Newspace parameters
| Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 925.bb (of order \(18\), degree \(6\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(7.38616218697\) |
| Analytic rank: | \(0\) |
| Dimension: | \(96\) |
| Relative dimension: | \(16\) over \(\Q(\zeta_{18})\) |
| Twist minimal: | no (minimal twist has level 185) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 151.1 | −1.72122 | + | 2.05127i | −1.73048 | + | 1.45204i | −0.897813 | − | 5.09175i | 0 | − | 6.04896i | 1.26851 | + | 0.461702i | 7.35191 | + | 4.24463i | 0.365177 | − | 2.07102i | 0 | |||||
| 151.2 | −1.34451 | + | 1.60232i | 1.31302 | − | 1.10176i | −0.412438 | − | 2.33905i | 0 | 3.58520i | 3.03192 | + | 1.10353i | 0.679545 | + | 0.392335i | −0.0107848 | + | 0.0611636i | 0 | ||||||
| 151.3 | −1.33394 | + | 1.58972i | −0.293922 | + | 0.246630i | −0.400539 | − | 2.27157i | 0 | − | 0.796243i | −3.20026 | − | 1.16480i | 0.551046 | + | 0.318147i | −0.495381 | + | 2.80944i | 0 | |||||
| 151.4 | −1.07021 | + | 1.27542i | −1.97419 | + | 1.65654i | −0.134064 | − | 0.760312i | 0 | − | 4.29076i | −0.133008 | − | 0.0484108i | −1.77057 | − | 1.02224i | 0.632347 | − | 3.58622i | 0 | |||||
| 151.5 | −0.829326 | + | 0.988352i | −0.303732 | + | 0.254862i | 0.0582378 | + | 0.330283i | 0 | − | 0.511558i | −0.177770 | − | 0.0647030i | −2.60943 | − | 1.50656i | −0.493646 | + | 2.79960i | 0 | |||||
| 151.6 | −0.714635 | + | 0.851669i | 2.29252 | − | 1.92365i | 0.132659 | + | 0.752349i | 0 | 3.32718i | −4.38165 | − | 1.59479i | −2.66121 | − | 1.53645i | 1.03426 | − | 5.86559i | 0 | ||||||
| 151.7 | −0.228808 | + | 0.272682i | 1.77101 | − | 1.48605i | 0.325294 | + | 1.84483i | 0 | 0.822942i | 0.905069 | + | 0.329418i | −1.19403 | − | 0.689371i | 0.407172 | − | 2.30919i | 0 | ||||||
| 151.8 | −0.0225922 | + | 0.0269243i | −0.589240 | + | 0.494431i | 0.347082 | + | 1.96840i | 0 | − | 0.0270352i | −1.90180 | − | 0.692199i | −0.121716 | − | 0.0702726i | −0.418203 | + | 2.37175i | 0 | |||||
| 151.9 | 0.0225922 | − | 0.0269243i | 0.589240 | − | 0.494431i | 0.347082 | + | 1.96840i | 0 | − | 0.0270352i | 1.90180 | + | 0.692199i | 0.121716 | + | 0.0702726i | −0.418203 | + | 2.37175i | 0 | |||||
| 151.10 | 0.228808 | − | 0.272682i | −1.77101 | + | 1.48605i | 0.325294 | + | 1.84483i | 0 | 0.822942i | −0.905069 | − | 0.329418i | 1.19403 | + | 0.689371i | 0.407172 | − | 2.30919i | 0 | ||||||
| 151.11 | 0.714635 | − | 0.851669i | −2.29252 | + | 1.92365i | 0.132659 | + | 0.752349i | 0 | 3.32718i | 4.38165 | + | 1.59479i | 2.66121 | + | 1.53645i | 1.03426 | − | 5.86559i | 0 | ||||||
| 151.12 | 0.829326 | − | 0.988352i | 0.303732 | − | 0.254862i | 0.0582378 | + | 0.330283i | 0 | − | 0.511558i | 0.177770 | + | 0.0647030i | 2.60943 | + | 1.50656i | −0.493646 | + | 2.79960i | 0 | |||||
| 151.13 | 1.07021 | − | 1.27542i | 1.97419 | − | 1.65654i | −0.134064 | − | 0.760312i | 0 | − | 4.29076i | 0.133008 | + | 0.0484108i | 1.77057 | + | 1.02224i | 0.632347 | − | 3.58622i | 0 | |||||
| 151.14 | 1.33394 | − | 1.58972i | 0.293922 | − | 0.246630i | −0.400539 | − | 2.27157i | 0 | − | 0.796243i | 3.20026 | + | 1.16480i | −0.551046 | − | 0.318147i | −0.495381 | + | 2.80944i | 0 | |||||
| 151.15 | 1.34451 | − | 1.60232i | −1.31302 | + | 1.10176i | −0.412438 | − | 2.33905i | 0 | 3.58520i | −3.03192 | − | 1.10353i | −0.679545 | − | 0.392335i | −0.0107848 | + | 0.0611636i | 0 | ||||||
| 151.16 | 1.72122 | − | 2.05127i | 1.73048 | − | 1.45204i | −0.897813 | − | 5.09175i | 0 | − | 6.04896i | −1.26851 | − | 0.461702i | −7.35191 | − | 4.24463i | 0.365177 | − | 2.07102i | 0 | |||||
| 176.1 | −2.43972 | + | 0.430188i | −0.198906 | + | 1.12805i | 3.88777 | − | 1.41503i | 0 | − | 2.83769i | −2.28969 | − | 1.92128i | −4.58542 | + | 2.64739i | 1.58614 | + | 0.577309i | 0 | |||||
| 176.2 | −2.40815 | + | 0.424622i | 0.345229 | − | 1.95789i | 3.73949 | − | 1.36106i | 0 | 4.86149i | 0.316914 | + | 0.265922i | −4.19194 | + | 2.42022i | −0.895083 | − | 0.325783i | 0 | ||||||
| 176.3 | −2.22054 | + | 0.391541i | −0.457886 | + | 2.59680i | 2.89811 | − | 1.05483i | 0 | − | 5.94558i | 0.761600 | + | 0.639059i | −2.11694 | + | 1.22222i | −3.71464 | − | 1.35202i | 0 | |||||
| 176.4 | −1.64794 | + | 0.290576i | 0.130480 | − | 0.739987i | 0.751873 | − | 0.273659i | 0 | 1.25737i | 3.79805 | + | 3.18694i | 1.73882 | − | 1.00391i | 2.28852 | + | 0.832954i | 0 | ||||||
| See all 96 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 37.h | even | 18 | 1 | inner |
| 185.v | even | 18 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 925.2.bb.e | 96 | |
| 5.b | even | 2 | 1 | inner | 925.2.bb.e | 96 | |
| 5.c | odd | 4 | 2 | 185.2.v.a | ✓ | 96 | |
| 37.h | even | 18 | 1 | inner | 925.2.bb.e | 96 | |
| 185.v | even | 18 | 1 | inner | 925.2.bb.e | 96 | |
| 185.y | odd | 36 | 2 | 185.2.v.a | ✓ | 96 | |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 185.2.v.a | ✓ | 96 | 5.c | odd | 4 | 2 | |
| 185.2.v.a | ✓ | 96 | 185.y | odd | 36 | 2 | |
| 925.2.bb.e | 96 | 1.a | even | 1 | 1 | trivial | |
| 925.2.bb.e | 96 | 5.b | even | 2 | 1 | inner | |
| 925.2.bb.e | 96 | 37.h | even | 18 | 1 | inner | |
| 925.2.bb.e | 96 | 185.v | even | 18 | 1 | inner | |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{96} - 6 T_{2}^{94} + 9 T_{2}^{92} - 527 T_{2}^{90} + 2775 T_{2}^{88} + 375 T_{2}^{86} + 177923 T_{2}^{84} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\).