Defining parameters
| Level: | \( N \) | \(=\) | \( 925 = 5^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 925.bb (of order \(18\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
| Character field: | \(\Q(\zeta_{18})\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(190\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(925, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 612 | 378 | 234 |
| Cusp forms | 540 | 342 | 198 |
| Eisenstein series | 72 | 36 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(925, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 925.2.bb.a | $18$ | $7.386$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(9\) | \(9\) | \(0\) | \(3\) | \(q+(-\beta _{4}+\beta _{11})q^{2}+(1+\beta _{12}-\beta _{16}+\cdots)q^{3}+\cdots\) |
| 925.2.bb.b | $72$ | $7.386$ | None | \(-6\) | \(0\) | \(0\) | \(6\) | ||
| 925.2.bb.c | $78$ | $7.386$ | None | \(-3\) | \(0\) | \(0\) | \(6\) | ||
| 925.2.bb.d | $78$ | $7.386$ | None | \(3\) | \(0\) | \(0\) | \(-6\) | ||
| 925.2.bb.e | $96$ | $7.386$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(925, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)