
\(91\) −1.10989 + 0.195703i −0.116348 + 0.0205152i
\(92\) −0.600474 + 0.715617i −0.0626038 + 0.0746083i
\(93\) −0.257622 + 0.307022i −0.0267141 + 0.0318367i
\(94\) −2.50302 + 0.441350i −0.258167 + 0.0455218i
\(95\) 0 0
\(96\) 0.254395 0.698945i 0.0259641 0.0713357i
\(97\) −7.42712 4.28805i −0.754110 0.435385i 0.0730673 0.997327i \(-0.476721\pi\)
−0.827177 + 0.561942i \(0.810055\pi\)
\(98\) 8.84873 + 1.56027i 0.893857 + 0.157611i
\(99\) −10.5925 + 8.88814i −1.06458 + 0.893291i
\(100\) 0 0
\(101\) −2.15041 + 3.72462i −0.213974 + 0.370614i −0.952955 0.303113i \(-0.901974\pi\)
0.738981 + 0.673727i \(0.235307\pi\)
\(102\) −0.320290 1.81645i −0.0317134 0.179856i
\(103\) 5.54414 3.20091i 0.546281 0.315395i −0.201340 0.979521i \(-0.564530\pi\)
0.747621 + 0.664126i \(0.231196\pi\)
\(104\) −16.8677 + 6.13933i −1.65401 + 0.602011i
\(105\) 0 0
\(106\) 2.70494 + 7.43177i 0.262727 + 0.721837i
\(107\) 1.70761 9.68433i 0.165081 0.936219i −0.783900 0.620887i \(-0.786773\pi\)
0.948981 0.315333i \(-0.102116\pi\)
\(108\) 0.595178 + 0.499413i 0.0572710 + 0.0480561i
\(109\) −5.21425 6.21411i −0.499435 0.595203i 0.456156 0.889900i \(-0.349226\pi\)
−0.955591 + 0.294696i \(0.904781\pi\)
\(110\) 0 0
\(111\) 2.38747 0.341612i 0.226608 0.0324244i
\(112\) −0.608544 −0.0575020
\(113\) −5.46115 6.50835i −0.513742 0.612254i 0.445347 0.895358i \(-0.353080\pi\)
−0.959089 + 0.283104i \(0.908636\pi\)
\(114\) 1.37412 + 1.15303i 0.128699 + 0.107991i
\(115\) 0 0
\(116\) 0.811104 + 2.22849i 0.0753091 + 0.206910i
\(117\) 16.9356i 1.56569i
\(118\) −4.75269 + 1.72984i −0.437521 + 0.159244i
\(119\) 0.590720 0.341052i 0.0541512 0.0312642i
\(120\) 0 0
\(121\) −6.32950 + 10.9630i −0.575409 + 0.996638i
\(122\) −3.09741 5.36487i −0.280426 0.485713i
\(123\) 0.0206569 0.0173332i 0.00186257 0.00156288i
\(124\) −0.333860 0.0588685i −0.0299815 0.00528655i
\(125\) 0 0
\(126\) 0.237316 0.652021i 0.0211418 0.0580867i
\(127\) 18.3175 + 6.66702i 1.62541 + 0.591603i 0.984403 0.175929i \(-0.0562928\pi\)
0.641012 + 0.767531i \(0.278515\pi\)
\(128\) −7.55486 + 1.33213i −0.667761 + 0.117744i
\(129\) −2.38577 + 2.84325i −0.210056 + 0.250334i
\(130\) 0 0
\(131\) 6.51091 1.14805i 0.568860 0.100305i 0.118182 0.992992i \(-0.462293\pi\)
0.450678 + 0.892686i \(0.351182\pi\)
\(132\) 0.607794 + 0.221219i 0.0529016 + 0.0192546i
\(133\) −0.226883 + 0.623356i −0.0196732 + 0.0540518i
\(134\) 13.8469 + 7.99454i 1.19619 + 0.690623i
\(135\) 0 0
\(136\) 8.32236 6.98329i 0.713637 0.598812i
\(137\) 1.88778 + 3.26974i 0.161284 + 0.279352i 0.935329 0.353778i \(-0.115103\pi\)
−0.774045 + 0.633130i \(0.781770\pi\)
\(138\) 0.712454 1.23401i 0.0606481 0.105046i
\(139\) −2.51398 14.2575i −0.213233 1.20931i −0.883946 0.467588i \(-0.845123\pi\)
0.670713 0.741717i \(-0.265988\pi\)
\(140\) 0 0
\(141\) −0.733970 + 0.267143i −0.0618114 + 0.0224975i
\(142\) 9.85962i 0.827401i
\(143\) −9.91069 27.2294i −0.828774 2.27704i
\(144\) 1.58794 9.00567i 0.132328 0.750472i
\(145\) 0 0
\(146\) 10.7396 + 12.7990i 0.888819 + 1.05925i
\(147\) 2.76127 0.227746
\(148\) 1.25997 + 1.60442i 0.103569 + 0.131883i
\(149\) −0.934593 −0.0765649 −0.0382824 0.999267i \(-0.512189\pi\)
−0.0382824 + 0.999267i \(0.512189\pi\)
\(150\) 0 0
\(151\) −13.2126 11.0867i −1.07523 0.902223i −0.0797113 0.996818i \(-0.525400\pi\)
−0.995516 + 0.0945953i \(0.969844\pi\)
\(152\) −1.83469 + 10.4050i −0.148813 + 0.843960i
\(153\) 3.50570 + 9.63183i 0.283419 + 0.778687i
\(154\) 1.18721i 0.0956684i
\(155\) 0 0
\(156\) −0.686052 + 0.396092i −0.0549281 + 0.0317128i
\(157\) 0.0730161 + 0.414095i 0.00582732 + 0.0330484i 0.987583 0.157100i \(-0.0502144\pi\)
−0.981755 + 0.190148i \(0.939103\pi\)
\(158\) 9.22721 15.9820i 0.734077 1.27146i
\(159\) 1.21522 + 2.10483i 0.0963734 + 0.166924i
\(160\) 0 0
\(161\) 0.518939 + 0.0915030i 0.0408981 + 0.00721144i
\(162\) 8.50284 + 4.90912i 0.668046 + 0.385697i
\(163\) 2.23369 6.13703i 0.174956 0.480689i −0.820958 0.570988i \(-0.806560\pi\)
0.995915 + 0.0902993i \(0.0287824\pi\)
\(164\) 0.0214336 + 0.00780119i 0.00167368 + 0.000609171i
\(165\) 0 0
\(166\) 10.3205 12.2996i 0.801030 0.954630i
\(167\) 8.78444 10.4689i 0.679760 0.810107i −0.310317 0.950633i \(-0.600435\pi\)
0.990077 + 0.140526i \(0.0448795\pi\)
\(168\) −0.222575 + 0.0392460i −0.0171720 + 0.00302789i
\(169\) 21.1339 + 7.69210i 1.62568 + 0.591700i
\(170\) 0 0
\(171\) −8.63282 4.98416i −0.660169 0.381148i
\(172\) −3.09180 0.545167i −0.235747 0.0415686i
\(173\) 0.790269 0.663114i 0.0600830 0.0504156i −0.612252 0.790663i \(-0.709736\pi\)
0.672335 + 0.740247i \(0.265292\pi\)
\(174\) −1.80865 3.13267i −0.137113 0.237487i
\(175\) 0 0
\(176\) −2.71699 15.4088i −0.204801 1.16148i
\(177\) −1.34606 + 0.777147i −0.101176 + 0.0584139i
\(178\) −11.2185 + 4.08319i −0.840860 + 0.306048i
\(179\) 7.08812i 0.529791i −0.964277 0.264896i \(-0.914663\pi\)
0.964277 0.264896i \(-0.0853375\pi\)
\(180\) 0 0
\(181\) 2.53037 14.3505i 0.188081 1.06666i −0.733851 0.679310i \(-0.762279\pi\)
0.921932 0.387351i \(-0.126610\pi\)
\(182\) 1.11388 + 0.934657i 0.0825664 + 0.0692814i
\(183\) −1.22370 1.45835i −0.0904586 0.107804i
\(184\) 8.39280 0.618726
\(185\) 0 0
\(186\) 0.517098 0.0379155
\(187\) 11.2731 + 13.4348i 0.824371 + 0.982447i
\(188\) −0.506109 0.424676i −0.0369118 0.0309727i
\(189\) 0.0761028 0.431601i 0.00553567 0.0313943i
\(190\) 0 0
\(191\) 21.4074i 1.54899i 0.632583 + 0.774493i \(0.281995\pi\)
−0.632583 + 0.774493i \(0.718005\pi\)
\(192\) −3.29880 + 1.20067i −0.238071 + 0.0866506i
\(193\) 1.17525 0.678529i 0.0845961 0.0488416i −0.457105 0.889413i \(-0.651114\pi\)
0.541701 + 0.840571i \(0.317780\pi\)
\(194\) 1.92140 + 10.8968i 0.137948 + 0.782344i
\(195\) 0 0
\(196\) 1.16782 + 2.02273i 0.0834159 + 0.144481i
\(197\) 11.6506 9.77603i 0.830072 0.696513i −0.125235 0.992127i \(-0.539969\pi\)
0.955308 + 0.295614i \(0.0955241\pi\)
\(198\) 17.5692 + 3.09793i 1.24859 + 0.220160i
\(199\) −2.55910 1.47750i −0.181410 0.104737i 0.406545 0.913631i \(-0.366733\pi\)
−0.587955 + 0.808894i \(0.700067\pi\)
\(200\) 0 0
\(201\) 4.61730 + 1.68056i 0.325679 + 0.118538i
\(202\) 5.46463 0.963562i 0.384490 0.0677960i
\(203\) 0.859865 1.02475i 0.0603507 0.0719231i
\(204\) 0.308189 0.367286i 0.0215776 0.0257151i
\(205\) 0 0
\(206\) −7.76153 2.82497i −0.540772 0.196825i
\(207\) −2.70825 + 7.44086i −0.188236 + 0.517175i
\(208\) 16.5960 + 9.58172i 1.15073 + 0.664373i
\(209\) −16.7968 2.96173i −1.16186 0.204867i
\(210\) 0 0
\(211\) −7.03980 12.1933i −0.484640 0.839420i 0.515205 0.857067i \(-0.327716\pi\)
−0.999844 + 0.0176468i \(0.994383\pi\)
\(212\) −1.02791 + 1.78039i −0.0705969 + 0.122277i
\(213\) −0.526150 2.98394i −0.0360512 0.204457i
\(214\) −10.9877 + 6.34375i −0.751103 + 0.433650i
\(215\) 0 0
\(216\) 6.98028i 0.474948i
\(217\) 0.0654038 + 0.179695i 0.00443990 + 0.0121985i
\(218\) −1.81741 + 10.3070i −0.123090 + 0.698081i
\(219\) 3.93328 + 3.30042i 0.265787 + 0.223022i
\(220\) 0 0
\(221\) −21.4799 −1.44489
\(222\) −2.31762 2.07635i −0.155548 0.139355i
\(223\) 1.05240 0.0704742 0.0352371 0.999379i \(-0.488781\pi\)
0.0352371 + 0.999379i \(0.488781\pi\)
\(224\) −0.228118 0.271861i −0.0152418 0.0181645i
\(225\) 0 0
\(226\) −1.90347 + 10.7951i −0.126617 + 0.718079i
\(227\) −1.08108 2.97024i −0.0717538 0.197142i 0.898632 0.438704i \(-0.144562\pi\)
−0.970385 + 0.241562i \(0.922340\pi\)
\(228\) 0.466283i 0.0308803i
\(229\) 23.4029 8.51795i 1.54650 0.562882i 0.578910 0.815391i \(-0.303478\pi\)
0.967594 + 0.252510i \(0.0812559\pi\)
\(230\) 0 0
\(231\) −0.0633547 0.359302i −0.00416843 0.0236403i
\(232\) 10.6531 18.4517i 0.699408 1.21141i
\(233\) −11.9122 20.6326i −0.780397 1.35169i −0.931711 0.363201i \(-0.881684\pi\)
0.151314 0.988486i \(-0.451650\pi\)
\(234\) −16.7383 + 14.0451i −1.09422 + 0.918156i
\(235\) 0 0
\(236\) −1.13857 0.657356i −0.0741149 0.0427903i
\(237\) 1.93969 5.32924i 0.125996 0.346172i
\(238\) −0.826979 0.300996i −0.0536051 0.0195106i
\(239\) −9.23526 + 1.62842i −0.597379 + 0.105334i −0.464158 0.885752i \(-0.653643\pi\)
−0.133221 + 0.991086i \(0.542532\pi\)
\(240\) 0 0
\(241\) 11.2471 13.4038i 0.724491 0.863415i −0.270568 0.962701i \(-0.587212\pi\)
0.995059 + 0.0992862i \(0.0316559\pi\)
\(242\) 16.0845 2.83614i 1.03395 0.182314i
\(243\) 9.36607 + 3.40897i 0.600834 + 0.218686i
\(244\) 0.550754 1.51318i 0.0352584 0.0968717i
\(245\) 0 0
\(246\) −0.0342626 0.00604143i −0.00218451 0.000385187i
\(247\) 16.0024 13.4276i 1.01821 0.854379i
\(248\) 1.52287 + 2.63769i 0.0967024 + 0.167493i
\(249\) 2.46709 4.27312i 0.156345 0.270798i
\(250\) 0 0
\(251\) 17.5716 10.1450i 1.10911 0.640346i 0.170513 0.985355i \(-0.445458\pi\)
0.938599 + 0.345009i \(0.112124\pi\)
\(252\) 0.169488 0.0616886i 0.0106767 0.00388602i
\(253\) 13.5485i 0.851785i
\(254\) −8.60181 23.6333i −0.539725 1.48288i
\(255\) 0 0
\(256\) −5.98288 5.02023i −0.373930 0.313764i
\(257\) −18.2962 21.8046i −1.14129 1.36013i −0.923254 0.384190i \(-0.874481\pi\)
−0.218032 0.975942i \(-0.569964\pi\)
\(258\) 4.78872 0.298133
\(259\) 0.428409 1.06801i 0.0266200 0.0663630i
\(260\) 0 0
\(261\) 12.9212 + 15.3989i 0.799801 + 0.953166i
\(262\) −6.53434 5.48296i −0.403693 0.338739i
\(263\) 2.27693 12.9131i 0.140402 0.796257i −0.830543 0.556954i \(-0.811970\pi\)
0.970945 0.239303i \(-0.0769189\pi\)
\(264\) −1.98748 5.46055i −0.122321 0.336073i
\(265\) 0 0
\(266\) 0.804255 0.292725i 0.0493120 0.0179481i
\(267\) −3.17730 + 1.83441i −0.194447 + 0.112264i
\(268\) 0.721723 + 4.09310i 0.0440863 + 0.250026i
\(269\) −0.700788 + 1.21380i −0.0427278 + 0.0740067i −0.886598 0.462540i \(-0.846938\pi\)
0.843871 + 0.536547i \(0.180271\pi\)
\(270\) 0 0
\(271\) 12.2350 10.2664i 0.743226 0.623640i −0.190476 0.981692i \(-0.561003\pi\)
0.933702 + 0.358051i \(0.116559\pi\)
\(272\) −11.4222 2.01404i −0.692571 0.122119i
\(273\) 0.386986 + 0.223426i 0.0234214 + 0.0135224i
\(274\) 1.66606 4.57747i 0.100651 0.276535i
\(275\) 0 0
\(276\) 0.364767 0.0643183i 0.0219564 0.00387150i
\(277\) −1.11381 + 1.32739i −0.0669223 + 0.0797549i −0.798467 0.602039i \(-0.794355\pi\)
0.731545 + 0.681794i \(0.238800\pi\)
\(278\) −12.0065 + 14.3088i −0.720103 + 0.858185i
\(279\) −2.82992 + 0.498992i −0.169423 + 0.0298739i
\(280\) 0 0
\(281\) 3.57639 9.82605i 0.213350 0.586173i −0.786142 0.618045i \(-0.787925\pi\)
0.999492 + 0.0318722i \(0.0101470\pi\)
\(282\) 0.872732 + 0.503872i 0.0519704 + 0.0300051i
\(283\) −4.65110 0.820115i −0.276479 0.0487508i 0.0336891 0.999432i \(-0.489274\pi\)
−0.310169 + 0.950682i \(0.600385\pi\)
\(284\) 1.96332 1.64742i 0.116502 0.0977565i
\(285\) 0 0
\(286\) −18.6931 + 32.3773i −1.10534 + 1.91451i
\(287\) −0.00223418 0.0126706i −0.000131879 0.000747925i
\(288\) 4.61844 2.66646i 0.272144 0.157123i
\(289\) −3.75843 + 1.36796i −0.221084 + 0.0804680i
\(290\) 0 0
\(291\) 1.16300 + 3.19531i 0.0681761 + 0.187312i
\(292\) −0.754170 + 4.27711i −0.0441345 + 0.250299i
\(293\) 2.06619 + 1.73374i 0.120708 + 0.101286i 0.701144 0.713020i \(-0.252673\pi\)
−0.580435 + 0.814306i \(0.697118\pi\)
\(294\) −2.28999 2.72911i −0.133555 0.159165i
\(295\) 0 0
\(296\) 3.76588 17.9370i 0.218887 1.04257i
\(297\) 11.2682 0.653849
\(298\) 0.775083 + 0.923707i 0.0448993 + 0.0535089i
\(299\) −12.7116 10.6663i −0.735131 0.616848i
\(300\) 0 0
\(301\) 0.605688 + 1.66411i 0.0349113 + 0.0959180i
\(302\) 22.2532i 1.28053i
\(303\) 1.60241 0.583231i 0.0920563 0.0335057i
\(304\) 9.76848 5.63984i 0.560261 0.323467i
\(305\) 0 0
\(306\) 6.61227 11.4528i 0.377998 0.654712i
\(307\) −6.46425 11.1964i −0.368934 0.639012i 0.620465 0.784234i \(-0.286944\pi\)
−0.989399 + 0.145222i \(0.953611\pi\)
\(308\) 0.236407 0.198369i 0.0134705 0.0113031i
\(309\) −2.49973 0.440769i −0.142204 0.0250745i
\(310\) 0 0
\(311\) −4.83937 + 13.2961i −0.274415 + 0.753950i 0.723555 + 0.690267i \(0.242507\pi\)
−0.997970 + 0.0636831i \(0.979715\pi\)
\(312\) 6.68794 + 2.43421i 0.378630 + 0.137810i
\(313\) −8.63725 + 1.52298i −0.488207 + 0.0860840i −0.412332 0.911033i \(-0.635286\pi\)
−0.0758740 + 0.997117i \(0.524175\pi\)
\(314\) 0.348717 0.415585i 0.0196793 0.0234528i
\(315\) 0 0
\(316\) 4.72421 0.833005i 0.265758 0.0468602i
\(317\) −7.62847 2.77654i −0.428458 0.155946i 0.118785 0.992920i \(-0.462100\pi\)
−0.547242 + 0.836974i \(0.684322\pi\)
\(318\) 1.07249 2.94665i 0.0601425 0.165240i
\(319\) 29.7864 + 17.1972i 1.66772 + 0.962858i
\(320\) 0 0
\(321\) −2.98682 + 2.50624i −0.166708 + 0.139885i
\(322\) −0.339933 0.588780i −0.0189437 0.0328115i
\(323\) −6.32157 + 10.9493i −0.351741 + 0.609234i
\(324\) 0.443181 + 2.51340i 0.0246212 + 0.139634i
\(325\) 0 0
\(326\) −7.91800 + 2.88192i −0.438538 + 0.159615i
\(327\) 3.21634i 0.177864i
\(328\) −0.0700876 0.192564i −0.00386994 0.0106326i
\(329\) −0.0647140 + 0.367011i −0.00356780 + 0.0202340i
\(330\) 0 0
\(331\) −3.56956 4.25404i −0.196201 0.233823i 0.658970 0.752169i \(-0.270992\pi\)
−0.855171 + 0.518346i \(0.826548\pi\)
\(332\) 4.17362 0.229057
\(333\) 14.6873 + 9.12677i 0.804858 + 0.500144i
\(334\) −17.6321 −0.964786
\(335\) 0 0
\(336\) 0.184835 + 0.155095i 0.0100836 + 0.00846111i
\(337\) −1.40048 + 7.94251i −0.0762890 + 0.432656i 0.922610 + 0.385735i \(0.126052\pi\)
−0.998899 + 0.0469213i \(0.985059\pi\)
\(338\) −9.92437 27.2670i −0.539814 1.48313i
\(339\) 3.36864i 0.182959i
\(340\) 0 0
\(341\) −4.25801 + 2.45836i −0.230584 + 0.133128i
\(342\) 2.23332 + 12.6658i 0.120764 + 0.684886i
\(343\) 1.32087 2.28781i 0.0713202 0.123530i
\(344\) 14.1029 + 24.4270i 0.760379 + 1.31702i
\(345\) 0 0
\(346\) −1.31078 0.231126i −0.0704680 0.0124254i
\(347\) −17.1268 9.88814i −0.919413 0.530823i −0.0359651 0.999353i \(-0.511451\pi\)
−0.883448 + 0.468530i \(0.844784\pi\)
\(348\) 0.321598 0.883583i 0.0172395 0.0473650i
\(349\) −5.94041 2.16213i −0.317983 0.115736i 0.178098 0.984013i \(-0.443006\pi\)
−0.496080 + 0.868277i \(0.665228\pi\)
\(350\) 0 0
\(351\) −8.87114 + 10.5722i −0.473506 + 0.564303i
\(352\) 5.86524 6.98992i 0.312618 0.372564i
\(353\) 9.34639 1.64802i 0.497458 0.0877153i 0.0807107 0.996738i \(-0.474281\pi\)
0.416748 + 0.909022i \(0.363170\pi\)
\(354\) 1.88441 + 0.685871i 0.100156 + 0.0364536i
\(355\) 0 0
\(356\) −2.68754 1.55165i −0.142440 0.0822375i
\(357\) −0.266342 0.0469632i −0.0140963 0.00248556i
\(358\) −7.00556 + 5.87836i −0.370255 + 0.310681i
\(359\) 17.1116 + 29.6382i 0.903116 + 1.56424i 0.823426 + 0.567424i \(0.192060\pi\)
0.0796904 + 0.996820i \(0.474607\pi\)
\(360\) 0 0
\(361\) 1.16418 + 6.60242i 0.0612729 + 0.347496i
\(362\) −16.2818 + 9.40031i −0.855753 + 0.494069i
\(363\) 4.71653 1.71668i 0.247553 0.0901021i
\(364\) 0.377974i 0.0198112i
\(365\) 0 0
\(366\) −0.426517 + 2.41890i −0.0222944 + 0.126438i
\(367\) 23.4148 + 19.6474i 1.22224 + 1.02558i 0.998704 + 0.0508901i \(0.0162058\pi\)
0.223540 + 0.974695i \(0.428239\pi\)
\(368\) −5.75942 6.86381i −0.300231 0.357801i
\(369\) 0.193339 0.0100648
\(370\) 0 0
\(371\) 1.15964 0.0602053
\(372\) 0.0864008 + 0.102968i 0.00447967 + 0.00533867i
\(373\) 5.53097 + 4.64103i 0.286383 + 0.240303i 0.774649 0.632391i \(-0.217926\pi\)
−0.488267 + 0.872694i \(0.662371\pi\)
\(374\) 3.92920 22.2836i 0.203174 1.15226i
\(375\) 0 0
\(376\) 5.93568i 0.306109i
\(377\) −39.5849 + 14.4077i −2.03873 + 0.742036i
\(378\) −0.489687 + 0.282721i −0.0251868 + 0.0145416i
\(379\) −1.18565 6.72418i −0.0609030 0.345398i −0.999998 0.00174171i \(-0.999446\pi\)
0.939095 0.343656i \(-0.111666\pi\)
\(380\) 0 0
\(381\) −3.86445 6.69342i −0.197982 0.342914i
\(382\) 21.1581 17.7537i 1.08254 0.908359i
\(383\) −30.3978 5.35995i −1.55325 0.273880i −0.669851 0.742496i \(-0.733642\pi\)
−0.883402 + 0.468615i \(0.844753\pi\)
\(384\) 2.63416 + 1.52083i 0.134424 + 0.0776097i
\(385\) 0 0
\(386\) −1.64529 0.598836i −0.0837430 0.0304799i
\(387\) −26.2072 + 4.62104i −1.33219 + 0.234901i
\(388\) −1.84881 + 2.20333i −0.0938591 + 0.111857i
\(389\) −3.26483 + 3.89087i −0.165534 + 0.197275i −0.842434 0.538799i \(-0.818878\pi\)
0.676901 + 0.736074i \(0.263323\pi\)
\(390\) 0 0
\(391\) 9.43747 + 3.43496i 0.477273 + 0.173713i
\(392\) 7.17693 19.7185i 0.362490 0.995932i
\(393\) −2.27017 1.31068i −0.114515 0.0661151i
\(394\) −19.3243 3.40740i −0.973545 0.171662i
\(395\) 0 0
\(396\) 2.31872 + 4.01614i 0.116520 + 0.201819i
\(397\) −19.3050 + 33.4372i −0.968889 + 1.67817i −0.270107 + 0.962830i \(0.587059\pi\)
−0.698782 + 0.715335i \(0.746274\pi\)
\(398\) 0.662041 + 3.75462i 0.0331851 + 0.188202i
\(399\) 0.227781 0.131510i 0.0114033 0.00658371i
\(400\) 0 0
\(401\) 23.2705i 1.16207i −0.813878 0.581036i \(-0.802648\pi\)
0.813878 0.581036i \(-0.197352\pi\)
\(402\) −2.16826 5.95725i −0.108143 0.297121i
\(403\) 1.04569 5.93040i 0.0520895 0.295414i
\(404\) 1.10495 + 0.927159i 0.0549731 + 0.0461279i
\(405\) 0 0
\(406\) −1.72592 −0.0856559
\(407\) 28.9556 + 6.07924i 1.43527 + 0.301337i
\(408\) −4.30755 −0.213255
\(409\) 10.5652 + 12.5912i 0.522418 + 0.622593i 0.961151 0.276024i \(-0.0890170\pi\)
−0.438733 + 0.898618i \(0.644573\pi\)
\(410\) 0 0
\(411\) 0.259950 1.47425i 0.0128224 0.0727193i
\(412\) −0.734329 2.01755i −0.0361778 0.0993977i
\(413\) 0.741598i 0.0364917i
\(414\) 9.60021 3.49419i 0.471825 0.171730i
\(415\) 0 0
\(416\) 1.94064 + 11.0059i 0.0951475 + 0.539609i
\(417\) −2.87011 + 4.97118i −0.140550 + 0.243440i
\(418\) 11.0028 + 19.0574i 0.538164 + 0.932128i
\(419\) −10.3588 + 8.69210i −0.506063 + 0.424637i −0.859741 0.510730i \(-0.829375\pi\)
0.353678 + 0.935367i \(0.384931\pi\)
\(420\) 0 0
\(421\) 16.8939 + 9.75371i 0.823360 + 0.475367i 0.851574 0.524235i \(-0.175649\pi\)
−0.0282141 + 0.999602i \(0.508982\pi\)
\(422\) −6.21297 + 17.0700i −0.302443 + 0.830955i
\(423\) −5.26243 1.91537i −0.255868 0.0931283i
\(424\) 18.1893 3.20726i 0.883349 0.155758i
\(425\) 0 0
\(426\) −2.51284 + 2.99468i −0.121747 + 0.145093i
\(427\) −0.894531 + 0.157730i −0.0432894 + 0.00763309i
\(428\) −3.09912 1.12799i −0.149802 0.0545234i
\(429\) −3.92954 + 10.7963i −0.189720 + 0.521251i
\(430\) 0 0
\(431\) −11.3626 2.00354i −0.547319 0.0965071i −0.106850 0.994275i \(-0.534077\pi\)
−0.440468 + 0.897768i \(0.645188\pi\)
\(432\) −5.70862 + 4.79010i −0.274656 + 0.230464i
\(433\) −5.20640 9.01775i −0.250204 0.433365i 0.713378 0.700779i \(-0.247164\pi\)
−0.963582 + 0.267414i \(0.913831\pi\)
\(434\) 0.123361 0.213668i 0.00592153 0.0102564i
\(435\) 0 0
\(436\) −2.35608 + 1.36028i −0.112836 + 0.0651458i
\(437\) −9.17814 + 3.34057i −0.439050 + 0.159801i
\(438\) 6.62459i 0.316535i
\(439\) −6.68095 18.3557i −0.318864 0.876072i −0.990784 0.135449i \(-0.956752\pi\)
0.671920 0.740624i \(-0.265470\pi\)
\(440\) 0 0
\(441\) 15.1660 + 12.7258i 0.722190 + 0.605990i
\(442\) 17.8138 + 21.2297i 0.847317 + 1.00979i
\(443\) 40.1697 1.90852 0.954259 0.298981i \(-0.0966467\pi\)
0.954259 + 0.298981i \(0.0966467\pi\)
\(444\) 0.0262122 0.808434i 0.00124397 0.0383666i
\(445\) 0 0
\(446\) −0.872786 1.04015i −0.0413276 0.0492523i
\(447\) 0.283866 + 0.238192i 0.0134264 + 0.0112661i
\(448\) −0.290855 + 1.64952i −0.0137416 + 0.0779325i
\(449\) −3.46938 9.53204i −0.163730 0.449845i 0.830512 0.557000i \(-0.188048\pi\)
−0.994242 + 0.107156i \(0.965826\pi\)
\(450\) 0 0
\(451\) 0.310855 0.113142i 0.0146376 0.00532765i
\(452\) −2.46764 + 1.42470i −0.116068 + 0.0670120i
\(453\) 1.18752 + 6.73478i 0.0557947 + 0.316427i
\(454\) −2.03908 + 3.53179i −0.0956986 + 0.165755i
\(455\) 0 0
\(456\) 3.20910 2.69275i 0.150280 0.126100i
\(457\) −10.8301 1.90963i −0.506610 0.0893289i −0.0854990 0.996338i \(-0.527248\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(458\) −27.8273 16.0661i −1.30029 0.750720i
\(459\) 2.85685 7.84912i 0.133346 0.366366i
\(460\) 0 0
\(461\) 16.9524 2.98916i 0.789551 0.139219i 0.235690 0.971828i \(-0.424265\pi\)
0.553861 + 0.832609i \(0.313154\pi\)
\(462\) −0.302575 + 0.360595i −0.0140771 + 0.0167764i
\(463\) 4.05871 4.83698i 0.188624 0.224794i −0.663442 0.748228i \(-0.730905\pi\)
0.852066 + 0.523434i \(0.175349\pi\)
\(464\) −22.4006 + 3.94984i −1.03992 + 0.183367i
\(465\) 0 0
\(466\) −10.5132 + 28.8846i −0.487012 + 1.33806i
\(467\) 6.06330 + 3.50065i 0.280576 + 0.161991i 0.633684 0.773592i \(-0.281542\pi\)
−0.353108 + 0.935583i \(0.614875\pi\)
\(468\) −5.59353 0.986290i −0.258561 0.0455913i
\(469\) 1.79594 1.50697i 0.0829289 0.0695856i
\(470\) 0 0
\(471\) 0.0833596 0.144383i 0.00384101 0.00665282i
\(472\) 2.05107 + 11.6322i 0.0944083 + 0.535416i
\(473\) −39.4324 + 22.7663i −1.81310 + 1.04680i
\(474\) −6.87580 + 2.50259i −0.315816 + 0.114948i
\(475\) 0 0
\(476\) −0.0782415 0.214967i −0.00358620 0.00985299i
\(477\) −3.02596 + 17.1611i −0.138549 + 0.785753i
\(478\) 9.26850 + 7.77719i 0.423931 + 0.355720i
\(479\) −12.4628 14.8525i −0.569438 0.678630i 0.402077 0.915606i \(-0.368288\pi\)
−0.971516 + 0.236975i \(0.923844\pi\)
\(480\) 0 0
\(481\) −28.4996 + 22.3810i −1.29947 + 1.02049i
\(482\) −22.5752 −1.02827
\(483\) −0.134298 0.160050i −0.00611077 0.00728253i
\(484\) 3.25228 + 2.72899i 0.147831 + 0.124045i
\(485\) 0 0
\(486\) −4.39826 12.0841i −0.199509 0.548147i
\(487\) 23.2062i 1.05157i −0.850617 0.525786i \(-0.823771\pi\)
0.850617 0.525786i \(-0.176229\pi\)
\(488\) −13.5948 + 4.94809i −0.615406 + 0.223990i
\(489\) −2.24254 + 1.29473i −0.101411 + 0.0585497i
\(490\) 0 0
\(491\) −7.16276 + 12.4063i −0.323251 + 0.559887i −0.981157 0.193213i \(-0.938109\pi\)
0.657906 + 0.753100i \(0.271442\pi\)
\(492\) −0.00452185 0.00783208i −0.000203861 0.000353097i
\(493\) 19.5309 16.3883i 0.879626 0.738094i
\(494\) −26.5424 4.68015i −1.19420 0.210570i
\(495\) 0 0
\(496\) 1.11211 3.05551i 0.0499354 0.137196i
\(497\) −1.35850 0.494455i −0.0609372 0.0221793i
\(498\) −6.26937 + 1.10546i −0.280937 + 0.0495368i
\(499\) 7.88222 9.39367i 0.352857 0.420518i −0.560196 0.828360i \(-0.689274\pi\)
0.913053 + 0.407842i \(0.133719\pi\)
\(500\) 0 0
\(501\) −5.33624 + 0.940923i −0.238405 + 0.0420373i
\(502\) −24.5994 8.95347i −1.09793 0.399613i
\(503\) −4.78894 + 13.1575i −0.213528 + 0.586665i −0.999501 0.0315972i \(-0.989941\pi\)
0.785972 + 0.618262i \(0.212163\pi\)
\(504\) −1.40334 0.810220i −0.0625099 0.0360901i
\(505\) 0 0
\(506\) 13.3907 11.2361i 0.595287 0.499505i
\(507\) −4.45862 7.72256i −0.198014 0.342971i
\(508\) 3.26878 5.66169i 0.145028 0.251197i
\(509\) 6.85758 + 38.8913i 0.303957 + 1.72383i 0.628374 + 0.777912i \(0.283721\pi\)
−0.324417 + 0.945914i \(0.605168\pi\)
\(510\) 0 0
\(511\) 2.30209 0.837894i 0.101839 0.0370662i
\(512\) 25.4194i 1.12339i
\(513\) 2.77835 + 7.63344i 0.122667 + 0.337025i
\(514\) −6.37708 + 36.1662i −0.281281 + 1.59522i
\(515\) 0 0
\(516\) 0.800136 + 0.953565i 0.0352240 + 0.0419784i
\(517\) −9.58194 −0.421413
\(518\) −1.41086 + 0.462311i −0.0619897 + 0.0203128i
\(519\) −0.409033 −0.0179545
\(520\) 0 0
\(521\) 9.63053 + 8.08098i 0.421921 + 0.354034i 0.828893 0.559407i \(-0.188971\pi\)
−0.406972 + 0.913441i \(0.633415\pi\)
\(522\) 4.50363 25.5414i 0.197119 1.11791i
\(523\) 10.4396 + 28.6826i 0.456492 + 1.25420i 0.928080 + 0.372382i \(0.121459\pi\)
−0.471588 + 0.881819i \(0.656319\pi\)
\(524\) 2.21730i 0.0968633i
\(525\) 0 0
\(526\) −14.6510 + 8.45878i −0.638815 + 0.368820i
\(527\) 0.632887 + 3.58928i 0.0275690 + 0.156351i
\(528\) −3.10188 + 5.37261i −0.134992 + 0.233813i
\(529\) −7.62069 13.1994i −0.331335 0.573888i
\(530\) 0 0
\(531\) −10.9747 1.93513i −0.476261 0.0839777i
\(532\) 0.192671 + 0.111238i 0.00835334 + 0.00482280i
\(533\) −0.138574 + 0.380728i −0.00600229 + 0.0164911i
\(534\) 4.44806 + 1.61896i 0.192486 + 0.0700593i
\(535\) 0 0
\(536\) 24.0020 28.6045i 1.03673 1.23553i
\(537\) −1.80649 + 2.15289i −0.0779558 + 0.0929041i
\(538\) 1.78084 0.314011i 0.0767776 0.0135380i
\(539\) 31.8314 + 11.5857i 1.37108 + 0.499031i
\(540\) 0 0
\(541\) 4.64371 + 2.68105i 0.199649 + 0.115267i 0.596492 0.802619i \(-0.296561\pi\)
−0.396843 + 0.917887i \(0.629894\pi\)
\(542\) −20.2937 3.57832i −0.871688 0.153702i
\(543\) −4.42594 + 3.71380i −0.189935 + 0.159375i
\(544\) −3.38195 5.85771i −0.145000 0.251147i
\(545\) 0 0
\(546\) −0.100113 0.567771i −0.00428446 0.0242984i
\(547\) 5.94736 3.43371i 0.254291 0.146815i −0.367437 0.930049i \(-0.619765\pi\)
0.621727 + 0.783234i \(0.286431\pi\)
\(548\) 1.18988 0.433081i 0.0508291 0.0185003i
\(549\) 13.6495i 0.582545i
\(550\) 0 0
\(551\) −4.30563 + 24.4185i −0.183426 + 1.04026i
\(552\) −2.54917 2.13900i −0.108500 0.0910421i
\(553\) −1.73933 2.07286i −0.0739640 0.0881469i
\(554\) 2.23564 0.0949830
\(555\) 0 0
\(556\) −4.85542 −0.205916
\(557\) 20.4606 + 24.3839i 0.866942 + 1.03318i 0.999120 + 0.0419547i \(0.0133585\pi\)
−0.132178 + 0.991226i \(0.542197\pi\)
\(558\) 2.84011 + 2.38313i 0.120231 + 0.100886i
\(559\) 9.68387 54.9199i 0.409584 2.32287i
\(560\) 0 0
\(561\) 6.95365i 0.293583i
\(562\) −12.6776 + 4.61427i −0.534772 + 0.194641i
\(563\) 23.9805 13.8451i 1.01066 0.583503i 0.0992728 0.995060i \(-0.468348\pi\)
0.911384 + 0.411557i \(0.135015\pi\)
\(564\) 0.0454881 + 0.257976i 0.00191539 + 0.0108627i
\(565\) 0 0
\(566\) 3.04672 + 5.27707i 0.128063 + 0.221812i
\(567\) 1.10282 0.925372i 0.0463139 0.0388620i
\(568\) −22.6761 3.99841i −0.951469 0.167770i
\(569\) 35.8180 + 20.6795i 1.50157 + 0.866930i 0.999998 + 0.00181213i \(0.000576819\pi\)
0.501569 + 0.865118i \(0.332757\pi\)
\(570\) 0 0
\(571\) 38.7418 + 14.1009i 1.62129 + 0.590102i 0.983628 0.180211i \(-0.0576781\pi\)
0.637665 + 0.770314i \(0.279900\pi\)
\(572\) −9.57059 + 1.68755i −0.400167 + 0.0705602i
\(573\) 5.45593 6.50212i 0.227925 0.271630i
\(574\) −0.0106702 + 0.0127163i −0.000445366 + 0.000530766i
\(575\) 0 0
\(576\) −23.6518 8.60855i −0.985492 0.358690i
\(577\) −6.05420 + 16.6338i −0.252040 + 0.692473i 0.747560 + 0.664194i \(0.231225\pi\)
−0.999600 + 0.0282794i \(0.990997\pi\)
\(578\) 4.46899 + 2.58017i 0.185885 + 0.107321i
\(579\) −0.529892 0.0934342i −0.0220215 0.00388299i
\(580\) 0 0
\(581\) −1.17712 2.03883i −0.0488351 0.0845849i
\(582\) 2.19359 3.79940i 0.0909270 0.157490i
\(583\) 5.17746 + 29.3628i 0.214429 + 1.21608i
\(584\) 33.7917 19.5096i 1.39831 0.807315i
\(585\) 0 0
\(586\) 3.47997i 0.143756i
\(587\) −8.53967 23.4626i −0.352470 0.968403i −0.981574 0.191082i \(-0.938800\pi\)
0.629104 0.777321i \(-0.283422\pi\)
\(588\) 0.160810 0.912001i 0.00663171 0.0376103i
\(589\) −2.71525 2.27836i −0.111880 0.0938783i
\(590\) 0 0
\(591\) −6.03021 −0.248050
\(592\) −17.2535 + 9.22913i −0.709115 + 0.379315i
\(593\) 24.7820 1.01768 0.508838 0.860862i \(-0.330075\pi\)
0.508838 + 0.860862i \(0.330075\pi\)
\(594\) −9.34504 11.1370i −0.383431 0.456956i
\(595\) 0 0
\(596\) −0.0544287 + 0.308680i −0.00222949 + 0.0126440i
\(597\) 0.400724 + 1.10098i 0.0164006 + 0.0450602i
\(598\) 21.4094i 0.875494i
\(599\) −0.772242 + 0.281073i −0.0315529 + 0.0114843i −0.357748 0.933818i \(-0.616455\pi\)
0.326195 + 0.945302i \(0.394233\pi\)
\(600\) 0 0
\(601\) −7.20863 40.8822i −0.294046 1.66762i −0.671053 0.741409i \(-0.734158\pi\)
0.377007 0.926210i \(-0.376953\pi\)
\(602\) 1.14242 1.97873i 0.0465615 0.0806469i
\(603\) 17.6149 + 30.5099i 0.717335 + 1.24246i
\(604\) −4.43122 + 3.71824i −0.180304 + 0.151293i
\(605\) 0 0
\(606\) −1.90536 1.10006i −0.0774000 0.0446869i
\(607\) 11.7617 32.3151i 0.477394 1.31163i −0.434304 0.900766i \(-0.643006\pi\)
0.911698 0.410862i \(-0.134772\pi\)
\(608\) 6.18134 + 2.24982i 0.250686 + 0.0912424i
\(609\) −0.522337 + 0.0921022i −0.0211662 + 0.00373217i
\(610\) 0 0
\(611\) 7.54357 8.99008i 0.305180 0.363700i
\(612\) 3.38539 0.596936i 0.136846 0.0241297i
\(613\) −40.0883 14.5909i −1.61915 0.589322i −0.635930 0.771747i \(-0.719383\pi\)
−0.983220 + 0.182425i \(0.941605\pi\)
\(614\) −5.70502 + 15.6744i −0.230236 + 0.632568i
\(615\) 0 0
\(616\) −2.73047 0.481456i −0.110014 0.0193984i
\(617\) 18.8824 15.8442i 0.760178 0.637865i −0.177995 0.984031i \(-0.556961\pi\)
0.938173 + 0.346167i \(0.112517\pi\)
\(618\) 1.63745 + 2.83615i 0.0658680 + 0.114087i
\(619\) −24.4719 + 42.3866i −0.983609 + 1.70366i −0.335650 + 0.941987i \(0.608956\pi\)
−0.647960 + 0.761675i \(0.724378\pi\)
\(620\) 0 0
\(621\) 5.58831 3.22641i 0.224251 0.129471i
\(622\) 17.1546 6.24376i 0.687837 0.250352i
\(623\) 1.75050i 0.0701324i
\(624\) −2.59874 7.13997i −0.104033 0.285828i
\(625\) 0 0
\(626\) 8.66834 + 7.27360i 0.346457 + 0.290712i
\(627\) 4.34690 + 5.18044i 0.173599 + 0.206887i
\(628\) 0.141021 0.00562734
\(629\) 11.5758 18.6283i 0.461556 0.742761i
\(630\) 0 0
\(631\) −11.8495 14.1216i −0.471720 0.562174i 0.476751 0.879038i \(-0.341814\pi\)
−0.948471 + 0.316865i \(0.897370\pi\)
\(632\) −33.0150 27.7029i −1.31327 1.10196i
\(633\) −0.969387 + 5.49767i −0.0385297 + 0.218513i
\(634\) 3.58229 + 9.84227i 0.142271 + 0.390886i
\(635\) 0 0
\(636\) 0.765961 0.278787i 0.0303723 0.0110546i
\(637\) −35.9300 + 20.7442i −1.42360 + 0.821914i
\(638\) −7.70577 43.7016i −0.305074 1.73016i
\(639\) 10.8622 18.8139i 0.429702 0.744265i
\(640\) 0 0
\(641\) −15.2402 + 12.7881i −0.601952 + 0.505098i −0.892072 0.451892i \(-0.850749\pi\)
0.290120 + 0.956990i \(0.406305\pi\)
\(642\) 4.95409 + 0.873541i 0.195523 + 0.0344759i
\(643\) −12.5163 7.22627i −0.493593 0.284976i 0.232471 0.972603i \(-0.425319\pi\)
−0.726064 + 0.687627i \(0.758652\pi\)
\(644\) 0.0604438 0.166068i 0.00238182 0.00654399i
\(645\) 0 0
\(646\) 16.0644 2.83258i 0.632045 0.111447i
\(647\) 15.8662 18.9086i 0.623764 0.743373i −0.357949 0.933741i \(-0.616524\pi\)
0.981713 + 0.190368i \(0.0609682\pi\)
\(648\) 14.7387 17.5649i 0.578990 0.690013i
\(649\) −18.7778 + 3.31104i −0.737094 + 0.129970i
\(650\) 0 0
\(651\) 0.0259322 0.0712482i 0.00101636 0.00279244i
\(652\) −1.89687 1.09516i −0.0742872 0.0428897i
\(653\) −32.3099 5.69712i −1.26439 0.222945i −0.499048 0.866574i \(-0.666317\pi\)
−0.765338 + 0.643629i \(0.777428\pi\)
\(654\) 3.17888 2.66739i 0.124304 0.104303i
\(655\) 0 0
\(656\) −0.109386 + 0.189463i −0.00427083 + 0.00739729i
\(657\) 6.39263 + 36.2544i 0.249400 + 1.41442i
\(658\) 0.416406 0.240412i 0.0162332 0.00937223i
\(659\) 6.92927 2.52205i 0.269926 0.0982451i −0.203511 0.979073i \(-0.565235\pi\)
0.473437 + 0.880828i \(0.343013\pi\)
\(660\) 0 0
\(661\) 1.79433 + 4.92989i 0.0697915 + 0.191750i 0.969685 0.244360i \(-0.0785779\pi\)
−0.899893 + 0.436111i \(0.856356\pi\)
\(662\) −1.24416 + 7.05597i −0.0483555 + 0.274238i
\(663\) 6.52414 + 5.47440i 0.253376 + 0.212608i
\(664\) −24.1024 28.7241i −0.935354 1.11471i
\(665\) 0 0
\(666\) −3.16009 22.0853i −0.122451 0.855787i
\(667\) 19.6962 0.762638
\(668\) −2.94611 3.51104i −0.113988 0.135846i
\(669\) −0.319649 0.268217i −0.0123583 0.0103699i
\(670\) 0 0
\(671\) −7.98768 21.9460i −0.308361 0.847215i
\(672\) 0.140712i 0.00542807i
\(673\) −6.48615 + 2.36077i −0.250023 + 0.0910009i −0.463991 0.885840i \(-0.653583\pi\)
0.213969 + 0.976841i \(0.431361\pi\)
\(674\) 9.01145 5.20277i 0.347108 0.200403i
\(675\) 0 0
\(676\) 3.77136 6.53219i 0.145052 0.251238i
\(677\) −0.576422 0.998393i −0.0221537 0.0383714i 0.854736 0.519063i \(-0.173719\pi\)
−0.876890 + 0.480692i \(0.840386\pi\)
\(678\) 3.32940 2.79370i 0.127865 0.107291i
\(679\) 1.59777 + 0.281730i 0.0613168 + 0.0108118i
\(680\) 0 0
\(681\) −0.428642 + 1.17768i −0.0164256 + 0.0451290i
\(682\) 5.96101 + 2.16963i 0.228259 + 0.0830794i
\(683\) 9.98262 1.76021i 0.381974 0.0673524i 0.0206357 0.999787i \(-0.493431\pi\)
0.361339 + 0.932435i \(0.382320\pi\)
\(684\) −2.14894 + 2.56101i −0.0821669 + 0.0979226i
\(685\) 0 0
\(686\) −3.35659 + 0.591858i −0.128155 + 0.0225972i
\(687\) −9.27911 3.37732i −0.354020 0.128853i
\(688\) 10.2990 28.2963i 0.392646 1.07879i
\(689\) −31.6252 18.2588i −1.20482 0.695606i
\(690\) 0 0
\(691\) 3.46669 2.90890i 0.131879 0.110660i −0.574462 0.818531i \(-0.694789\pi\)
0.706341 + 0.707871i \(0.250344\pi\)
\(692\) −0.172992 0.299631i −0.00657617 0.0113903i
\(693\) 1.30794 2.26541i 0.0496844 0.0860558i
\(694\) 4.43070 + 25.1278i 0.168187 + 0.953837i
\(695\) 0 0
\(696\) −7.93830 + 2.88931i −0.300901 + 0.109519i
\(697\) 0.245218i 0.00928829i
\(698\) 2.78959 + 7.66433i 0.105587 + 0.290099i
\(699\) −1.64033 + 9.30276i −0.0620429 + 0.351863i
\(700\) 0 0
\(701\) 0.0244893 + 0.0291852i 0.000924948 + 0.00110231i 0.766507 0.642236i \(-0.221993\pi\)
−0.765582 + 0.643339i \(0.777549\pi\)
\(702\) 17.8061 0.672049
\(703\) 3.02116 + 21.1143i 0.113945 + 0.796342i
\(704\) −43.0657 −1.62310
\(705\) 0 0
\(706\) −9.38003 7.87078i −0.353022 0.296221i
\(707\) 0.141285 0.801265i 0.00531356 0.0301347i
\(708\) 0.178287 + 0.489839i 0.00670044 + 0.0184093i
\(709\) 33.0614i 1.24165i 0.783951 + 0.620823i \(0.213202\pi\)
−0.783951 + 0.620823i \(0.786798\pi\)
\(710\) 0 0
\(711\) 35.2142 20.3310i 1.32064 0.762470i
\(712\) 4.84145 + 27.4572i 0.181441 + 1.02900i
\(713\) −1.40780 + 2.43838i −0.0527224 + 0.0913179i
\(714\) 0.174468 + 0.302187i 0.00652930 + 0.0113091i
\(715\) 0 0
\(716\) −2.34109 0.412797i −0.0874905 0.0154269i
\(717\) 3.22007 + 1.85911i 0.120256 + 0.0694297i
\(718\) 15.1019 41.4920i 0.563596 1.54847i
\(719\) 5.52050 + 2.00930i 0.205880 + 0.0749341i 0.442902 0.896570i \(-0.353949\pi\)
−0.237022 + 0.971504i \(0.576171\pi\)
\(720\) 0 0
\(721\) −0.778474 + 0.927750i −0.0289919 + 0.0345512i
\(722\) 5.56003 6.62618i 0.206923 0.246601i
\(723\) −6.83223 + 1.20471i −0.254093 + 0.0448035i
\(724\) −4.59235 1.67148i −0.170673 0.0621200i
\(725\) 0 0
\(726\) −5.60822 3.23791i −0.208141 0.120170i
\(727\) 41.4281 + 7.30490i 1.53648 + 0.270924i 0.876887 0.480696i \(-0.159616\pi\)
0.659597 + 0.751620i \(0.270727\pi\)
\(728\) 2.60133 2.18278i 0.0964119 0.0808992i
\(729\) 9.43880 + 16.3485i 0.349585 + 0.605499i
\(730\) 0 0
\(731\) 5.86101 + 33.2394i 0.216777 + 1.22940i
\(732\) −0.552934 + 0.319237i −0.0204370 + 0.0117993i
\(733\) −20.2905 + 7.38515i −0.749448 + 0.272777i −0.688373 0.725356i \(-0.741675\pi\)
−0.0610745 + 0.998133i \(0.519453\pi\)
\(734\) 39.4362i 1.45562i
\(735\) 0 0
\(736\) 0.907365 5.14592i 0.0334459 0.189681i
\(737\) 46.1761 + 38.7464i 1.70092 + 1.42724i
\(738\) −0.160341 0.191087i −0.00590224 0.00703401i
\(739\) −17.1769 −0.631862 −0.315931 0.948782i \(-0.602317\pi\)
−0.315931 + 0.948782i \(0.602317\pi\)
\(740\) 0 0
\(741\) −8.28263 −0.304270
\(742\) −0.961716 1.14613i −0.0353057 0.0420757i
\(743\) −30.7730 25.8216i −1.12895 0.947303i −0.129930 0.991523i \(-0.541475\pi\)
−0.999022 + 0.0442206i \(0.985920\pi\)
\(744\) 0.209701 1.18927i 0.00768801 0.0436009i
\(745\) 0 0
\(746\) 9.31547i 0.341064i
\(747\) 33.2436 12.0997i 1.21632 0.442705i
\(748\) 5.09380 2.94090i 0.186248 0.107530i
\(749\) 0.323044 + 1.83207i 0.0118038 + 0.0669424i
\(750\) 0 0
\(751\) −18.3737 31.8241i −0.670465 1.16128i −0.977772 0.209669i \(-0.932761\pi\)
0.307308 0.951610i \(-0.400572\pi\)
\(752\) 4.85432 4.07326i 0.177019 0.148536i
\(753\) −7.92265 1.39698i −0.288717 0.0509087i
\(754\) 47.0687 + 27.1751i 1.71414 + 0.989660i
\(755\) 0 0
\(756\) −0.138118 0.0502710i −0.00502332 0.00182834i
\(757\) −40.3317 + 7.11156i −1.46588 + 0.258474i −0.848920 0.528521i \(-0.822747\pi\)
−0.616959 + 0.786995i \(0.711636\pi\)
\(758\) −5.66257 + 6.74838i −0.205674 + 0.245112i
\(759\) 3.45299 4.11511i 0.125335 0.149369i
\(760\) 0 0
\(761\) −23.4132 8.52171i −0.848728 0.308912i −0.119207 0.992869i \(-0.538035\pi\)
−0.729522 + 0.683958i \(0.760257\pi\)
\(762\) −3.41057 + 9.37046i −0.123552 + 0.339456i
\(763\) 1.32901 + 0.767304i 0.0481134 + 0.0277783i
\(764\) 7.07051 + 1.24672i 0.255802 + 0.0451048i
\(765\) 0 0
\(766\) 19.9121 + 34.4888i 0.719455 + 1.24613i
\(767\) 11.6767 20.2246i 0.421621 0.730269i
\(768\) 0.537729 + 3.04961i 0.0194036 + 0.110043i
\(769\) −26.8863 + 15.5228i −0.969545 + 0.559767i −0.899097 0.437749i \(-0.855776\pi\)
−0.0704473 + 0.997516i \(0.522443\pi\)
\(770\) 0 0
\(771\) 11.2858i 0.406447i
\(772\) −0.155663 0.427680i −0.00560243 0.0153926i
\(773\) 3.01653 17.1076i 0.108497 0.615317i −0.881269 0.472616i \(-0.843310\pi\)
0.989766 0.142702i \(-0.0455790\pi\)
\(774\) 26.3015 + 22.0696i 0.945390 + 0.793276i
\(775\) 0 0
\(776\) 25.8407 0.927628
\(777\) −0.402317 + 0.215205i −0.0144330 + 0.00772042i
\(778\) 6.55316 0.234942
\(779\) 0.153292 + 0.182686i 0.00549225 + 0.00654541i
\(780\) 0 0
\(781\) 6.45462 36.6060i 0.230964 1.30986i
\(782\) −4.43179 12.1762i −0.158480 0.435422i
\(783\) 16.3813i 0.585418i
\(784\) −21.0512 + 7.66201i −0.751829 + 0.273643i
\(785\) 0 0
\(786\) 0.587293 + 3.33071i 0.0209481 + 0.118802i
\(787\) −6.73845 + 11.6713i −0.240200 + 0.416038i −0.960771 0.277343i \(-0.910546\pi\)
0.720571 + 0.693381i \(0.243880\pi\)
\(788\) −2.55035 4.41734i −0.0908525 0.157361i
\(789\) −3.98264 + 3.34183i −0.141786 + 0.118972i
\(790\) 0 0
\(791\) 1.39194 + 0.803637i 0.0494917 + 0.0285740i
\(792\) 14.2498 39.1511i 0.506346 1.39117i
\(793\) 26.8789 + 9.78311i 0.954496 + 0.347408i
\(794\) 49.0579 8.65022i 1.74100 0.306985i
\(795\) 0 0
\(796\) −0.637030 + 0.759182i −0.0225789 + 0.0269085i
\(797\) −2.17019 + 0.382662i −0.0768720 + 0.0135546i −0.211952 0.977280i \(-0.567982\pi\)
0.135080 + 0.990835i \(0.456871\pi\)
\(798\) −0.318883 0.116064i −0.0112883 0.00410861i
\(799\) −2.42932 + 6.67450i −0.0859432 + 0.236127i
\(800\) 0 0
\(801\) −25.9052 4.56778i −0.915314 0.161395i
\(802\) −22.9994 + 19.2988i −0.812138 + 0.681464i
\(803\) 31.4943 + 54.5498i 1.11141 + 1.92502i
\(804\) 0.823963 1.42715i 0.0290589 0.0503315i
\(805\) 0 0
\(806\) −6.72854 + 3.88472i −0.237003 + 0.136834i
\(807\) 0.522203 0.190066i 0.0183824 0.00669065i
\(808\) 12.9589i 0.455891i
\(809\) −12.7393 35.0009i −0.447889 1.23057i −0.934191 0.356774i \(-0.883877\pi\)
0.486302 0.873791i \(-0.338346\pi\)
\(810\) 0 0
\(811\) −13.1584 11.0412i −0.462054 0.387710i 0.381832 0.924232i \(-0.375293\pi\)
−0.843886 + 0.536522i \(0.819738\pi\)
\(812\) −0.288380 0.343678i −0.0101202 0.0120607i
\(813\) −6.33269 −0.222097
\(814\) −18.0052 33.6600i −0.631081 1.17978i
\(815\) 0 0
\(816\) 2.95598 + 3.52280i 0.103480 + 0.123323i
\(817\) −25.1452 21.0993i −0.879720 0.738173i
\(818\) 3.68248 20.8844i 0.128755 0.730205i
\(819\) 1.09578 + 3.01064i 0.0382897 + 0.105200i
\(820\) 0 0
\(821\) 2.01451 0.733221i 0.0703068 0.0255896i −0.306627 0.951830i \(-0.599201\pi\)
0.376934 + 0.926240i \(0.376978\pi\)
\(822\) −1.67266 + 0.965710i −0.0583407 + 0.0336830i
\(823\) −6.16074 34.9393i −0.214750 1.21791i −0.881340 0.472483i \(-0.843358\pi\)
0.666590 0.745425i \(-0.267753\pi\)
\(824\) −9.64470 + 16.7051i −0.335989 + 0.581950i
\(825\) 0 0
\(826\) 0.732961 0.615027i 0.0255030 0.0213995i
\(827\) −0.537183 0.0947198i −0.0186797 0.00329373i 0.164301 0.986410i \(-0.447463\pi\)
−0.182980 + 0.983117i \(0.558574\pi\)
\(828\) 2.29987 + 1.32783i 0.0799259 + 0.0461452i
\(829\) 4.25980 11.7037i 0.147949 0.406487i −0.843475 0.537168i \(-0.819494\pi\)
0.991424 + 0.130681i \(0.0417164\pi\)
\(830\) 0 0
\(831\) 0.676600 0.119303i 0.0234710 0.00413857i
\(832\) 33.9043 40.4056i 1.17542 1.40081i
\(833\) 16.1405 19.2355i 0.559235 0.666471i
\(834\) 7.29354 1.28605i 0.252555 0.0445322i
\(835\) 0 0
\(836\) −1.95642 + 5.37522i −0.0676642 + 0.185906i
\(837\) 2.02799 + 1.17086i 0.0700977 + 0.0404709i
\(838\) 17.1817 + 3.02960i 0.593533 + 0.104656i
\(839\) 14.2158 11.9285i 0.490784 0.411817i −0.363523 0.931585i \(-0.618426\pi\)
0.854307 + 0.519769i \(0.173982\pi\)
\(840\) 0 0
\(841\) 10.5005 18.1875i 0.362087 0.627154i
\(842\) −4.37047 24.7862i −0.150616 0.854187i
\(843\) −3.59055 + 2.07301i −0.123665 + 0.0713981i
\(844\) −4.43722 + 1.61502i −0.152735 + 0.0555911i
\(845\) 0 0
\(846\) 2.47121 + 6.78960i 0.0849620 + 0.233431i
\(847\) 0.415856 2.35843i 0.0142890 0.0810368i
\(848\) −15.1050 12.6746i −0.518709 0.435249i
\(849\) 1.20367 + 1.43448i 0.0413100 + 0.0492314i
\(850\) 0 0
\(851\) 16.1007 5.27589i 0.551926 0.180855i
\(852\) −1.01619 −0.0348140
\(853\) 33.4196 + 39.8279i 1.14427 + 1.36368i 0.921299 + 0.388856i \(0.127130\pi\)
0.222967 + 0.974826i \(0.428426\pi\)
\(854\) 0.897750 + 0.753302i 0.0307204 + 0.0257775i
\(855\) 0 0
\(856\) 10.1341 + 27.8432i 0.346376 + 0.951660i
\(857\) 36.2095i 1.23689i −0.785826 0.618447i \(-0.787762\pi\)
0.785826 0.618447i \(-0.212238\pi\)
\(858\) 13.9294 5.06990i 0.475543 0.173083i
\(859\) −1.81511 + 1.04795i −0.0619308 + 0.0357557i −0.530646 0.847594i \(-0.678050\pi\)
0.468715 + 0.883350i \(0.344717\pi\)
\(860\) 0 0
\(861\) −0.00255067 + 0.00441789i −8.69266e−5 + 0.000150561i
\(862\) 7.44312 + 12.8919i 0.253514 + 0.439099i
\(863\) −12.8856 + 10.8123i −0.438631 + 0.368055i −0.835197 0.549951i \(-0.814646\pi\)
0.396566 + 0.918006i \(0.370202\pi\)
\(864\) −4.27985 0.754653i −0.145604 0.0256738i
\(865\) 0 0
\(866\) −4.59491 + 12.6244i −0.156141 + 0.428995i
\(867\) 1.49020 + 0.542387i 0.0506097 + 0.0184204i
\(868\) 0.0631593 0.0111367i 0.00214377 0.000378004i
\(869\) 44.7207 53.2960i 1.51704 1.80794i
\(870\) 0 0
\(871\) −72.7062 + 12.8201i −2.46355 + 0.434391i
\(872\) 22.9681 + 8.35971i 0.777799 + 0.283096i
\(873\) −8.33847 + 22.9098i −0.282215 + 0.775378i
\(874\) 10.9133 + 6.30082i 0.369149 + 0.213128i
\(875\) 0 0
\(876\) 1.31914 1.10689i 0.0445696 0.0373983i
\(877\) −9.11730 15.7916i −0.307869 0.533245i 0.670027 0.742337i \(-0.266283\pi\)
−0.977896 + 0.209092i \(0.932949\pi\)
\(878\) −12.6013 + 21.8260i −0.425272 + 0.736593i
\(879\) −0.185705 1.05319i −0.00626369 0.0355231i
\(880\) 0 0
\(881\) −1.95511 + 0.711602i −0.0658694 + 0.0239745i −0.374745 0.927128i \(-0.622270\pi\)
0.308875 + 0.951103i \(0.400047\pi\)
\(882\) 25.5432i 0.860083i
\(883\) 9.43951 + 25.9348i 0.317665 + 0.872777i 0.991051 + 0.133486i \(0.0426170\pi\)
−0.673386 + 0.739291i \(0.735161\pi\)
\(884\) −1.25094 + 7.09445i −0.0420737 + 0.238612i
\(885\) 0 0
\(886\) −33.3137 39.7018i −1.11920 1.33381i
\(887\) 42.4786 1.42629 0.713146 0.701015i \(-0.247270\pi\)
0.713146 + 0.701015i \(0.247270\pi\)
\(888\) −5.71527 + 4.48826i −0.191792 + 0.150616i
\(889\) −3.68768 −0.123681
\(890\) 0 0
\(891\) 28.3549 + 23.7926i 0.949924 + 0.797081i
\(892\) 0.0612897 0.347591i 0.00205213 0.0116382i
\(893\) −2.36257 6.49110i −0.0790603 0.217216i
\(894\) 0.478099i 0.0159900i
\(895\) 0 0
\(896\) 1.25684 0.725634i 0.0419879 0.0242417i
\(897\) 1.14249 + 6.47940i 0.0381467 + 0.216341i
\(898\) −6.54377 + 11.3341i −0.218368 + 0.378225i
\(899\) 3.57386 + 6.19011i 0.119195 + 0.206452i
\(900\) 0 0
\(901\) 21.7660 + 3.83793i 0.725129 + 0.127860i
\(902\) −0.369625 0.213403i −0.0123072 0.00710554i
\(903\) 0.240152 0.659812i 0.00799176 0.0219572i
\(904\) 24.0557 + 8.75556i 0.800080 + 0.291205i
\(905\) 0 0
\(906\) 5.67149 6.75902i 0.188423 0.224553i
\(907\) 29.6303 35.3120i 0.983858 1.17252i −0.00114797 0.999999i \(-0.500365\pi\)
0.985006 0.172518i \(-0.0551901\pi\)
\(908\) −1.04398 + 0.184082i −0.0346457 + 0.00610897i
\(909\) 11.4890 + 4.18166i 0.381067 + 0.138697i
\(910\) 0 0
\(911\) 26.5045 + 15.3024i 0.878132 + 0.506990i 0.870042 0.492977i \(-0.164091\pi\)
0.00809016 + 0.999967i \(0.497425\pi\)
\(912\) −4.40438 0.776611i −0.145844 0.0257162i
\(913\) 46.3692 38.9084i 1.53460 1.28768i
\(914\) 7.09427 + 12.2876i 0.234658 + 0.406439i
\(915\) 0 0
\(916\) −1.45040 8.22564i −0.0479226 0.271783i
\(917\) −1.08316 + 0.625364i −0.0357692 + 0.0206513i
\(918\) −10.1270 + 3.68591i −0.334239 + 0.121653i
\(919\) 5.91058i 0.194972i −0.995237 0.0974860i \(-0.968920\pi\)
0.995237 0.0974860i \(-0.0310801\pi\)
\(920\) 0 0
\(921\) −0.890134 + 5.04820i −0.0293309 + 0.166344i
\(922\) −17.0134 14.2759i −0.560306 0.470152i
\(923\) 29.2633 + 34.8747i 0.963215 + 1.14791i
\(924\) −0.122361 −0.00402538
\(925\) 0 0
\(926\) −8.14664 −0.267715
\(927\) −11.6981 13.9413i −0.384217 0.457892i
\(928\) −10.1616 8.52662i −0.333572 0.279900i
\(929\) −1.78034 + 10.0968i −0.0584111 + 0.331266i −0.999985 0.00554174i \(-0.998236\pi\)
0.941574 + 0.336807i \(0.109347\pi\)
\(930\) 0 0
\(931\) 24.4202i 0.800339i
\(932\) −7.50835 + 2.73281i −0.245944 + 0.0895163i
\(933\) 4.85853 2.80507i 0.159061 0.0918340i
\(934\) −1.56858 8.89586i −0.0513255 0.291081i
\(935\) 0 0
\(936\) 25.5143 + 44.1921i 0.833962 + 1.44447i
\(937\) 10.7261 9.00024i 0.350405 0.294025i −0.450547 0.892753i \(-0.648771\pi\)
0.800953 + 0.598727i \(0.204327\pi\)
\(938\) −2.97884 0.525250i −0.0972627 0.0171500i
\(939\) 3.01156 + 1.73873i 0.0982787 + 0.0567412i
\(940\) 0 0
\(941\) 3.88489 + 1.41398i 0.126644 + 0.0460945i 0.404565 0.914509i \(-0.367423\pi\)
−0.277921 + 0.960604i \(0.589645\pi\)
\(942\) −0.211833 + 0.0373520i −0.00690191 + 0.00121699i
\(943\) 0.121768 0.145118i 0.00396532 0.00472568i
\(944\) 8.10555 9.65982i 0.263813 0.314400i
\(945\) 0 0
\(946\) 55.2034 + 20.0924i 1.79482 + 0.653261i
\(947\) −0.702056 + 1.92888i −0.0228137 + 0.0626802i −0.950577 0.310490i \(-0.899507\pi\)
0.927763 + 0.373170i \(0.121729\pi\)
\(948\) −1.64720 0.951009i −0.0534984 0.0308873i
\(949\) −75.9749 13.3964i −2.46625 0.434866i
\(950\) 0 0
\(951\) 1.60938 + 2.78753i 0.0521877 + 0.0903918i
\(952\) −1.02763 + 1.77990i −0.0333056 + 0.0576870i
\(953\) 0.194825 + 1.10491i 0.00631099 + 0.0357914i 0.987801 0.155724i \(-0.0497710\pi\)
−0.981490 + 0.191515i \(0.938660\pi\)
\(954\) 19.4707 11.2414i 0.630388 0.363955i
\(955\) 0 0
\(956\) 3.14509i 0.101719i
\(957\) −4.66419 12.8148i −0.150772 0.414243i
\(958\) −4.34385 + 24.6352i −0.140343 + 0.795928i
\(959\) −0.547153 0.459116i −0.0176685 0.0148256i
\(960\) 0 0
\(961\) 29.9782 0.967039
\(962\) 45.7558 + 9.60646i 1.47523 + 0.309725i
\(963\) −27.9552 −0.900845
\(964\) −3.77204 4.49534i −0.121489 0.144785i
\(965\) 0 0
\(966\) −0.0468091 + 0.265467i −0.00150606 + 0.00854128i
\(967\) −13.0114 35.7485i −0.418418 1.14960i −0.952600 0.304225i \(-0.901602\pi\)
0.534182 0.845370i \(-0.320620\pi\)
\(968\) 38.1430i 1.22596i
\(969\) 4.71062 1.71452i 0.151327 0.0550785i
\(970\) 0 0
\(971\) 4.23837 + 24.0370i 0.136016 + 0.771384i 0.974147 + 0.225915i \(0.0725372\pi\)
−0.838131 + 0.545469i \(0.816352\pi\)
\(972\) 1.67139 2.89492i 0.0536097 0.0928548i
\(973\) 1.36941 + 2.37189i 0.0439014 + 0.0760395i
\(974\) −22.9359 + 19.2455i −0.734913 + 0.616665i
\(975\) 0 0
\(976\) 13.3758 + 7.72254i 0.428150 + 0.247192i
\(977\) 0.812913 2.23346i 0.0260074 0.0714547i −0.926009 0.377500i \(-0.876784\pi\)
0.952017 + 0.306045i \(0.0990060\pi\)
\(978\) 3.13944 + 1.14266i 0.100388 + 0.0365384i
\(979\) −44.3241 + 7.81553i −1.41660 + 0.249785i
\(980\) 0 0
\(981\) −14.8230 + 17.6654i −0.473263 + 0.564013i
\(982\) 18.2020 3.20951i 0.580850 0.102420i
\(983\) 20.5658 + 7.48536i 0.655949 + 0.238746i 0.648486 0.761226i \(-0.275402\pi\)
0.00746235 + 0.999972i \(0.497625\pi\)
\(984\) −0.0277893 + 0.0763506i −0.000885892 + 0.00243397i
\(985\) 0 0
\(986\) −32.3949 5.71209i −1.03166 0.181910i
\(987\) 0.113193 0.0949801i 0.00360297 0.00302325i
\(988\) −3.50297 6.06732i −0.111444 0.193027i
\(989\) −13.0373 + 22.5812i −0.414561 + 0.718040i
\(990\) 0 0
\(991\) −9.88916 + 5.70951i −0.314139 + 0.181369i −0.648777 0.760978i \(-0.724719\pi\)
0.334638 + 0.942347i \(0.391386\pi\)
\(992\) 1.78190 0.648559i 0.0565754 0.0205918i
\(993\) 2.20183i 0.0698731i
\(994\) 0.637947 + 1.75275i 0.0202345 + 0.0555937i
\(995\) 0 0
\(996\) −1.26766 1.06369i −0.0401674 0.0337045i
\(997\) 12.8706 + 15.3386i 0.407616 + 0.485777i 0.930326 0.366733i \(-0.119524\pi\)
−0.522711 + 0.852510i \(0.675079\pi\)
\(998\) −15.8212 −0.500811
\(999\) −4.38794 13.3909i −0.138828 0.423671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.e.876.5 96
5.2 odd 4 185.2.v.a.99.12 yes 96
5.3 odd 4 185.2.v.a.99.5 96
5.4 even 2 inner 925.2.bb.e.876.12 96
37.3 even 18 inner 925.2.bb.e.151.5 96
185.3 odd 36 185.2.v.a.114.12 yes 96
185.77 odd 36 185.2.v.a.114.5 yes 96
185.114 even 18 inner 925.2.bb.e.151.12 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.v.a.99.5 96 5.3 odd 4
185.2.v.a.99.12 yes 96 5.2 odd 4
185.2.v.a.114.5 yes 96 185.77 odd 36
185.2.v.a.114.12 yes 96 185.3 odd 36
925.2.bb.e.151.5 96 37.3 even 18 inner
925.2.bb.e.151.12 96 185.114 even 18 inner
925.2.bb.e.876.5 96 1.1 even 1 trivial
925.2.bb.e.876.12 96 5.4 even 2 inner