Properties

Label 925.2.bb
Level $925$
Weight $2$
Character orbit 925.bb
Rep. character $\chi_{925}(151,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $342$
Newform subspaces $5$
Sturm bound $190$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 5 \)
Sturm bound: \(190\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(925, [\chi])\).

Total New Old
Modular forms 612 378 234
Cusp forms 540 342 198
Eisenstein series 72 36 36

Trace form

\( 342 q + 3 q^{2} + 9 q^{3} + 9 q^{4} + 9 q^{7} + 18 q^{8} + 3 q^{9} - 21 q^{11} - 33 q^{12} + 21 q^{13} - 9 q^{14} - 3 q^{16} + 15 q^{17} + 24 q^{18} + 6 q^{19} - 30 q^{21} - 15 q^{22} + 9 q^{23} - 51 q^{24}+ \cdots - 294 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(925, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
925.2.bb.a 925.bb 37.h $18$ $7.386$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None 37.2.h.a \(9\) \(9\) \(0\) \(3\) $\mathrm{SU}(2)[C_{18}]$ \(q+(-\beta _{4}+\beta _{11})q^{2}+(1+\beta _{12}-\beta _{16}+\cdots)q^{3}+\cdots\)
925.2.bb.b 925.bb 37.h $72$ $7.386$ None 185.2.w.a \(-6\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{18}]$
925.2.bb.c 925.bb 37.h $78$ $7.386$ None 925.2.bb.c \(-3\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{18}]$
925.2.bb.d 925.bb 37.h $78$ $7.386$ None 925.2.bb.c \(3\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{18}]$
925.2.bb.e 925.bb 37.h $96$ $7.386$ None 185.2.v.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(925, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)