Properties

Label 925.2.bb.e.151.12
Level $925$
Weight $2$
Character 925.151
Analytic conductor $7.386$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 151.12
Character \(\chi\) \(=\) 925.151
Dual form 925.2.bb.e.876.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.829326 - 0.988352i) q^{2} +(0.303732 - 0.254862i) q^{3} +(0.0582378 + 0.330283i) q^{4} -0.511558i q^{6} +(0.177770 + 0.0647030i) q^{7} +(2.60943 + 1.50656i) q^{8} +(-0.493646 + 2.79960i) q^{9} +(-2.43203 + 4.21239i) q^{11} +(0.101865 + 0.0854751i) q^{12} +(-5.86686 + 1.03449i) q^{13} +(0.211379 - 0.122040i) q^{14} +(3.02277 - 1.10020i) q^{16} +(3.55082 + 0.626106i) q^{17} +(2.35760 + 2.80968i) q^{18} +(2.25395 + 2.68616i) q^{19} +(0.0704849 - 0.0256544i) q^{21} +(2.14639 + 5.89714i) q^{22} +(2.41225 - 1.39271i) q^{23} +(1.17653 - 0.207454i) q^{24} +(-3.84310 + 6.65645i) q^{26} +(1.15832 + 2.00626i) q^{27} +(-0.0110174 + 0.0624827i) q^{28} +(-6.12379 - 3.53557i) q^{29} +1.01083i q^{31} +(-0.641610 + 1.76281i) q^{32} +(0.334893 + 1.89927i) q^{33} +(3.56360 - 2.99022i) q^{34} -0.953411 q^{36} +(4.05887 + 4.53051i) q^{37} +4.52413 q^{38} +(-1.51830 + 1.80944i) q^{39} +(-0.0118099 - 0.0669770i) q^{41} +(0.0330994 - 0.0909397i) q^{42} -9.36105i q^{43} +(-1.53292 - 0.557937i) q^{44} +(0.624051 - 3.53917i) q^{46} +(-0.984975 - 1.70603i) q^{47} +(0.637715 - 1.10455i) q^{48} +(-5.33490 - 4.47651i) q^{49} +(1.23807 - 0.714801i) q^{51} +(-0.683346 - 1.87748i) q^{52} +(5.76016 - 2.09653i) q^{53} +(2.94352 + 0.519022i) q^{54} +(0.366400 + 0.436659i) q^{56} +(1.36920 + 0.241426i) q^{57} +(-8.57301 + 3.12032i) q^{58} +(1.34075 + 3.68368i) q^{59} +(4.72849 - 0.833760i) q^{61} +(0.999056 + 0.838308i) q^{62} +(-0.268898 + 0.465746i) q^{63} +(4.42694 + 7.66768i) q^{64} +(2.15488 + 1.24412i) q^{66} +(11.6453 + 4.23855i) q^{67} +1.20924i q^{68} +(0.377729 - 1.03780i) q^{69} +(5.85405 - 4.91213i) q^{71} +(-5.50589 + 6.56167i) q^{72} +12.9498 q^{73} +(7.84387 - 0.254325i) q^{74} +(-0.755927 + 0.900878i) q^{76} +(-0.704896 + 0.591478i) q^{77} +(0.529199 + 3.00124i) q^{78} +(4.89209 - 13.4409i) q^{79} +(-7.15091 - 2.60272i) q^{81} +(-0.0759911 - 0.0438735i) q^{82} +(-2.16097 + 12.2554i) q^{83} +(0.0125781 + 0.0217859i) q^{84} +(-9.25201 - 7.76336i) q^{86} +(-2.76107 + 0.486852i) q^{87} +(-12.6924 + 7.32796i) q^{88} +(3.16477 + 8.69512i) q^{89} +(-1.10989 - 0.195703i) q^{91} +(0.600474 + 0.715617i) q^{92} +(0.257622 + 0.307022i) q^{93} +(-2.50302 - 0.441350i) q^{94} +(0.254395 + 0.698945i) q^{96} +(7.42712 - 4.28805i) q^{97} +(-8.84873 + 1.56027i) q^{98} +(-10.5925 - 8.88814i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} + 6 q^{9} - 30 q^{11} + 36 q^{14} + 18 q^{19} - 24 q^{21} - 96 q^{24} + 48 q^{26} + 18 q^{29} + 54 q^{34} + 24 q^{36} + 36 q^{39} + 72 q^{41} + 84 q^{44} - 18 q^{46} + 6 q^{49} - 18 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.829326 0.988352i 0.586422 0.698871i −0.388492 0.921452i \(-0.627004\pi\)
0.974914 + 0.222582i \(0.0714484\pi\)
\(3\) 0.303732 0.254862i 0.175360 0.147144i −0.550883 0.834582i \(-0.685709\pi\)
0.726243 + 0.687438i \(0.241265\pi\)
\(4\) 0.0582378 + 0.330283i 0.0291189 + 0.165142i
\(5\) 0 0
\(6\) 0.511558i 0.208843i
\(7\) 0.177770 + 0.0647030i 0.0671908 + 0.0244554i 0.375397 0.926864i \(-0.377506\pi\)
−0.308206 + 0.951320i \(0.599729\pi\)
\(8\) 2.60943 + 1.50656i 0.922573 + 0.532648i
\(9\) −0.493646 + 2.79960i −0.164549 + 0.933201i
\(10\) 0 0
\(11\) −2.43203 + 4.21239i −0.733283 + 1.27008i 0.222189 + 0.975004i \(0.428680\pi\)
−0.955472 + 0.295080i \(0.904654\pi\)
\(12\) 0.101865 + 0.0854751i 0.0294060 + 0.0246745i
\(13\) −5.86686 + 1.03449i −1.62717 + 0.286915i −0.911432 0.411450i \(-0.865022\pi\)
−0.715742 + 0.698365i \(0.753911\pi\)
\(14\) 0.211379 0.122040i 0.0564934 0.0326165i
\(15\) 0 0
\(16\) 3.02277 1.10020i 0.755693 0.275050i
\(17\) 3.55082 + 0.626106i 0.861201 + 0.151853i 0.586770 0.809754i \(-0.300399\pi\)
0.274431 + 0.961607i \(0.411510\pi\)
\(18\) 2.35760 + 2.80968i 0.555692 + 0.662248i
\(19\) 2.25395 + 2.68616i 0.517092 + 0.616246i 0.959891 0.280375i \(-0.0904588\pi\)
−0.442799 + 0.896621i \(0.646014\pi\)
\(20\) 0 0
\(21\) 0.0704849 0.0256544i 0.0153811 0.00559825i
\(22\) 2.14639 + 5.89714i 0.457611 + 1.25728i
\(23\) 2.41225 1.39271i 0.502989 0.290401i −0.226958 0.973905i \(-0.572878\pi\)
0.729947 + 0.683504i \(0.239545\pi\)
\(24\) 1.17653 0.207454i 0.240158 0.0423464i
\(25\) 0 0
\(26\) −3.84310 + 6.65645i −0.753694 + 1.30544i
\(27\) 1.15832 + 2.00626i 0.222918 + 0.386106i
\(28\) −0.0110174 + 0.0624827i −0.00208209 + 0.0118081i
\(29\) −6.12379 3.53557i −1.13716 0.656539i −0.191434 0.981506i \(-0.561314\pi\)
−0.945726 + 0.324966i \(0.894647\pi\)
\(30\) 0 0
\(31\) 1.01083i 0.181550i 0.995871 + 0.0907752i \(0.0289345\pi\)
−0.995871 + 0.0907752i \(0.971066\pi\)
\(32\) −0.641610 + 1.76281i −0.113422 + 0.311624i
\(33\) 0.334893 + 1.89927i 0.0582973 + 0.330621i
\(34\) 3.56360 2.99022i 0.611153 0.512818i
\(35\) 0 0
\(36\) −0.953411 −0.158902
\(37\) 4.05887 + 4.53051i 0.667275 + 0.744812i
\(38\) 4.52413 0.733910
\(39\) −1.51830 + 1.80944i −0.243123 + 0.289743i
\(40\) 0 0
\(41\) −0.0118099 0.0669770i −0.00184439 0.0104601i 0.983872 0.178876i \(-0.0572460\pi\)
−0.985716 + 0.168416i \(0.946135\pi\)
\(42\) 0.0330994 0.0909397i 0.00510734 0.0140323i
\(43\) 9.36105i 1.42755i −0.700377 0.713773i \(-0.746985\pi\)
0.700377 0.713773i \(-0.253015\pi\)
\(44\) −1.53292 0.557937i −0.231096 0.0841121i
\(45\) 0 0
\(46\) 0.624051 3.53917i 0.0920113 0.521822i
\(47\) −0.984975 1.70603i −0.143673 0.248850i 0.785204 0.619237i \(-0.212558\pi\)
−0.928877 + 0.370388i \(0.879225\pi\)
\(48\) 0.637715 1.10455i 0.0920462 0.159429i
\(49\) −5.33490 4.47651i −0.762128 0.639501i
\(50\) 0 0
\(51\) 1.23807 0.714801i 0.173365 0.100092i
\(52\) −0.683346 1.87748i −0.0947631 0.260359i
\(53\) 5.76016 2.09653i 0.791219 0.287980i 0.0853760 0.996349i \(-0.472791\pi\)
0.705842 + 0.708369i \(0.250569\pi\)
\(54\) 2.94352 + 0.519022i 0.400562 + 0.0706299i
\(55\) 0 0
\(56\) 0.366400 + 0.436659i 0.0489623 + 0.0583510i
\(57\) 1.36920 + 0.241426i 0.181354 + 0.0319777i
\(58\) −8.57301 + 3.12032i −1.12569 + 0.409718i
\(59\) 1.34075 + 3.68368i 0.174551 + 0.479574i 0.995859 0.0909104i \(-0.0289777\pi\)
−0.821308 + 0.570484i \(0.806755\pi\)
\(60\) 0 0
\(61\) 4.72849 0.833760i 0.605421 0.106752i 0.137469 0.990506i \(-0.456103\pi\)
0.467952 + 0.883754i \(0.344992\pi\)
\(62\) 0.999056 + 0.838308i 0.126880 + 0.106465i
\(63\) −0.268898 + 0.465746i −0.0338780 + 0.0586784i
\(64\) 4.42694 + 7.66768i 0.553367 + 0.958460i
\(65\) 0 0
\(66\) 2.15488 + 1.24412i 0.265248 + 0.153141i
\(67\) 11.6453 + 4.23855i 1.42270 + 0.517821i 0.934830 0.355094i \(-0.115551\pi\)
0.487871 + 0.872916i \(0.337773\pi\)
\(68\) 1.20924i 0.146642i
\(69\) 0.377729 1.03780i 0.0454733 0.124937i
\(70\) 0 0
\(71\) 5.85405 4.91213i 0.694748 0.582962i −0.225526 0.974237i \(-0.572410\pi\)
0.920274 + 0.391275i \(0.127966\pi\)
\(72\) −5.50589 + 6.56167i −0.648875 + 0.773300i
\(73\) 12.9498 1.51566 0.757832 0.652450i \(-0.226259\pi\)
0.757832 + 0.652450i \(0.226259\pi\)
\(74\) 7.84387 0.254325i 0.911832 0.0295646i
\(75\) 0 0
\(76\) −0.755927 + 0.900878i −0.0867107 + 0.103338i
\(77\) −0.704896 + 0.591478i −0.0803304 + 0.0674052i
\(78\) 0.529199 + 3.00124i 0.0599200 + 0.339823i
\(79\) 4.89209 13.4409i 0.550403 1.51222i −0.282759 0.959191i \(-0.591250\pi\)
0.833162 0.553029i \(-0.186528\pi\)
\(80\) 0 0
\(81\) −7.15091 2.60272i −0.794546 0.289191i
\(82\) −0.0759911 0.0438735i −0.00839181 0.00484502i
\(83\) −2.16097 + 12.2554i −0.237197 + 1.34521i 0.600741 + 0.799444i \(0.294872\pi\)
−0.837938 + 0.545766i \(0.816239\pi\)
\(84\) 0.0125781 + 0.0217859i 0.00137238 + 0.00237704i
\(85\) 0 0
\(86\) −9.25201 7.76336i −0.997670 0.837145i
\(87\) −2.76107 + 0.486852i −0.296018 + 0.0521960i
\(88\) −12.6924 + 7.32796i −1.35301 + 0.781163i
\(89\) 3.16477 + 8.69512i 0.335465 + 0.921681i 0.986663 + 0.162774i \(0.0520442\pi\)
−0.651199 + 0.758907i \(0.725734\pi\)
\(90\) 0 0
\(91\) −1.10989 0.195703i −0.116348 0.0205152i
\(92\) 0.600474 + 0.715617i 0.0626038 + 0.0746083i
\(93\) 0.257622 + 0.307022i 0.0267141 + 0.0318367i
\(94\) −2.50302 0.441350i −0.258167 0.0455218i
\(95\) 0 0
\(96\) 0.254395 + 0.698945i 0.0259641 + 0.0713357i
\(97\) 7.42712 4.28805i 0.754110 0.435385i −0.0730673 0.997327i \(-0.523279\pi\)
0.827177 + 0.561942i \(0.189945\pi\)
\(98\) −8.84873 + 1.56027i −0.893857 + 0.157611i
\(99\) −10.5925 8.88814i −1.06458 0.893291i
\(100\) 0 0
\(101\) −2.15041 3.72462i −0.213974 0.370614i 0.738981 0.673727i \(-0.235307\pi\)
−0.952955 + 0.303113i \(0.901974\pi\)
\(102\) 0.320290 1.81645i 0.0317134 0.179856i
\(103\) −5.54414 3.20091i −0.546281 0.315395i 0.201340 0.979521i \(-0.435470\pi\)
−0.747621 + 0.664126i \(0.768804\pi\)
\(104\) −16.8677 6.13933i −1.65401 0.602011i
\(105\) 0 0
\(106\) 2.70494 7.43177i 0.262727 0.721837i
\(107\) −1.70761 9.68433i −0.165081 0.936219i −0.948981 0.315333i \(-0.897884\pi\)
0.783900 0.620887i \(-0.213227\pi\)
\(108\) −0.595178 + 0.499413i −0.0572710 + 0.0480561i
\(109\) −5.21425 + 6.21411i −0.499435 + 0.595203i −0.955591 0.294696i \(-0.904781\pi\)
0.456156 + 0.889900i \(0.349226\pi\)
\(110\) 0 0
\(111\) 2.38747 + 0.341612i 0.226608 + 0.0324244i
\(112\) 0.608544 0.0575020
\(113\) 5.46115 6.50835i 0.513742 0.612254i −0.445347 0.895358i \(-0.646920\pi\)
0.959089 + 0.283104i \(0.0913641\pi\)
\(114\) 1.37412 1.15303i 0.128699 0.107991i
\(115\) 0 0
\(116\) 0.811104 2.22849i 0.0753091 0.206910i
\(117\) 16.9356i 1.56569i
\(118\) 4.75269 + 1.72984i 0.437521 + 0.159244i
\(119\) 0.590720 + 0.341052i 0.0541512 + 0.0312642i
\(120\) 0 0
\(121\) −6.32950 10.9630i −0.575409 0.996638i
\(122\) 3.09741 5.36487i 0.280426 0.485713i
\(123\) −0.0206569 0.0173332i −0.00186257 0.00156288i
\(124\) −0.333860 + 0.0588685i −0.0299815 + 0.00528655i
\(125\) 0 0
\(126\) 0.237316 + 0.652021i 0.0211418 + 0.0580867i
\(127\) −18.3175 + 6.66702i −1.62541 + 0.591603i −0.984403 0.175929i \(-0.943707\pi\)
−0.641012 + 0.767531i \(0.721485\pi\)
\(128\) 7.55486 + 1.33213i 0.667761 + 0.117744i
\(129\) −2.38577 2.84325i −0.210056 0.250334i
\(130\) 0 0
\(131\) 6.51091 + 1.14805i 0.568860 + 0.100305i 0.450678 0.892686i \(-0.351182\pi\)
0.118182 + 0.992992i \(0.462293\pi\)
\(132\) −0.607794 + 0.221219i −0.0529016 + 0.0192546i
\(133\) 0.226883 + 0.623356i 0.0196732 + 0.0540518i
\(134\) 13.8469 7.99454i 1.19619 0.690623i
\(135\) 0 0
\(136\) 8.32236 + 6.98329i 0.713637 + 0.598812i
\(137\) −1.88778 + 3.26974i −0.161284 + 0.279352i −0.935329 0.353778i \(-0.884897\pi\)
0.774045 + 0.633130i \(0.218230\pi\)
\(138\) −0.712454 1.23401i −0.0606481 0.105046i
\(139\) −2.51398 + 14.2575i −0.213233 + 1.20931i 0.670713 + 0.741717i \(0.265988\pi\)
−0.883946 + 0.467588i \(0.845123\pi\)
\(140\) 0 0
\(141\) −0.733970 0.267143i −0.0618114 0.0224975i
\(142\) 9.85962i 0.827401i
\(143\) 9.91069 27.2294i 0.828774 2.27704i
\(144\) 1.58794 + 9.00567i 0.132328 + 0.750472i
\(145\) 0 0
\(146\) 10.7396 12.7990i 0.888819 1.05925i
\(147\) −2.76127 −0.227746
\(148\) −1.25997 + 1.60442i −0.103569 + 0.131883i
\(149\) −0.934593 −0.0765649 −0.0382824 0.999267i \(-0.512189\pi\)
−0.0382824 + 0.999267i \(0.512189\pi\)
\(150\) 0 0
\(151\) −13.2126 + 11.0867i −1.07523 + 0.902223i −0.995516 0.0945953i \(-0.969844\pi\)
−0.0797113 + 0.996818i \(0.525400\pi\)
\(152\) 1.83469 + 10.4050i 0.148813 + 0.843960i
\(153\) −3.50570 + 9.63183i −0.283419 + 0.778687i
\(154\) 1.18721i 0.0956684i
\(155\) 0 0
\(156\) −0.686052 0.396092i −0.0549281 0.0317128i
\(157\) −0.0730161 + 0.414095i −0.00582732 + 0.0330484i −0.987583 0.157100i \(-0.949786\pi\)
0.981755 + 0.190148i \(0.0608968\pi\)
\(158\) −9.22721 15.9820i −0.734077 1.27146i
\(159\) 1.21522 2.10483i 0.0963734 0.166924i
\(160\) 0 0
\(161\) 0.518939 0.0915030i 0.0408981 0.00721144i
\(162\) −8.50284 + 4.90912i −0.668046 + 0.385697i
\(163\) −2.23369 6.13703i −0.174956 0.480689i 0.820958 0.570988i \(-0.193440\pi\)
−0.995915 + 0.0902993i \(0.971218\pi\)
\(164\) 0.0214336 0.00780119i 0.00167368 0.000609171i
\(165\) 0 0
\(166\) 10.3205 + 12.2996i 0.801030 + 0.954630i
\(167\) −8.78444 10.4689i −0.679760 0.810107i 0.310317 0.950633i \(-0.399565\pi\)
−0.990077 + 0.140526i \(0.955120\pi\)
\(168\) 0.222575 + 0.0392460i 0.0171720 + 0.00302789i
\(169\) 21.1339 7.69210i 1.62568 0.591700i
\(170\) 0 0
\(171\) −8.63282 + 4.98416i −0.660169 + 0.381148i
\(172\) 3.09180 0.545167i 0.235747 0.0415686i
\(173\) −0.790269 0.663114i −0.0600830 0.0504156i 0.612252 0.790663i \(-0.290264\pi\)
−0.672335 + 0.740247i \(0.734708\pi\)
\(174\) −1.80865 + 3.13267i −0.137113 + 0.237487i
\(175\) 0 0
\(176\) −2.71699 + 15.4088i −0.204801 + 1.16148i
\(177\) 1.34606 + 0.777147i 0.101176 + 0.0584139i
\(178\) 11.2185 + 4.08319i 0.840860 + 0.306048i
\(179\) 7.08812i 0.529791i 0.964277 + 0.264896i \(0.0853375\pi\)
−0.964277 + 0.264896i \(0.914663\pi\)
\(180\) 0 0
\(181\) 2.53037 + 14.3505i 0.188081 + 1.06666i 0.921932 + 0.387351i \(0.126610\pi\)
−0.733851 + 0.679310i \(0.762279\pi\)
\(182\) −1.11388 + 0.934657i −0.0825664 + 0.0692814i
\(183\) 1.22370 1.45835i 0.0904586 0.107804i
\(184\) 8.39280 0.618726
\(185\) 0 0
\(186\) 0.517098 0.0379155
\(187\) −11.2731 + 13.4348i −0.824371 + 0.982447i
\(188\) 0.506109 0.424676i 0.0369118 0.0309727i
\(189\) 0.0761028 + 0.431601i 0.00553567 + 0.0313943i
\(190\) 0 0
\(191\) 21.4074i 1.54899i −0.632583 0.774493i \(-0.718005\pi\)
0.632583 0.774493i \(-0.281995\pi\)
\(192\) 3.29880 + 1.20067i 0.238071 + 0.0866506i
\(193\) −1.17525 0.678529i −0.0845961 0.0488416i 0.457105 0.889413i \(-0.348886\pi\)
−0.541701 + 0.840571i \(0.682220\pi\)
\(194\) 1.92140 10.8968i 0.137948 0.782344i
\(195\) 0 0
\(196\) 1.16782 2.02273i 0.0834159 0.144481i
\(197\) −11.6506 9.77603i −0.830072 0.696513i 0.125235 0.992127i \(-0.460031\pi\)
−0.955308 + 0.295614i \(0.904476\pi\)
\(198\) −17.5692 + 3.09793i −1.24859 + 0.220160i
\(199\) −2.55910 + 1.47750i −0.181410 + 0.104737i −0.587955 0.808894i \(-0.700067\pi\)
0.406545 + 0.913631i \(0.366733\pi\)
\(200\) 0 0
\(201\) 4.61730 1.68056i 0.325679 0.118538i
\(202\) −5.46463 0.963562i −0.384490 0.0677960i
\(203\) −0.859865 1.02475i −0.0603507 0.0719231i
\(204\) 0.308189 + 0.367286i 0.0215776 + 0.0257151i
\(205\) 0 0
\(206\) −7.76153 + 2.82497i −0.540772 + 0.196825i
\(207\) 2.70825 + 7.44086i 0.188236 + 0.517175i
\(208\) −16.5960 + 9.58172i −1.15073 + 0.664373i
\(209\) −16.7968 + 2.96173i −1.16186 + 0.204867i
\(210\) 0 0
\(211\) −7.03980 + 12.1933i −0.484640 + 0.839420i −0.999844 0.0176468i \(-0.994383\pi\)
0.515205 + 0.857067i \(0.327716\pi\)
\(212\) 1.02791 + 1.78039i 0.0705969 + 0.122277i
\(213\) 0.526150 2.98394i 0.0360512 0.204457i
\(214\) −10.9877 6.34375i −0.751103 0.433650i
\(215\) 0 0
\(216\) 6.98028i 0.474948i
\(217\) −0.0654038 + 0.179695i −0.00443990 + 0.0121985i
\(218\) 1.81741 + 10.3070i 0.123090 + 0.698081i
\(219\) 3.93328 3.30042i 0.265787 0.223022i
\(220\) 0 0
\(221\) −21.4799 −1.44489
\(222\) 2.31762 2.07635i 0.155548 0.139355i
\(223\) −1.05240 −0.0704742 −0.0352371 0.999379i \(-0.511219\pi\)
−0.0352371 + 0.999379i \(0.511219\pi\)
\(224\) −0.228118 + 0.271861i −0.0152418 + 0.0181645i
\(225\) 0 0
\(226\) −1.90347 10.7951i −0.126617 0.718079i
\(227\) 1.08108 2.97024i 0.0717538 0.197142i −0.898632 0.438704i \(-0.855438\pi\)
0.970385 + 0.241562i \(0.0776598\pi\)
\(228\) 0.466283i 0.0308803i
\(229\) 23.4029 + 8.51795i 1.54650 + 0.562882i 0.967594 0.252510i \(-0.0812559\pi\)
0.578910 + 0.815391i \(0.303478\pi\)
\(230\) 0 0
\(231\) −0.0633547 + 0.359302i −0.00416843 + 0.0236403i
\(232\) −10.6531 18.4517i −0.699408 1.21141i
\(233\) 11.9122 20.6326i 0.780397 1.35169i −0.151314 0.988486i \(-0.548350\pi\)
0.931711 0.363201i \(-0.118316\pi\)
\(234\) −16.7383 14.0451i −1.09422 0.918156i
\(235\) 0 0
\(236\) −1.13857 + 0.657356i −0.0741149 + 0.0427903i
\(237\) −1.93969 5.32924i −0.125996 0.346172i
\(238\) 0.826979 0.300996i 0.0536051 0.0195106i
\(239\) −9.23526 1.62842i −0.597379 0.105334i −0.133221 0.991086i \(-0.542532\pi\)
−0.464158 + 0.885752i \(0.653643\pi\)
\(240\) 0 0
\(241\) 11.2471 + 13.4038i 0.724491 + 0.863415i 0.995059 0.0992862i \(-0.0316559\pi\)
−0.270568 + 0.962701i \(0.587212\pi\)
\(242\) −16.0845 2.83614i −1.03395 0.182314i
\(243\) −9.36607 + 3.40897i −0.600834 + 0.218686i
\(244\) 0.550754 + 1.51318i 0.0352584 + 0.0968717i
\(245\) 0 0
\(246\) −0.0342626 + 0.00604143i −0.00218451 + 0.000385187i
\(247\) −16.0024 13.4276i −1.01821 0.854379i
\(248\) −1.52287 + 2.63769i −0.0967024 + 0.167493i
\(249\) 2.46709 + 4.27312i 0.156345 + 0.270798i
\(250\) 0 0
\(251\) 17.5716 + 10.1450i 1.10911 + 0.640346i 0.938599 0.345009i \(-0.112124\pi\)
0.170513 + 0.985355i \(0.445458\pi\)
\(252\) −0.169488 0.0616886i −0.0106767 0.00388602i
\(253\) 13.5485i 0.851785i
\(254\) −8.60181 + 23.6333i −0.539725 + 1.48288i
\(255\) 0 0
\(256\) −5.98288 + 5.02023i −0.373930 + 0.313764i
\(257\) 18.2962 21.8046i 1.14129 1.36013i 0.218032 0.975942i \(-0.430036\pi\)
0.923254 0.384190i \(-0.125519\pi\)
\(258\) −4.78872 −0.298133
\(259\) 0.428409 + 1.06801i 0.0266200 + 0.0663630i
\(260\) 0 0
\(261\) 12.9212 15.3989i 0.799801 0.953166i
\(262\) 6.53434 5.48296i 0.403693 0.338739i
\(263\) −2.27693 12.9131i −0.140402 0.796257i −0.970945 0.239303i \(-0.923081\pi\)
0.830543 0.556954i \(-0.188030\pi\)
\(264\) −1.98748 + 5.46055i −0.122321 + 0.336073i
\(265\) 0 0
\(266\) 0.804255 + 0.292725i 0.0493120 + 0.0179481i
\(267\) 3.17730 + 1.83441i 0.194447 + 0.112264i
\(268\) −0.721723 + 4.09310i −0.0440863 + 0.250026i
\(269\) −0.700788 1.21380i −0.0427278 0.0740067i 0.843871 0.536547i \(-0.180271\pi\)
−0.886598 + 0.462540i \(0.846938\pi\)
\(270\) 0 0
\(271\) 12.2350 + 10.2664i 0.743226 + 0.623640i 0.933702 0.358051i \(-0.116559\pi\)
−0.190476 + 0.981692i \(0.561003\pi\)
\(272\) 11.4222 2.01404i 0.692571 0.122119i
\(273\) −0.386986 + 0.223426i −0.0234214 + 0.0135224i
\(274\) 1.66606 + 4.57747i 0.100651 + 0.276535i
\(275\) 0 0
\(276\) 0.364767 + 0.0643183i 0.0219564 + 0.00387150i
\(277\) 1.11381 + 1.32739i 0.0669223 + 0.0797549i 0.798467 0.602039i \(-0.205645\pi\)
−0.731545 + 0.681794i \(0.761200\pi\)
\(278\) 12.0065 + 14.3088i 0.720103 + 0.858185i
\(279\) −2.82992 0.498992i −0.169423 0.0298739i
\(280\) 0 0
\(281\) 3.57639 + 9.82605i 0.213350 + 0.586173i 0.999492 0.0318722i \(-0.0101470\pi\)
−0.786142 + 0.618045i \(0.787925\pi\)
\(282\) −0.872732 + 0.503872i −0.0519704 + 0.0300051i
\(283\) 4.65110 0.820115i 0.276479 0.0487508i −0.0336891 0.999432i \(-0.510726\pi\)
0.310169 + 0.950682i \(0.399615\pi\)
\(284\) 1.96332 + 1.64742i 0.116502 + 0.0977565i
\(285\) 0 0
\(286\) −18.6931 32.3773i −1.10534 1.91451i
\(287\) 0.00223418 0.0126706i 0.000131879 0.000747925i
\(288\) −4.61844 2.66646i −0.272144 0.157123i
\(289\) −3.75843 1.36796i −0.221084 0.0804680i
\(290\) 0 0
\(291\) 1.16300 3.19531i 0.0681761 0.187312i
\(292\) 0.754170 + 4.27711i 0.0441345 + 0.250299i
\(293\) −2.06619 + 1.73374i −0.120708 + 0.101286i −0.701144 0.713020i \(-0.747327\pi\)
0.580435 + 0.814306i \(0.302882\pi\)
\(294\) −2.28999 + 2.72911i −0.133555 + 0.159165i
\(295\) 0 0
\(296\) 3.76588 + 17.9370i 0.218887 + 1.04257i
\(297\) −11.2682 −0.653849
\(298\) −0.775083 + 0.923707i −0.0448993 + 0.0535089i
\(299\) −12.7116 + 10.6663i −0.735131 + 0.616848i
\(300\) 0 0
\(301\) 0.605688 1.66411i 0.0349113 0.0959180i
\(302\) 22.2532i 1.28053i
\(303\) −1.60241 0.583231i −0.0920563 0.0335057i
\(304\) 9.76848 + 5.63984i 0.560261 + 0.323467i
\(305\) 0 0
\(306\) 6.61227 + 11.4528i 0.377998 + 0.654712i
\(307\) 6.46425 11.1964i 0.368934 0.639012i −0.620465 0.784234i \(-0.713056\pi\)
0.989399 + 0.145222i \(0.0463895\pi\)
\(308\) −0.236407 0.198369i −0.0134705 0.0113031i
\(309\) −2.49973 + 0.440769i −0.142204 + 0.0250745i
\(310\) 0 0
\(311\) −4.83937 13.2961i −0.274415 0.753950i −0.997970 0.0636831i \(-0.979715\pi\)
0.723555 0.690267i \(-0.242507\pi\)
\(312\) −6.68794 + 2.43421i −0.378630 + 0.137810i
\(313\) 8.63725 + 1.52298i 0.488207 + 0.0860840i 0.412332 0.911033i \(-0.364714\pi\)
0.0758740 + 0.997117i \(0.475825\pi\)
\(314\) 0.348717 + 0.415585i 0.0196793 + 0.0234528i
\(315\) 0 0
\(316\) 4.72421 + 0.833005i 0.265758 + 0.0468602i
\(317\) 7.62847 2.77654i 0.428458 0.155946i −0.118785 0.992920i \(-0.537900\pi\)
0.547242 + 0.836974i \(0.315678\pi\)
\(318\) −1.07249 2.94665i −0.0601425 0.165240i
\(319\) 29.7864 17.1972i 1.66772 0.962858i
\(320\) 0 0
\(321\) −2.98682 2.50624i −0.166708 0.139885i
\(322\) 0.339933 0.588780i 0.0189437 0.0328115i
\(323\) 6.32157 + 10.9493i 0.351741 + 0.609234i
\(324\) 0.443181 2.51340i 0.0246212 0.139634i
\(325\) 0 0
\(326\) −7.91800 2.88192i −0.438538 0.159615i
\(327\) 3.21634i 0.177864i
\(328\) 0.0700876 0.192564i 0.00386994 0.0106326i
\(329\) −0.0647140 0.367011i −0.00356780 0.0202340i
\(330\) 0 0
\(331\) −3.56956 + 4.25404i −0.196201 + 0.233823i −0.855171 0.518346i \(-0.826548\pi\)
0.658970 + 0.752169i \(0.270992\pi\)
\(332\) −4.17362 −0.229057
\(333\) −14.6873 + 9.12677i −0.804858 + 0.500144i
\(334\) −17.6321 −0.964786
\(335\) 0 0
\(336\) 0.184835 0.155095i 0.0100836 0.00846111i
\(337\) 1.40048 + 7.94251i 0.0762890 + 0.432656i 0.998899 + 0.0469213i \(0.0149410\pi\)
−0.922610 + 0.385735i \(0.873948\pi\)
\(338\) 9.92437 27.2670i 0.539814 1.48313i
\(339\) 3.36864i 0.182959i
\(340\) 0 0
\(341\) −4.25801 2.45836i −0.230584 0.133128i
\(342\) −2.23332 + 12.6658i −0.120764 + 0.684886i
\(343\) −1.32087 2.28781i −0.0713202 0.123530i
\(344\) 14.1029 24.4270i 0.760379 1.31702i
\(345\) 0 0
\(346\) −1.31078 + 0.231126i −0.0704680 + 0.0124254i
\(347\) 17.1268 9.88814i 0.919413 0.530823i 0.0359651 0.999353i \(-0.488549\pi\)
0.883448 + 0.468530i \(0.155216\pi\)
\(348\) −0.321598 0.883583i −0.0172395 0.0473650i
\(349\) −5.94041 + 2.16213i −0.317983 + 0.115736i −0.496080 0.868277i \(-0.665228\pi\)
0.178098 + 0.984013i \(0.443006\pi\)
\(350\) 0 0
\(351\) −8.87114 10.5722i −0.473506 0.564303i
\(352\) −5.86524 6.98992i −0.312618 0.372564i
\(353\) −9.34639 1.64802i −0.497458 0.0877153i −0.0807107 0.996738i \(-0.525719\pi\)
−0.416748 + 0.909022i \(0.636830\pi\)
\(354\) 1.88441 0.685871i 0.100156 0.0364536i
\(355\) 0 0
\(356\) −2.68754 + 1.55165i −0.142440 + 0.0822375i
\(357\) 0.266342 0.0469632i 0.0140963 0.00248556i
\(358\) 7.00556 + 5.87836i 0.370255 + 0.310681i
\(359\) 17.1116 29.6382i 0.903116 1.56424i 0.0796904 0.996820i \(-0.474607\pi\)
0.823426 0.567424i \(-0.192060\pi\)
\(360\) 0 0
\(361\) 1.16418 6.60242i 0.0612729 0.347496i
\(362\) 16.2818 + 9.40031i 0.855753 + 0.494069i
\(363\) −4.71653 1.71668i −0.247553 0.0901021i
\(364\) 0.377974i 0.0198112i
\(365\) 0 0
\(366\) −0.426517 2.41890i −0.0222944 0.126438i
\(367\) −23.4148 + 19.6474i −1.22224 + 1.02558i −0.223540 + 0.974695i \(0.571761\pi\)
−0.998704 + 0.0508901i \(0.983794\pi\)
\(368\) 5.75942 6.86381i 0.300231 0.357801i
\(369\) 0.193339 0.0100648
\(370\) 0 0
\(371\) 1.15964 0.0602053
\(372\) −0.0864008 + 0.102968i −0.00447967 + 0.00533867i
\(373\) −5.53097 + 4.64103i −0.286383 + 0.240303i −0.774649 0.632391i \(-0.782074\pi\)
0.488267 + 0.872694i \(0.337629\pi\)
\(374\) 3.92920 + 22.2836i 0.203174 + 1.15226i
\(375\) 0 0
\(376\) 5.93568i 0.306109i
\(377\) 39.5849 + 14.4077i 2.03873 + 0.742036i
\(378\) 0.489687 + 0.282721i 0.0251868 + 0.0145416i
\(379\) −1.18565 + 6.72418i −0.0609030 + 0.345398i 0.939095 + 0.343656i \(0.111666\pi\)
−0.999998 + 0.00174171i \(0.999446\pi\)
\(380\) 0 0
\(381\) −3.86445 + 6.69342i −0.197982 + 0.342914i
\(382\) −21.1581 17.7537i −1.08254 0.908359i
\(383\) 30.3978 5.35995i 1.55325 0.273880i 0.669851 0.742496i \(-0.266358\pi\)
0.883402 + 0.468615i \(0.155247\pi\)
\(384\) 2.63416 1.52083i 0.134424 0.0776097i
\(385\) 0 0
\(386\) −1.64529 + 0.598836i −0.0837430 + 0.0304799i
\(387\) 26.2072 + 4.62104i 1.33219 + 0.234901i
\(388\) 1.84881 + 2.20333i 0.0938591 + 0.111857i
\(389\) −3.26483 3.89087i −0.165534 0.197275i 0.676901 0.736074i \(-0.263323\pi\)
−0.842434 + 0.538799i \(0.818878\pi\)
\(390\) 0 0
\(391\) 9.43747 3.43496i 0.477273 0.173713i
\(392\) −7.17693 19.7185i −0.362490 0.995932i
\(393\) 2.27017 1.31068i 0.114515 0.0661151i
\(394\) −19.3243 + 3.40740i −0.973545 + 0.171662i
\(395\) 0 0
\(396\) 2.31872 4.01614i 0.116520 0.201819i
\(397\) 19.3050 + 33.4372i 0.968889 + 1.67817i 0.698782 + 0.715335i \(0.253726\pi\)
0.270107 + 0.962830i \(0.412941\pi\)
\(398\) −0.662041 + 3.75462i −0.0331851 + 0.188202i
\(399\) 0.227781 + 0.131510i 0.0114033 + 0.00658371i
\(400\) 0 0
\(401\) 23.2705i 1.16207i 0.813878 + 0.581036i \(0.197352\pi\)
−0.813878 + 0.581036i \(0.802648\pi\)
\(402\) 2.16826 5.95725i 0.108143 0.297121i
\(403\) −1.04569 5.93040i −0.0520895 0.295414i
\(404\) 1.10495 0.927159i 0.0549731 0.0461279i
\(405\) 0 0
\(406\) −1.72592 −0.0856559
\(407\) −28.9556 + 6.07924i −1.43527 + 0.301337i
\(408\) 4.30755 0.213255
\(409\) 10.5652 12.5912i 0.522418 0.622593i −0.438733 0.898618i \(-0.644573\pi\)
0.961151 + 0.276024i \(0.0890170\pi\)
\(410\) 0 0
\(411\) 0.259950 + 1.47425i 0.0128224 + 0.0727193i
\(412\) 0.734329 2.01755i 0.0361778 0.0993977i
\(413\) 0.741598i 0.0364917i
\(414\) 9.60021 + 3.49419i 0.471825 + 0.171730i
\(415\) 0 0
\(416\) 1.94064 11.0059i 0.0951475 0.539609i
\(417\) 2.87011 + 4.97118i 0.140550 + 0.243440i
\(418\) −11.0028 + 19.0574i −0.538164 + 0.932128i
\(419\) −10.3588 8.69210i −0.506063 0.424637i 0.353678 0.935367i \(-0.384931\pi\)
−0.859741 + 0.510730i \(0.829375\pi\)
\(420\) 0 0
\(421\) 16.8939 9.75371i 0.823360 0.475367i −0.0282141 0.999602i \(-0.508982\pi\)
0.851574 + 0.524235i \(0.175649\pi\)
\(422\) 6.21297 + 17.0700i 0.302443 + 0.830955i
\(423\) 5.26243 1.91537i 0.255868 0.0931283i
\(424\) 18.1893 + 3.20726i 0.883349 + 0.155758i
\(425\) 0 0
\(426\) −2.51284 2.99468i −0.121747 0.145093i
\(427\) 0.894531 + 0.157730i 0.0432894 + 0.00763309i
\(428\) 3.09912 1.12799i 0.149802 0.0545234i
\(429\) −3.92954 10.7963i −0.189720 0.521251i
\(430\) 0 0
\(431\) −11.3626 + 2.00354i −0.547319 + 0.0965071i −0.440468 0.897768i \(-0.645188\pi\)
−0.106850 + 0.994275i \(0.534077\pi\)
\(432\) 5.70862 + 4.79010i 0.274656 + 0.230464i
\(433\) 5.20640 9.01775i 0.250204 0.433365i −0.713378 0.700779i \(-0.752836\pi\)
0.963582 + 0.267414i \(0.0861691\pi\)
\(434\) 0.123361 + 0.213668i 0.00592153 + 0.0102564i
\(435\) 0 0
\(436\) −2.35608 1.36028i −0.112836 0.0651458i
\(437\) 9.17814 + 3.34057i 0.439050 + 0.159801i
\(438\) 6.62459i 0.316535i
\(439\) −6.68095 + 18.3557i −0.318864 + 0.876072i 0.671920 + 0.740624i \(0.265470\pi\)
−0.990784 + 0.135449i \(0.956752\pi\)
\(440\) 0 0
\(441\) 15.1660 12.7258i 0.722190 0.605990i
\(442\) −17.8138 + 21.2297i −0.847317 + 1.00979i
\(443\) −40.1697 −1.90852 −0.954259 0.298981i \(-0.903353\pi\)
−0.954259 + 0.298981i \(0.903353\pi\)
\(444\) 0.0262122 + 0.808434i 0.00124397 + 0.0383666i
\(445\) 0 0
\(446\) −0.872786 + 1.04015i −0.0413276 + 0.0492523i
\(447\) −0.283866 + 0.238192i −0.0134264 + 0.0112661i
\(448\) 0.290855 + 1.64952i 0.0137416 + 0.0779325i
\(449\) −3.46938 + 9.53204i −0.163730 + 0.449845i −0.994242 0.107156i \(-0.965826\pi\)
0.830512 + 0.557000i \(0.188048\pi\)
\(450\) 0 0
\(451\) 0.310855 + 0.113142i 0.0146376 + 0.00532765i
\(452\) 2.46764 + 1.42470i 0.116068 + 0.0670120i
\(453\) −1.18752 + 6.73478i −0.0557947 + 0.316427i
\(454\) −2.03908 3.53179i −0.0956986 0.165755i
\(455\) 0 0
\(456\) 3.20910 + 2.69275i 0.150280 + 0.126100i
\(457\) 10.8301 1.90963i 0.506610 0.0893289i 0.0854990 0.996338i \(-0.472752\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(458\) 27.8273 16.0661i 1.30029 0.750720i
\(459\) 2.85685 + 7.84912i 0.133346 + 0.366366i
\(460\) 0 0
\(461\) 16.9524 + 2.98916i 0.789551 + 0.139219i 0.553861 0.832609i \(-0.313154\pi\)
0.235690 + 0.971828i \(0.424265\pi\)
\(462\) 0.302575 + 0.360595i 0.0140771 + 0.0167764i
\(463\) −4.05871 4.83698i −0.188624 0.224794i 0.663442 0.748228i \(-0.269095\pi\)
−0.852066 + 0.523434i \(0.824651\pi\)
\(464\) −22.4006 3.94984i −1.03992 0.183367i
\(465\) 0 0
\(466\) −10.5132 28.8846i −0.487012 1.33806i
\(467\) −6.06330 + 3.50065i −0.280576 + 0.161991i −0.633684 0.773592i \(-0.718458\pi\)
0.353108 + 0.935583i \(0.385125\pi\)
\(468\) 5.59353 0.986290i 0.258561 0.0455913i
\(469\) 1.79594 + 1.50697i 0.0829289 + 0.0695856i
\(470\) 0 0
\(471\) 0.0833596 + 0.144383i 0.00384101 + 0.00665282i
\(472\) −2.05107 + 11.6322i −0.0944083 + 0.535416i
\(473\) 39.4324 + 22.7663i 1.81310 + 1.04680i
\(474\) −6.87580 2.50259i −0.315816 0.114948i
\(475\) 0 0
\(476\) −0.0782415 + 0.214967i −0.00358620 + 0.00985299i
\(477\) 3.02596 + 17.1611i 0.138549 + 0.785753i
\(478\) −9.26850 + 7.77719i −0.423931 + 0.355720i
\(479\) −12.4628 + 14.8525i −0.569438 + 0.678630i −0.971516 0.236975i \(-0.923844\pi\)
0.402077 + 0.915606i \(0.368288\pi\)
\(480\) 0 0
\(481\) −28.4996 22.3810i −1.29947 1.02049i
\(482\) 22.5752 1.02827
\(483\) 0.134298 0.160050i 0.00611077 0.00728253i
\(484\) 3.25228 2.72899i 0.147831 0.124045i
\(485\) 0 0
\(486\) −4.39826 + 12.0841i −0.199509 + 0.548147i
\(487\) 23.2062i 1.05157i −0.850617 0.525786i \(-0.823771\pi\)
0.850617 0.525786i \(-0.176229\pi\)
\(488\) 13.5948 + 4.94809i 0.615406 + 0.223990i
\(489\) −2.24254 1.29473i −0.101411 0.0585497i
\(490\) 0 0
\(491\) −7.16276 12.4063i −0.323251 0.559887i 0.657906 0.753100i \(-0.271442\pi\)
−0.981157 + 0.193213i \(0.938109\pi\)
\(492\) 0.00452185 0.00783208i 0.000203861 0.000353097i
\(493\) −19.5309 16.3883i −0.879626 0.738094i
\(494\) −26.5424 + 4.68015i −1.19420 + 0.210570i
\(495\) 0 0
\(496\) 1.11211 + 3.05551i 0.0499354 + 0.137196i
\(497\) 1.35850 0.494455i 0.0609372 0.0221793i
\(498\) 6.26937 + 1.10546i 0.280937 + 0.0495368i
\(499\) 7.88222 + 9.39367i 0.352857 + 0.420518i 0.913053 0.407842i \(-0.133719\pi\)
−0.560196 + 0.828360i \(0.689274\pi\)
\(500\) 0 0
\(501\) −5.33624 0.940923i −0.238405 0.0420373i
\(502\) 24.5994 8.95347i 1.09793 0.399613i
\(503\) 4.78894 + 13.1575i 0.213528 + 0.586665i 0.999501 0.0315972i \(-0.0100594\pi\)
−0.785972 + 0.618262i \(0.787837\pi\)
\(504\) −1.40334 + 0.810220i −0.0625099 + 0.0360901i
\(505\) 0 0
\(506\) 13.3907 + 11.2361i 0.595287 + 0.499505i
\(507\) 4.45862 7.72256i 0.198014 0.342971i
\(508\) −3.26878 5.66169i −0.145028 0.251197i
\(509\) 6.85758 38.8913i 0.303957 1.72383i −0.324417 0.945914i \(-0.605168\pi\)
0.628374 0.777912i \(-0.283721\pi\)
\(510\) 0 0
\(511\) 2.30209 + 0.837894i 0.101839 + 0.0370662i
\(512\) 25.4194i 1.12339i
\(513\) −2.77835 + 7.63344i −0.122667 + 0.337025i
\(514\) −6.37708 36.1662i −0.281281 1.59522i
\(515\) 0 0
\(516\) 0.800136 0.953565i 0.0352240 0.0419784i
\(517\) 9.58194 0.421413
\(518\) 1.41086 + 0.462311i 0.0619897 + 0.0203128i
\(519\) −0.409033 −0.0179545
\(520\) 0 0
\(521\) 9.63053 8.08098i 0.421921 0.354034i −0.406972 0.913441i \(-0.633415\pi\)
0.828893 + 0.559407i \(0.188971\pi\)
\(522\) −4.50363 25.5414i −0.197119 1.11791i
\(523\) −10.4396 + 28.6826i −0.456492 + 1.25420i 0.471588 + 0.881819i \(0.343681\pi\)
−0.928080 + 0.372382i \(0.878541\pi\)
\(524\) 2.21730i 0.0968633i
\(525\) 0 0
\(526\) −14.6510 8.45878i −0.638815 0.368820i
\(527\) −0.632887 + 3.58928i −0.0275690 + 0.156351i
\(528\) 3.10188 + 5.37261i 0.134992 + 0.233813i
\(529\) −7.62069 + 13.1994i −0.331335 + 0.573888i
\(530\) 0 0
\(531\) −10.9747 + 1.93513i −0.476261 + 0.0839777i
\(532\) −0.192671 + 0.111238i −0.00835334 + 0.00482280i
\(533\) 0.138574 + 0.380728i 0.00600229 + 0.0164911i
\(534\) 4.44806 1.61896i 0.192486 0.0700593i
\(535\) 0 0
\(536\) 24.0020 + 28.6045i 1.03673 + 1.23553i
\(537\) 1.80649 + 2.15289i 0.0779558 + 0.0929041i
\(538\) −1.78084 0.314011i −0.0767776 0.0135380i
\(539\) 31.8314 11.5857i 1.37108 0.499031i
\(540\) 0 0
\(541\) 4.64371 2.68105i 0.199649 0.115267i −0.396843 0.917887i \(-0.629894\pi\)
0.596492 + 0.802619i \(0.296561\pi\)
\(542\) 20.2937 3.57832i 0.871688 0.153702i
\(543\) 4.42594 + 3.71380i 0.189935 + 0.159375i
\(544\) −3.38195 + 5.85771i −0.145000 + 0.251147i
\(545\) 0 0
\(546\) −0.100113 + 0.567771i −0.00428446 + 0.0242984i
\(547\) −5.94736 3.43371i −0.254291 0.146815i 0.367437 0.930049i \(-0.380235\pi\)
−0.621727 + 0.783234i \(0.713569\pi\)
\(548\) −1.18988 0.433081i −0.0508291 0.0185003i
\(549\) 13.6495i 0.582545i
\(550\) 0 0
\(551\) −4.30563 24.4185i −0.183426 1.04026i
\(552\) 2.54917 2.13900i 0.108500 0.0910421i
\(553\) 1.73933 2.07286i 0.0739640 0.0881469i
\(554\) 2.23564 0.0949830
\(555\) 0 0
\(556\) −4.85542 −0.205916
\(557\) −20.4606 + 24.3839i −0.866942 + 1.03318i 0.132178 + 0.991226i \(0.457803\pi\)
−0.999120 + 0.0419547i \(0.986641\pi\)
\(558\) −2.84011 + 2.38313i −0.120231 + 0.100886i
\(559\) 9.68387 + 54.9199i 0.409584 + 2.32287i
\(560\) 0 0
\(561\) 6.95365i 0.293583i
\(562\) 12.6776 + 4.61427i 0.534772 + 0.194641i
\(563\) −23.9805 13.8451i −1.01066 0.583503i −0.0992728 0.995060i \(-0.531652\pi\)
−0.911384 + 0.411557i \(0.864985\pi\)
\(564\) 0.0454881 0.257976i 0.00191539 0.0108627i
\(565\) 0 0
\(566\) 3.04672 5.27707i 0.128063 0.221812i
\(567\) −1.10282 0.925372i −0.0463139 0.0388620i
\(568\) 22.6761 3.99841i 0.951469 0.167770i
\(569\) 35.8180 20.6795i 1.50157 0.866930i 0.501569 0.865118i \(-0.332757\pi\)
0.999998 0.00181213i \(-0.000576819\pi\)
\(570\) 0 0
\(571\) 38.7418 14.1009i 1.62129 0.590102i 0.637665 0.770314i \(-0.279900\pi\)
0.983628 + 0.180211i \(0.0576781\pi\)
\(572\) 9.57059 + 1.68755i 0.400167 + 0.0705602i
\(573\) −5.45593 6.50212i −0.227925 0.271630i
\(574\) −0.0106702 0.0127163i −0.000445366 0.000530766i
\(575\) 0 0
\(576\) −23.6518 + 8.60855i −0.985492 + 0.358690i
\(577\) 6.05420 + 16.6338i 0.252040 + 0.692473i 0.999600 + 0.0282794i \(0.00900281\pi\)
−0.747560 + 0.664194i \(0.768775\pi\)
\(578\) −4.46899 + 2.58017i −0.185885 + 0.107321i
\(579\) −0.529892 + 0.0934342i −0.0220215 + 0.00388299i
\(580\) 0 0
\(581\) −1.17712 + 2.03883i −0.0488351 + 0.0845849i
\(582\) −2.19359 3.79940i −0.0909270 0.157490i
\(583\) −5.17746 + 29.3628i −0.214429 + 1.21608i
\(584\) 33.7917 + 19.5096i 1.39831 + 0.807315i
\(585\) 0 0
\(586\) 3.47997i 0.143756i
\(587\) 8.53967 23.4626i 0.352470 0.968403i −0.629104 0.777321i \(-0.716578\pi\)
0.981574 0.191082i \(-0.0611997\pi\)
\(588\) −0.160810 0.912001i −0.00663171 0.0376103i
\(589\) −2.71525 + 2.27836i −0.111880 + 0.0938783i
\(590\) 0 0
\(591\) −6.03021 −0.248050
\(592\) 17.2535 + 9.22913i 0.709115 + 0.379315i
\(593\) −24.7820 −1.01768 −0.508838 0.860862i \(-0.669925\pi\)
−0.508838 + 0.860862i \(0.669925\pi\)
\(594\) −9.34504 + 11.1370i −0.383431 + 0.456956i
\(595\) 0 0
\(596\) −0.0544287 0.308680i −0.00222949 0.0126440i
\(597\) −0.400724 + 1.10098i −0.0164006 + 0.0450602i
\(598\) 21.4094i 0.875494i
\(599\) −0.772242 0.281073i −0.0315529 0.0114843i 0.326195 0.945302i \(-0.394233\pi\)
−0.357748 + 0.933818i \(0.616455\pi\)
\(600\) 0 0
\(601\) −7.20863 + 40.8822i −0.294046 + 1.66762i 0.377007 + 0.926210i \(0.376953\pi\)
−0.671053 + 0.741409i \(0.734158\pi\)
\(602\) −1.14242 1.97873i −0.0465615 0.0806469i
\(603\) −17.6149 + 30.5099i −0.717335 + 1.24246i
\(604\) −4.43122 3.71824i −0.180304 0.151293i
\(605\) 0 0
\(606\) −1.90536 + 1.10006i −0.0774000 + 0.0446869i
\(607\) −11.7617 32.3151i −0.477394 1.31163i −0.911698 0.410862i \(-0.865228\pi\)
0.434304 0.900766i \(-0.356994\pi\)
\(608\) −6.18134 + 2.24982i −0.250686 + 0.0912424i
\(609\) −0.522337 0.0921022i −0.0211662 0.00373217i
\(610\) 0 0
\(611\) 7.54357 + 8.99008i 0.305180 + 0.363700i
\(612\) −3.38539 0.596936i −0.136846 0.0241297i
\(613\) 40.0883 14.5909i 1.61915 0.589322i 0.635930 0.771747i \(-0.280617\pi\)
0.983220 + 0.182425i \(0.0583946\pi\)
\(614\) −5.70502 15.6744i −0.230236 0.632568i
\(615\) 0 0
\(616\) −2.73047 + 0.481456i −0.110014 + 0.0193984i
\(617\) −18.8824 15.8442i −0.760178 0.637865i 0.177995 0.984031i \(-0.443039\pi\)
−0.938173 + 0.346167i \(0.887483\pi\)
\(618\) −1.63745 + 2.83615i −0.0658680 + 0.114087i
\(619\) −24.4719 42.3866i −0.983609 1.70366i −0.647960 0.761675i \(-0.724378\pi\)
−0.335650 0.941987i \(-0.608956\pi\)
\(620\) 0 0
\(621\) 5.58831 + 3.22641i 0.224251 + 0.129471i
\(622\) −17.1546 6.24376i −0.687837 0.250352i
\(623\) 1.75050i 0.0701324i
\(624\) −2.59874 + 7.13997i −0.104033 + 0.285828i
\(625\) 0 0
\(626\) 8.66834 7.27360i 0.346457 0.290712i
\(627\) −4.34690 + 5.18044i −0.173599 + 0.206887i
\(628\) −0.141021 −0.00562734
\(629\) 11.5758 + 18.6283i 0.461556 + 0.742761i
\(630\) 0 0
\(631\) −11.8495 + 14.1216i −0.471720 + 0.562174i −0.948471 0.316865i \(-0.897370\pi\)
0.476751 + 0.879038i \(0.341814\pi\)
\(632\) 33.0150 27.7029i 1.31327 1.10196i
\(633\) 0.969387 + 5.49767i 0.0385297 + 0.218513i
\(634\) 3.58229 9.84227i 0.142271 0.390886i
\(635\) 0 0
\(636\) 0.765961 + 0.278787i 0.0303723 + 0.0110546i
\(637\) 35.9300 + 20.7442i 1.42360 + 0.821914i
\(638\) 7.70577 43.7016i 0.305074 1.73016i
\(639\) 10.8622 + 18.8139i 0.429702 + 0.744265i
\(640\) 0 0
\(641\) −15.2402 12.7881i −0.601952 0.505098i 0.290120 0.956990i \(-0.406305\pi\)
−0.892072 + 0.451892i \(0.850749\pi\)
\(642\) −4.95409 + 0.873541i −0.195523 + 0.0344759i
\(643\) 12.5163 7.22627i 0.493593 0.284976i −0.232471 0.972603i \(-0.574681\pi\)
0.726064 + 0.687627i \(0.241348\pi\)
\(644\) 0.0604438 + 0.166068i 0.00238182 + 0.00654399i
\(645\) 0 0
\(646\) 16.0644 + 2.83258i 0.632045 + 0.111447i
\(647\) −15.8662 18.9086i −0.623764 0.743373i 0.357949 0.933741i \(-0.383476\pi\)
−0.981713 + 0.190368i \(0.939032\pi\)
\(648\) −14.7387 17.5649i −0.578990 0.690013i
\(649\) −18.7778 3.31104i −0.737094 0.129970i
\(650\) 0 0
\(651\) 0.0259322 + 0.0712482i 0.00101636 + 0.00279244i
\(652\) 1.89687 1.09516i 0.0742872 0.0428897i
\(653\) 32.3099 5.69712i 1.26439 0.222945i 0.499048 0.866574i \(-0.333683\pi\)
0.765338 + 0.643629i \(0.222572\pi\)
\(654\) 3.17888 + 2.66739i 0.124304 + 0.104303i
\(655\) 0 0
\(656\) −0.109386 0.189463i −0.00427083 0.00739729i
\(657\) −6.39263 + 36.2544i −0.249400 + 1.41442i
\(658\) −0.416406 0.240412i −0.0162332 0.00937223i
\(659\) 6.92927 + 2.52205i 0.269926 + 0.0982451i 0.473437 0.880828i \(-0.343013\pi\)
−0.203511 + 0.979073i \(0.565235\pi\)
\(660\) 0 0
\(661\) 1.79433 4.92989i 0.0697915 0.191750i −0.899893 0.436111i \(-0.856356\pi\)
0.969685 + 0.244360i \(0.0785779\pi\)
\(662\) 1.24416 + 7.05597i 0.0483555 + 0.274238i
\(663\) −6.52414 + 5.47440i −0.253376 + 0.212608i
\(664\) −24.1024 + 28.7241i −0.935354 + 1.11471i
\(665\) 0 0
\(666\) −3.16009 + 22.0853i −0.122451 + 0.855787i
\(667\) −19.6962 −0.762638
\(668\) 2.94611 3.51104i 0.113988 0.135846i
\(669\) −0.319649 + 0.268217i −0.0123583 + 0.0103699i
\(670\) 0 0
\(671\) −7.98768 + 21.9460i −0.308361 + 0.847215i
\(672\) 0.140712i 0.00542807i
\(673\) 6.48615 + 2.36077i 0.250023 + 0.0910009i 0.463991 0.885840i \(-0.346417\pi\)
−0.213969 + 0.976841i \(0.568639\pi\)
\(674\) 9.01145 + 5.20277i 0.347108 + 0.200403i
\(675\) 0 0
\(676\) 3.77136 + 6.53219i 0.145052 + 0.251238i
\(677\) 0.576422 0.998393i 0.0221537 0.0383714i −0.854736 0.519063i \(-0.826281\pi\)
0.876890 + 0.480692i \(0.159614\pi\)
\(678\) −3.32940 2.79370i −0.127865 0.107291i
\(679\) 1.59777 0.281730i 0.0613168 0.0108118i
\(680\) 0 0
\(681\) −0.428642 1.17768i −0.0164256 0.0451290i
\(682\) −5.96101 + 2.16963i −0.228259 + 0.0830794i
\(683\) −9.98262 1.76021i −0.381974 0.0673524i −0.0206357 0.999787i \(-0.506569\pi\)
−0.361339 + 0.932435i \(0.617680\pi\)
\(684\) −2.14894 2.56101i −0.0821669 0.0979226i
\(685\) 0 0
\(686\) −3.35659 0.591858i −0.128155 0.0225972i
\(687\) 9.27911 3.37732i 0.354020 0.128853i
\(688\) −10.2990 28.2963i −0.392646 1.07879i
\(689\) −31.6252 + 18.2588i −1.20482 + 0.695606i
\(690\) 0 0
\(691\) 3.46669 + 2.90890i 0.131879 + 0.110660i 0.706341 0.707871i \(-0.250344\pi\)
−0.574462 + 0.818531i \(0.694789\pi\)
\(692\) 0.172992 0.299631i 0.00657617 0.0113903i
\(693\) −1.30794 2.26541i −0.0496844 0.0860558i
\(694\) 4.43070 25.1278i 0.168187 0.953837i
\(695\) 0 0
\(696\) −7.93830 2.88931i −0.300901 0.109519i
\(697\) 0.245218i 0.00928829i
\(698\) −2.78959 + 7.66433i −0.105587 + 0.290099i
\(699\) −1.64033 9.30276i −0.0620429 0.351863i
\(700\) 0 0
\(701\) 0.0244893 0.0291852i 0.000924948 0.00110231i −0.765582 0.643339i \(-0.777549\pi\)
0.766507 + 0.642236i \(0.221993\pi\)
\(702\) −17.8061 −0.672049
\(703\) −3.02116 + 21.1143i −0.113945 + 0.796342i
\(704\) −43.0657 −1.62310
\(705\) 0 0
\(706\) −9.38003 + 7.87078i −0.353022 + 0.296221i
\(707\) −0.141285 0.801265i −0.00531356 0.0301347i
\(708\) −0.178287 + 0.489839i −0.00670044 + 0.0184093i
\(709\) 33.0614i 1.24165i −0.783951 0.620823i \(-0.786798\pi\)
0.783951 0.620823i \(-0.213202\pi\)
\(710\) 0 0
\(711\) 35.2142 + 20.3310i 1.32064 + 0.762470i
\(712\) −4.84145 + 27.4572i −0.181441 + 1.02900i
\(713\) 1.40780 + 2.43838i 0.0527224 + 0.0913179i
\(714\) 0.174468 0.302187i 0.00652930 0.0113091i
\(715\) 0 0
\(716\) −2.34109 + 0.412797i −0.0874905 + 0.0154269i
\(717\) −3.22007 + 1.85911i −0.120256 + 0.0694297i
\(718\) −15.1019 41.4920i −0.563596 1.54847i
\(719\) 5.52050 2.00930i 0.205880 0.0749341i −0.237022 0.971504i \(-0.576171\pi\)
0.442902 + 0.896570i \(0.353949\pi\)
\(720\) 0 0
\(721\) −0.778474 0.927750i −0.0289919 0.0345512i
\(722\) −5.56003 6.62618i −0.206923 0.246601i
\(723\) 6.83223 + 1.20471i 0.254093 + 0.0448035i
\(724\) −4.59235 + 1.67148i −0.170673 + 0.0621200i
\(725\) 0 0
\(726\) −5.60822 + 3.23791i −0.208141 + 0.120170i
\(727\) −41.4281 + 7.30490i −1.53648 + 0.270924i −0.876887 0.480696i \(-0.840384\pi\)
−0.659597 + 0.751620i \(0.729273\pi\)
\(728\) −2.60133 2.18278i −0.0964119 0.0808992i
\(729\) 9.43880 16.3485i 0.349585 0.605499i
\(730\) 0 0
\(731\) 5.86101 33.2394i 0.216777 1.22940i
\(732\) 0.552934 + 0.319237i 0.0204370 + 0.0117993i
\(733\) 20.2905 + 7.38515i 0.749448 + 0.272777i 0.688373 0.725356i \(-0.258325\pi\)
0.0610745 + 0.998133i \(0.480547\pi\)
\(734\) 39.4362i 1.45562i
\(735\) 0 0
\(736\) 0.907365 + 5.14592i 0.0334459 + 0.189681i
\(737\) −46.1761 + 38.7464i −1.70092 + 1.42724i
\(738\) 0.160341 0.191087i 0.00590224 0.00703401i
\(739\) −17.1769 −0.631862 −0.315931 0.948782i \(-0.602317\pi\)
−0.315931 + 0.948782i \(0.602317\pi\)
\(740\) 0 0
\(741\) −8.28263 −0.304270
\(742\) 0.961716 1.14613i 0.0353057 0.0420757i
\(743\) 30.7730 25.8216i 1.12895 0.947303i 0.129930 0.991523i \(-0.458525\pi\)
0.999022 + 0.0442206i \(0.0140804\pi\)
\(744\) 0.209701 + 1.18927i 0.00768801 + 0.0436009i
\(745\) 0 0
\(746\) 9.31547i 0.341064i
\(747\) −33.2436 12.0997i −1.21632 0.442705i
\(748\) −5.09380 2.94090i −0.186248 0.107530i
\(749\) 0.323044 1.83207i 0.0118038 0.0669424i
\(750\) 0 0
\(751\) −18.3737 + 31.8241i −0.670465 + 1.16128i 0.307308 + 0.951610i \(0.400572\pi\)
−0.977772 + 0.209669i \(0.932761\pi\)
\(752\) −4.85432 4.07326i −0.177019 0.148536i
\(753\) 7.92265 1.39698i 0.288717 0.0509087i
\(754\) 47.0687 27.1751i 1.71414 0.989660i
\(755\) 0 0
\(756\) −0.138118 + 0.0502710i −0.00502332 + 0.00182834i
\(757\) 40.3317 + 7.11156i 1.46588 + 0.258474i 0.848920 0.528521i \(-0.177253\pi\)
0.616959 + 0.786995i \(0.288364\pi\)
\(758\) 5.66257 + 6.74838i 0.205674 + 0.245112i
\(759\) 3.45299 + 4.11511i 0.125335 + 0.149369i
\(760\) 0 0
\(761\) −23.4132 + 8.52171i −0.848728 + 0.308912i −0.729522 0.683958i \(-0.760257\pi\)
−0.119207 + 0.992869i \(0.538035\pi\)
\(762\) 3.41057 + 9.37046i 0.123552 + 0.339456i
\(763\) −1.32901 + 0.767304i −0.0481134 + 0.0277783i
\(764\) 7.07051 1.24672i 0.255802 0.0451048i
\(765\) 0 0
\(766\) 19.9121 34.4888i 0.719455 1.24613i
\(767\) −11.6767 20.2246i −0.421621 0.730269i
\(768\) −0.537729 + 3.04961i −0.0194036 + 0.110043i
\(769\) −26.8863 15.5228i −0.969545 0.559767i −0.0704473 0.997516i \(-0.522443\pi\)
−0.899097 + 0.437749i \(0.855776\pi\)
\(770\) 0 0
\(771\) 11.2858i 0.406447i
\(772\) 0.155663 0.427680i 0.00560243 0.0153926i
\(773\) −3.01653 17.1076i −0.108497 0.615317i −0.989766 0.142702i \(-0.954421\pi\)
0.881269 0.472616i \(-0.156690\pi\)
\(774\) 26.3015 22.0696i 0.945390 0.793276i
\(775\) 0 0
\(776\) 25.8407 0.927628
\(777\) 0.402317 + 0.215205i 0.0144330 + 0.00772042i
\(778\) −6.55316 −0.234942
\(779\) 0.153292 0.182686i 0.00549225 0.00654541i
\(780\) 0 0
\(781\) 6.45462 + 36.6060i 0.230964 + 1.30986i
\(782\) 4.43179 12.1762i 0.158480 0.435422i
\(783\) 16.3813i 0.585418i
\(784\) −21.0512 7.66201i −0.751829 0.273643i
\(785\) 0 0
\(786\) 0.587293 3.33071i 0.0209481 0.118802i
\(787\) 6.73845 + 11.6713i 0.240200 + 0.416038i 0.960771 0.277343i \(-0.0894537\pi\)
−0.720571 + 0.693381i \(0.756120\pi\)
\(788\) 2.55035 4.41734i 0.0908525 0.157361i
\(789\) −3.98264 3.34183i −0.141786 0.118972i
\(790\) 0 0
\(791\) 1.39194 0.803637i 0.0494917 0.0285740i
\(792\) −14.2498 39.1511i −0.506346 1.39117i
\(793\) −26.8789 + 9.78311i −0.954496 + 0.347408i
\(794\) 49.0579 + 8.65022i 1.74100 + 0.306985i
\(795\) 0 0
\(796\) −0.637030 0.759182i −0.0225789 0.0269085i
\(797\) 2.17019 + 0.382662i 0.0768720 + 0.0135546i 0.211952 0.977280i \(-0.432018\pi\)
−0.135080 + 0.990835i \(0.543129\pi\)
\(798\) 0.318883 0.116064i 0.0112883 0.00410861i
\(799\) −2.42932 6.67450i −0.0859432 0.236127i
\(800\) 0 0
\(801\) −25.9052 + 4.56778i −0.915314 + 0.161395i
\(802\) 22.9994 + 19.2988i 0.812138 + 0.681464i
\(803\) −31.4943 + 54.5498i −1.11141 + 1.92502i
\(804\) 0.823963 + 1.42715i 0.0290589 + 0.0503315i
\(805\) 0 0
\(806\) −6.72854 3.88472i −0.237003 0.136834i
\(807\) −0.522203 0.190066i −0.0183824 0.00669065i
\(808\) 12.9589i 0.455891i
\(809\) −12.7393 + 35.0009i −0.447889 + 1.23057i 0.486302 + 0.873791i \(0.338346\pi\)
−0.934191 + 0.356774i \(0.883877\pi\)
\(810\) 0 0
\(811\) −13.1584 + 11.0412i −0.462054 + 0.387710i −0.843886 0.536522i \(-0.819738\pi\)
0.381832 + 0.924232i \(0.375293\pi\)
\(812\) 0.288380 0.343678i 0.0101202 0.0120607i
\(813\) 6.33269 0.222097
\(814\) −18.0052 + 33.6600i −0.631081 + 1.17978i
\(815\) 0 0
\(816\) 2.95598 3.52280i 0.103480 0.123323i
\(817\) 25.1452 21.0993i 0.879720 0.738173i
\(818\) −3.68248 20.8844i −0.128755 0.730205i
\(819\) 1.09578 3.01064i 0.0382897 0.105200i
\(820\) 0 0
\(821\) 2.01451 + 0.733221i 0.0703068 + 0.0255896i 0.376934 0.926240i \(-0.376978\pi\)
−0.306627 + 0.951830i \(0.599201\pi\)
\(822\) 1.67266 + 0.965710i 0.0583407 + 0.0336830i
\(823\) 6.16074 34.9393i 0.214750 1.21791i −0.666590 0.745425i \(-0.732247\pi\)
0.881340 0.472483i \(-0.156642\pi\)
\(824\) −9.64470 16.7051i −0.335989 0.581950i
\(825\) 0 0
\(826\) 0.732961 + 0.615027i 0.0255030 + 0.0213995i
\(827\) 0.537183 0.0947198i 0.0186797 0.00329373i −0.164301 0.986410i \(-0.552537\pi\)
0.182980 + 0.983117i \(0.441426\pi\)
\(828\) −2.29987 + 1.32783i −0.0799259 + 0.0461452i
\(829\) 4.25980 + 11.7037i 0.147949 + 0.406487i 0.991424 0.130681i \(-0.0417164\pi\)
−0.843475 + 0.537168i \(0.819494\pi\)
\(830\) 0 0
\(831\) 0.676600 + 0.119303i 0.0234710 + 0.00413857i
\(832\) −33.9043 40.4056i −1.17542 1.40081i
\(833\) −16.1405 19.2355i −0.559235 0.666471i
\(834\) 7.29354 + 1.28605i 0.252555 + 0.0445322i
\(835\) 0 0
\(836\) −1.95642 5.37522i −0.0676642 0.185906i
\(837\) −2.02799 + 1.17086i −0.0700977 + 0.0404709i
\(838\) −17.1817 + 3.02960i −0.593533 + 0.104656i
\(839\) 14.2158 + 11.9285i 0.490784 + 0.411817i 0.854307 0.519769i \(-0.173982\pi\)
−0.363523 + 0.931585i \(0.618426\pi\)
\(840\) 0 0
\(841\) 10.5005 + 18.1875i 0.362087 + 0.627154i
\(842\) 4.37047 24.7862i 0.150616 0.854187i
\(843\) 3.59055 + 2.07301i 0.123665 + 0.0713981i
\(844\) −4.43722 1.61502i −0.152735 0.0555911i
\(845\) 0 0
\(846\) 2.47121 6.78960i 0.0849620 0.233431i
\(847\) −0.415856 2.35843i −0.0142890 0.0810368i
\(848\) 15.1050 12.6746i 0.518709 0.435249i
\(849\) 1.20367 1.43448i 0.0413100 0.0492314i
\(850\) 0 0
\(851\) 16.1007 + 5.27589i 0.551926 + 0.180855i
\(852\) 1.01619 0.0348140
\(853\) −33.4196 + 39.8279i −1.14427 + 1.36368i −0.222967 + 0.974826i \(0.571574\pi\)
−0.921299 + 0.388856i \(0.872870\pi\)
\(854\) 0.897750 0.753302i 0.0307204 0.0257775i
\(855\) 0 0
\(856\) 10.1341 27.8432i 0.346376 0.951660i
\(857\) 36.2095i 1.23689i −0.785826 0.618447i \(-0.787762\pi\)
0.785826 0.618447i \(-0.212238\pi\)
\(858\) −13.9294 5.06990i −0.475543 0.173083i
\(859\) −1.81511 1.04795i −0.0619308 0.0357557i 0.468715 0.883350i \(-0.344717\pi\)
−0.530646 + 0.847594i \(0.678050\pi\)
\(860\) 0 0
\(861\) −0.00255067 0.00441789i −8.69266e−5 0.000150561i
\(862\) −7.44312 + 12.8919i −0.253514 + 0.439099i
\(863\) 12.8856 + 10.8123i 0.438631 + 0.368055i 0.835197 0.549951i \(-0.185354\pi\)
−0.396566 + 0.918006i \(0.629798\pi\)
\(864\) −4.27985 + 0.754653i −0.145604 + 0.0256738i
\(865\) 0 0
\(866\) −4.59491 12.6244i −0.156141 0.428995i
\(867\) −1.49020 + 0.542387i −0.0506097 + 0.0184204i
\(868\) −0.0631593 0.0111367i −0.00214377 0.000378004i
\(869\) 44.7207 + 53.2960i 1.51704 + 1.80794i
\(870\) 0 0
\(871\) −72.7062 12.8201i −2.46355 0.434391i
\(872\) −22.9681 + 8.35971i −0.777799 + 0.283096i
\(873\) 8.33847 + 22.9098i 0.282215 + 0.775378i
\(874\) 10.9133 6.30082i 0.369149 0.213128i
\(875\) 0 0
\(876\) 1.31914 + 1.10689i 0.0445696 + 0.0373983i
\(877\) 9.11730 15.7916i 0.307869 0.533245i −0.670027 0.742337i \(-0.733717\pi\)
0.977896 + 0.209092i \(0.0670507\pi\)
\(878\) 12.6013 + 21.8260i 0.425272 + 0.736593i
\(879\) −0.185705 + 1.05319i −0.00626369 + 0.0355231i
\(880\) 0 0
\(881\) −1.95511 0.711602i −0.0658694 0.0239745i 0.308875 0.951103i \(-0.400047\pi\)
−0.374745 + 0.927128i \(0.622270\pi\)
\(882\) 25.5432i 0.860083i
\(883\) −9.43951 + 25.9348i −0.317665 + 0.872777i 0.673386 + 0.739291i \(0.264839\pi\)
−0.991051 + 0.133486i \(0.957383\pi\)
\(884\) −1.25094 7.09445i −0.0420737 0.238612i
\(885\) 0 0
\(886\) −33.3137 + 39.7018i −1.11920 + 1.33381i
\(887\) −42.4786 −1.42629 −0.713146 0.701015i \(-0.752730\pi\)
−0.713146 + 0.701015i \(0.752730\pi\)
\(888\) 5.71527 + 4.48826i 0.191792 + 0.150616i
\(889\) −3.68768 −0.123681
\(890\) 0 0
\(891\) 28.3549 23.7926i 0.949924 0.797081i
\(892\) −0.0612897 0.347591i −0.00205213 0.0116382i
\(893\) 2.36257 6.49110i 0.0790603 0.217216i
\(894\) 0.478099i 0.0159900i
\(895\) 0 0
\(896\) 1.25684 + 0.725634i 0.0419879 + 0.0242417i
\(897\) −1.14249 + 6.47940i −0.0381467 + 0.216341i
\(898\) 6.54377 + 11.3341i 0.218368 + 0.378225i
\(899\) 3.57386 6.19011i 0.119195 0.206452i
\(900\) 0 0
\(901\) 21.7660 3.83793i 0.725129 0.127860i
\(902\) 0.369625 0.213403i 0.0123072 0.00710554i
\(903\) −0.240152 0.659812i −0.00799176 0.0219572i
\(904\) 24.0557 8.75556i 0.800080 0.291205i
\(905\) 0 0
\(906\) 5.67149 + 6.75902i 0.188423 + 0.224553i
\(907\) −29.6303 35.3120i −0.983858 1.17252i −0.985006 0.172518i \(-0.944810\pi\)
0.00114797 0.999999i \(-0.499635\pi\)
\(908\) 1.04398 + 0.184082i 0.0346457 + 0.00610897i
\(909\) 11.4890 4.18166i 0.381067 0.138697i
\(910\) 0 0
\(911\) 26.5045 15.3024i 0.878132 0.506990i 0.00809016 0.999967i \(-0.497425\pi\)
0.870042 + 0.492977i \(0.164091\pi\)
\(912\) 4.40438 0.776611i 0.145844 0.0257162i
\(913\) −46.3692 38.9084i −1.53460 1.28768i
\(914\) 7.09427 12.2876i 0.234658 0.406439i
\(915\) 0 0
\(916\) −1.45040 + 8.22564i −0.0479226 + 0.271783i
\(917\) 1.08316 + 0.625364i 0.0357692 + 0.0206513i
\(918\) 10.1270 + 3.68591i 0.334239 + 0.121653i
\(919\) 5.91058i 0.194972i 0.995237 + 0.0974860i \(0.0310801\pi\)
−0.995237 + 0.0974860i \(0.968920\pi\)
\(920\) 0 0
\(921\) −0.890134 5.04820i −0.0293309 0.166344i
\(922\) 17.0134 14.2759i 0.560306 0.470152i
\(923\) −29.2633 + 34.8747i −0.963215 + 1.14791i
\(924\) −0.122361 −0.00402538
\(925\) 0 0
\(926\) −8.14664 −0.267715
\(927\) 11.6981 13.9413i 0.384217 0.457892i
\(928\) 10.1616 8.52662i 0.333572 0.279900i
\(929\) −1.78034 10.0968i −0.0584111 0.331266i 0.941574 0.336807i \(-0.109347\pi\)
−0.999985 + 0.00554174i \(0.998236\pi\)
\(930\) 0 0
\(931\) 24.4202i 0.800339i
\(932\) 7.50835 + 2.73281i 0.245944 + 0.0895163i
\(933\) −4.85853 2.80507i −0.159061 0.0918340i
\(934\) −1.56858 + 8.89586i −0.0513255 + 0.291081i
\(935\) 0 0
\(936\) 25.5143 44.1921i 0.833962 1.44447i
\(937\) −10.7261 9.00024i −0.350405 0.294025i 0.450547 0.892753i \(-0.351229\pi\)
−0.800953 + 0.598727i \(0.795673\pi\)
\(938\) 2.97884 0.525250i 0.0972627 0.0171500i
\(939\) 3.01156 1.73873i 0.0982787 0.0567412i
\(940\) 0 0
\(941\) 3.88489 1.41398i 0.126644 0.0460945i −0.277921 0.960604i \(-0.589645\pi\)
0.404565 + 0.914509i \(0.367423\pi\)
\(942\) 0.211833 + 0.0373520i 0.00690191 + 0.00121699i
\(943\) −0.121768 0.145118i −0.00396532 0.00472568i
\(944\) 8.10555 + 9.65982i 0.263813 + 0.314400i
\(945\) 0 0
\(946\) 55.2034 20.0924i 1.79482 0.653261i
\(947\) 0.702056 + 1.92888i 0.0228137 + 0.0626802i 0.950577 0.310490i \(-0.100493\pi\)
−0.927763 + 0.373170i \(0.878271\pi\)
\(948\) 1.64720 0.951009i 0.0534984 0.0308873i
\(949\) −75.9749 + 13.3964i −2.46625 + 0.434866i
\(950\) 0 0
\(951\) 1.60938 2.78753i 0.0521877 0.0903918i
\(952\) 1.02763 + 1.77990i 0.0333056 + 0.0576870i
\(953\) −0.194825 + 1.10491i −0.00631099 + 0.0357914i −0.987801 0.155724i \(-0.950229\pi\)
0.981490 + 0.191515i \(0.0613401\pi\)
\(954\) 19.4707 + 11.2414i 0.630388 + 0.363955i
\(955\) 0 0
\(956\) 3.14509i 0.101719i
\(957\) 4.66419 12.8148i 0.150772 0.414243i
\(958\) 4.34385 + 24.6352i 0.140343 + 0.795928i
\(959\) −0.547153 + 0.459116i −0.0176685 + 0.0148256i
\(960\) 0 0
\(961\) 29.9782 0.967039
\(962\) −45.7558 + 9.60646i −1.47523 + 0.309725i
\(963\) 27.9552 0.900845
\(964\) −3.77204 + 4.49534i −0.121489 + 0.144785i
\(965\) 0 0
\(966\) −0.0468091 0.265467i −0.00150606 0.00854128i
\(967\) 13.0114 35.7485i 0.418418 1.14960i −0.534182 0.845370i \(-0.679380\pi\)
0.952600 0.304225i \(-0.0983976\pi\)
\(968\) 38.1430i 1.22596i
\(969\) 4.71062 + 1.71452i 0.151327 + 0.0550785i
\(970\) 0 0
\(971\) 4.23837 24.0370i 0.136016 0.771384i −0.838131 0.545469i \(-0.816352\pi\)
0.974147 0.225915i \(-0.0725372\pi\)
\(972\) −1.67139 2.89492i −0.0536097 0.0928548i
\(973\) −1.36941 + 2.37189i −0.0439014 + 0.0760395i
\(974\) −22.9359 19.2455i −0.734913 0.616665i
\(975\) 0 0
\(976\) 13.3758 7.72254i 0.428150 0.247192i
\(977\) −0.812913 2.23346i −0.0260074 0.0714547i 0.926009 0.377500i \(-0.123216\pi\)
−0.952017 + 0.306045i \(0.900994\pi\)
\(978\) −3.13944 + 1.14266i −0.100388 + 0.0365384i
\(979\) −44.3241 7.81553i −1.41660 0.249785i
\(980\) 0 0
\(981\) −14.8230 17.6654i −0.473263 0.564013i
\(982\) −18.2020 3.20951i −0.580850 0.102420i
\(983\) −20.5658 + 7.48536i −0.655949 + 0.238746i −0.648486 0.761226i \(-0.724598\pi\)
−0.00746235 + 0.999972i \(0.502375\pi\)
\(984\) −0.0277893 0.0763506i −0.000885892 0.00243397i
\(985\) 0 0
\(986\) −32.3949 + 5.71209i −1.03166 + 0.181910i
\(987\) −0.113193 0.0949801i −0.00360297 0.00302325i
\(988\) 3.50297 6.06732i 0.111444 0.193027i
\(989\) −13.0373 22.5812i −0.414561 0.718040i
\(990\) 0 0
\(991\) −9.88916 5.70951i −0.314139 0.181369i 0.334638 0.942347i \(-0.391386\pi\)
−0.648777 + 0.760978i \(0.724719\pi\)
\(992\) −1.78190 0.648559i −0.0565754 0.0205918i
\(993\) 2.20183i 0.0698731i
\(994\) 0.637947 1.75275i 0.0202345 0.0555937i
\(995\) 0 0
\(996\) −1.26766 + 1.06369i −0.0401674 + 0.0337045i
\(997\) −12.8706 + 15.3386i −0.407616 + 0.485777i −0.930326 0.366733i \(-0.880476\pi\)
0.522711 + 0.852510i \(0.324921\pi\)
\(998\) 15.8212 0.500811
\(999\) −4.38794 + 13.3909i −0.138828 + 0.423671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.e.151.12 96
5.2 odd 4 185.2.v.a.114.12 yes 96
5.3 odd 4 185.2.v.a.114.5 yes 96
5.4 even 2 inner 925.2.bb.e.151.5 96
37.25 even 18 inner 925.2.bb.e.876.12 96
185.62 odd 36 185.2.v.a.99.5 96
185.99 even 18 inner 925.2.bb.e.876.5 96
185.173 odd 36 185.2.v.a.99.12 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.v.a.99.5 96 185.62 odd 36
185.2.v.a.99.12 yes 96 185.173 odd 36
185.2.v.a.114.5 yes 96 5.3 odd 4
185.2.v.a.114.12 yes 96 5.2 odd 4
925.2.bb.e.151.5 96 5.4 even 2 inner
925.2.bb.e.151.12 96 1.1 even 1 trivial
925.2.bb.e.876.5 96 185.99 even 18 inner
925.2.bb.e.876.12 96 37.25 even 18 inner