Properties

Label 925.2.bb.d.151.1
Level $925$
Weight $2$
Character 925.151
Analytic conductor $7.386$
Analytic rank $0$
Dimension $78$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [78,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(78\)
Relative dimension: \(13\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 151.1
Character \(\chi\) \(=\) 925.151
Dual form 925.2.bb.d.876.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69880 + 2.02455i) q^{2} +(1.49825 - 1.25718i) q^{3} +(-0.865587 - 4.90899i) q^{4} +5.16897i q^{6} +(-2.38678 - 0.868717i) q^{7} +(6.83137 + 3.94409i) q^{8} +(0.143302 - 0.812704i) q^{9} +(1.76172 - 3.05138i) q^{11} +(-7.46833 - 6.26668i) q^{12} +(-4.70130 + 0.828967i) q^{13} +(5.81342 - 3.35638i) q^{14} +(-10.2219 + 3.72048i) q^{16} +(2.25362 + 0.397373i) q^{17} +(1.40192 + 1.67074i) q^{18} +(-4.07971 - 4.86201i) q^{19} +(-4.66812 + 1.69906i) q^{21} +(3.18487 + 8.75036i) q^{22} +(-6.03437 + 3.48394i) q^{23} +(15.1935 - 2.67903i) q^{24} +(6.30828 - 10.9263i) q^{26} +(2.12672 + 3.68359i) q^{27} +(-2.19856 + 12.4686i) q^{28} +(-2.56727 - 1.48222i) q^{29} +7.04104i q^{31} +(4.43687 - 12.1902i) q^{32} +(-1.19665 - 6.78651i) q^{33} +(-4.63294 + 3.88750i) q^{34} -4.11359 q^{36} +(4.62328 + 3.95288i) q^{37} +16.7740 q^{38} +(-6.00155 + 7.15237i) q^{39} +(0.250970 + 1.42332i) q^{41} +(4.49037 - 12.3372i) q^{42} +4.36382i q^{43} +(-16.5041 - 6.00700i) q^{44} +(3.19776 - 18.1354i) q^{46} +(-4.91479 - 8.51267i) q^{47} +(-10.6377 + 18.4250i) q^{48} +(-0.420255 - 0.352636i) q^{49} +(3.87604 - 2.23783i) q^{51} +(8.13877 + 22.3611i) q^{52} +(-11.7464 + 4.27534i) q^{53} +(-11.0705 - 1.95202i) q^{54} +(-12.8787 - 15.3482i) q^{56} +(-12.2248 - 2.15557i) q^{57} +(7.36210 - 2.67959i) q^{58} +(0.273756 + 0.752139i) q^{59} +(-6.93044 + 1.22202i) q^{61} +(-14.2549 - 11.9613i) q^{62} +(-1.04804 + 1.81526i) q^{63} +(6.26436 + 10.8502i) q^{64} +(15.7725 + 9.10625i) q^{66} +(-5.54742 - 2.01910i) q^{67} -11.4069i q^{68} +(-4.66103 + 12.8061i) q^{69} +(-4.93562 + 4.14148i) q^{71} +(4.18433 - 4.98669i) q^{72} -3.18903 q^{73} +(-15.8568 + 2.64490i) q^{74} +(-20.3362 + 24.2358i) q^{76} +(-6.85562 + 5.75255i) q^{77} +(-4.28490 - 24.3009i) q^{78} +(5.14320 - 14.1308i) q^{79} +(10.1437 + 3.69201i) q^{81} +(-3.30793 - 1.90983i) q^{82} +(1.68705 - 9.56775i) q^{83} +(12.3813 + 21.4451i) q^{84} +(-8.83477 - 7.41325i) q^{86} +(-5.70982 + 1.00680i) q^{87} +(24.0699 - 13.8967i) q^{88} +(4.54660 + 12.4917i) q^{89} +(11.9411 + 2.10554i) q^{91} +(22.3259 + 26.6070i) q^{92} +(8.85185 + 10.5492i) q^{93} +(25.5836 + 4.51107i) q^{94} +(-8.67773 - 23.8419i) q^{96} +(-2.79124 + 1.61152i) q^{97} +(1.42786 - 0.251770i) q^{98} +(-2.22741 - 1.86902i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 78 q + 3 q^{2} + 3 q^{4} - 6 q^{7} + 18 q^{8} + 15 q^{12} - 27 q^{13} - 18 q^{14} + 9 q^{16} - 15 q^{18} + 3 q^{21} - 30 q^{22} + 15 q^{24} + 36 q^{27} + 27 q^{28} - 9 q^{29} - 18 q^{32} - 6 q^{33} - 51 q^{34}+ \cdots - 183 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.69880 + 2.02455i −1.20123 + 1.43157i −0.327716 + 0.944776i \(0.606279\pi\)
−0.873516 + 0.486796i \(0.838165\pi\)
\(3\) 1.49825 1.25718i 0.865013 0.725832i −0.0980287 0.995184i \(-0.531254\pi\)
0.963042 + 0.269351i \(0.0868093\pi\)
\(4\) −0.865587 4.90899i −0.432793 2.45449i
\(5\) 0 0
\(6\) 5.16897i 2.11022i
\(7\) −2.38678 0.868717i −0.902119 0.328344i −0.151017 0.988531i \(-0.548255\pi\)
−0.751101 + 0.660187i \(0.770477\pi\)
\(8\) 6.83137 + 3.94409i 2.41525 + 1.39445i
\(9\) 0.143302 0.812704i 0.0477672 0.270901i
\(10\) 0 0
\(11\) 1.76172 3.05138i 0.531177 0.920026i −0.468161 0.883643i \(-0.655083\pi\)
0.999338 0.0363828i \(-0.0115836\pi\)
\(12\) −7.46833 6.26668i −2.15592 1.80903i
\(13\) −4.70130 + 0.828967i −1.30391 + 0.229914i −0.782102 0.623151i \(-0.785852\pi\)
−0.521805 + 0.853065i \(0.674741\pi\)
\(14\) 5.81342 3.35638i 1.55370 0.897030i
\(15\) 0 0
\(16\) −10.2219 + 3.72048i −2.55548 + 0.930120i
\(17\) 2.25362 + 0.397373i 0.546582 + 0.0963772i 0.440119 0.897939i \(-0.354936\pi\)
0.106463 + 0.994317i \(0.466047\pi\)
\(18\) 1.40192 + 1.67074i 0.330436 + 0.393798i
\(19\) −4.07971 4.86201i −0.935951 1.11542i −0.993125 0.117058i \(-0.962654\pi\)
0.0571743 0.998364i \(-0.481791\pi\)
\(20\) 0 0
\(21\) −4.66812 + 1.69906i −1.01867 + 0.370765i
\(22\) 3.18487 + 8.75036i 0.679017 + 1.86558i
\(23\) −6.03437 + 3.48394i −1.25825 + 0.726453i −0.972735 0.231921i \(-0.925499\pi\)
−0.285518 + 0.958373i \(0.592166\pi\)
\(24\) 15.1935 2.67903i 3.10136 0.546854i
\(25\) 0 0
\(26\) 6.30828 10.9263i 1.23716 2.14282i
\(27\) 2.12672 + 3.68359i 0.409288 + 0.708907i
\(28\) −2.19856 + 12.4686i −0.415488 + 2.35635i
\(29\) −2.56727 1.48222i −0.476731 0.275241i 0.242322 0.970196i \(-0.422091\pi\)
−0.719053 + 0.694955i \(0.755424\pi\)
\(30\) 0 0
\(31\) 7.04104i 1.26461i 0.774720 + 0.632304i \(0.217891\pi\)
−0.774720 + 0.632304i \(0.782109\pi\)
\(32\) 4.43687 12.1902i 0.784335 2.15494i
\(33\) −1.19665 6.78651i −0.208309 1.18138i
\(34\) −4.63294 + 3.88750i −0.794543 + 0.666701i
\(35\) 0 0
\(36\) −4.11359 −0.685599
\(37\) 4.62328 + 3.95288i 0.760062 + 0.649850i
\(38\) 16.7740 2.72110
\(39\) −6.00155 + 7.15237i −0.961018 + 1.14530i
\(40\) 0 0
\(41\) 0.250970 + 1.42332i 0.0391949 + 0.222285i 0.998113 0.0613962i \(-0.0195553\pi\)
−0.958919 + 0.283681i \(0.908444\pi\)
\(42\) 4.49037 12.3372i 0.692879 1.90367i
\(43\) 4.36382i 0.665477i 0.943019 + 0.332738i \(0.107973\pi\)
−0.943019 + 0.332738i \(0.892027\pi\)
\(44\) −16.5041 6.00700i −2.48809 0.905590i
\(45\) 0 0
\(46\) 3.19776 18.1354i 0.471484 2.67392i
\(47\) −4.91479 8.51267i −0.716897 1.24170i −0.962224 0.272261i \(-0.912229\pi\)
0.245327 0.969440i \(-0.421105\pi\)
\(48\) −10.6377 + 18.4250i −1.53542 + 2.65942i
\(49\) −0.420255 0.352636i −0.0600364 0.0503765i
\(50\) 0 0
\(51\) 3.87604 2.23783i 0.542755 0.313360i
\(52\) 8.13877 + 22.3611i 1.12864 + 3.10092i
\(53\) −11.7464 + 4.27534i −1.61349 + 0.587263i −0.982126 0.188224i \(-0.939727\pi\)
−0.631364 + 0.775486i \(0.717505\pi\)
\(54\) −11.0705 1.95202i −1.50650 0.265637i
\(55\) 0 0
\(56\) −12.8787 15.3482i −1.72099 2.05099i
\(57\) −12.2248 2.15557i −1.61922 0.285512i
\(58\) 7.36210 2.67959i 0.966691 0.351847i
\(59\) 0.273756 + 0.752139i 0.0356400 + 0.0979201i 0.956236 0.292596i \(-0.0945189\pi\)
−0.920596 + 0.390516i \(0.872297\pi\)
\(60\) 0 0
\(61\) −6.93044 + 1.22202i −0.887352 + 0.156464i −0.598703 0.800971i \(-0.704317\pi\)
−0.288649 + 0.957435i \(0.593206\pi\)
\(62\) −14.2549 11.9613i −1.81038 1.51909i
\(63\) −1.04804 + 1.81526i −0.132041 + 0.228701i
\(64\) 6.26436 + 10.8502i 0.783045 + 1.35627i
\(65\) 0 0
\(66\) 15.7725 + 9.10625i 1.94146 + 1.12090i
\(67\) −5.54742 2.01910i −0.677725 0.246672i −0.0198546 0.999803i \(-0.506320\pi\)
−0.657870 + 0.753131i \(0.728543\pi\)
\(68\) 11.4069i 1.38329i
\(69\) −4.66103 + 12.8061i −0.561123 + 1.54167i
\(70\) 0 0
\(71\) −4.93562 + 4.14148i −0.585750 + 0.491503i −0.886830 0.462096i \(-0.847097\pi\)
0.301080 + 0.953599i \(0.402653\pi\)
\(72\) 4.18433 4.98669i 0.493128 0.587687i
\(73\) −3.18903 −0.373247 −0.186624 0.982431i \(-0.559755\pi\)
−0.186624 + 0.982431i \(0.559755\pi\)
\(74\) −15.8568 + 2.64490i −1.84332 + 0.307464i
\(75\) 0 0
\(76\) −20.3362 + 24.2358i −2.33272 + 2.78003i
\(77\) −6.85562 + 5.75255i −0.781270 + 0.655564i
\(78\) −4.28490 24.3009i −0.485169 2.75153i
\(79\) 5.14320 14.1308i 0.578655 1.58984i −0.211794 0.977314i \(-0.567930\pi\)
0.790449 0.612528i \(-0.209847\pi\)
\(80\) 0 0
\(81\) 10.1437 + 3.69201i 1.12708 + 0.410223i
\(82\) −3.30793 1.90983i −0.365300 0.210906i
\(83\) 1.68705 9.56775i 0.185178 1.05020i −0.740548 0.672003i \(-0.765434\pi\)
0.925726 0.378194i \(-0.123455\pi\)
\(84\) 12.3813 + 21.4451i 1.35091 + 2.33985i
\(85\) 0 0
\(86\) −8.83477 7.41325i −0.952678 0.799392i
\(87\) −5.70982 + 1.00680i −0.612157 + 0.107940i
\(88\) 24.0699 13.8967i 2.56586 1.48140i
\(89\) 4.54660 + 12.4917i 0.481939 + 1.32412i 0.907829 + 0.419341i \(0.137739\pi\)
−0.425890 + 0.904775i \(0.640039\pi\)
\(90\) 0 0
\(91\) 11.9411 + 2.10554i 1.25177 + 0.220721i
\(92\) 22.3259 + 26.6070i 2.32764 + 2.77397i
\(93\) 8.85185 + 10.5492i 0.917894 + 1.09390i
\(94\) 25.5836 + 4.51107i 2.63874 + 0.465282i
\(95\) 0 0
\(96\) −8.67773 23.8419i −0.885667 2.43335i
\(97\) −2.79124 + 1.61152i −0.283407 + 0.163625i −0.634965 0.772541i \(-0.718985\pi\)
0.351558 + 0.936166i \(0.385652\pi\)
\(98\) 1.42786 0.251770i 0.144235 0.0254326i
\(99\) −2.22741 1.86902i −0.223864 0.187844i
\(100\) 0 0
\(101\) −7.84507 13.5881i −0.780613 1.35206i −0.931585 0.363524i \(-0.881574\pi\)
0.150972 0.988538i \(-0.451760\pi\)
\(102\) −2.05401 + 11.6489i −0.203377 + 1.15341i
\(103\) −7.38933 4.26623i −0.728092 0.420364i 0.0896317 0.995975i \(-0.471431\pi\)
−0.817724 + 0.575611i \(0.804764\pi\)
\(104\) −35.3859 12.8794i −3.46987 1.26293i
\(105\) 0 0
\(106\) 11.2991 31.0441i 1.09747 3.01527i
\(107\) −2.77782 15.7538i −0.268542 1.52298i −0.758755 0.651376i \(-0.774192\pi\)
0.490213 0.871603i \(-0.336919\pi\)
\(108\) 16.2418 13.6285i 1.56287 1.31140i
\(109\) −1.67519 + 1.99641i −0.160454 + 0.191221i −0.840281 0.542151i \(-0.817610\pi\)
0.679827 + 0.733372i \(0.262055\pi\)
\(110\) 0 0
\(111\) 11.8963 + 0.110110i 1.12915 + 0.0104512i
\(112\) 27.6296 2.61075
\(113\) 2.22655 2.65350i 0.209456 0.249620i −0.651080 0.759009i \(-0.725684\pi\)
0.860537 + 0.509388i \(0.170128\pi\)
\(114\) 25.1316 21.0879i 2.35379 1.97506i
\(115\) 0 0
\(116\) −5.05398 + 13.8857i −0.469250 + 1.28925i
\(117\) 3.93956i 0.364213i
\(118\) −1.98780 0.723499i −0.182992 0.0666035i
\(119\) −5.03368 2.90620i −0.461437 0.266411i
\(120\) 0 0
\(121\) −0.707287 1.22506i −0.0642988 0.111369i
\(122\) 9.29938 16.1070i 0.841926 1.45826i
\(123\) 2.16538 + 1.81697i 0.195246 + 0.163831i
\(124\) 34.5644 6.09463i 3.10397 0.547314i
\(125\) 0 0
\(126\) −1.89467 5.20557i −0.168791 0.463749i
\(127\) 11.4398 4.16376i 1.01512 0.369474i 0.219724 0.975562i \(-0.429484\pi\)
0.795397 + 0.606088i \(0.207262\pi\)
\(128\) −7.05771 1.24446i −0.623819 0.109996i
\(129\) 5.48610 + 6.53808i 0.483024 + 0.575646i
\(130\) 0 0
\(131\) 12.5975 + 2.22128i 1.10065 + 0.194074i 0.694330 0.719657i \(-0.255701\pi\)
0.406319 + 0.913731i \(0.366812\pi\)
\(132\) −32.2791 + 11.7486i −2.80954 + 1.02259i
\(133\) 5.51367 + 15.1487i 0.478096 + 1.31356i
\(134\) 13.5117 7.80098i 1.16723 0.673902i
\(135\) 0 0
\(136\) 13.8280 + 11.6031i 1.18574 + 0.994956i
\(137\) 1.83254 3.17406i 0.156565 0.271178i −0.777063 0.629423i \(-0.783291\pi\)
0.933628 + 0.358245i \(0.116625\pi\)
\(138\) −18.0084 31.1915i −1.53298 2.65519i
\(139\) −3.27722 + 18.5861i −0.277970 + 1.57645i 0.451395 + 0.892324i \(0.350927\pi\)
−0.729365 + 0.684125i \(0.760184\pi\)
\(140\) 0 0
\(141\) −18.0655 6.57531i −1.52139 0.553741i
\(142\) 17.0279i 1.42895i
\(143\) −5.75287 + 15.8059i −0.481079 + 1.32175i
\(144\) 1.55883 + 8.84056i 0.129902 + 0.736713i
\(145\) 0 0
\(146\) 5.41752 6.45634i 0.448357 0.534331i
\(147\) −1.07297 −0.0884972
\(148\) 15.4028 26.1172i 1.26610 2.14682i
\(149\) −2.38935 −0.195743 −0.0978714 0.995199i \(-0.531203\pi\)
−0.0978714 + 0.995199i \(0.531203\pi\)
\(150\) 0 0
\(151\) 4.13877 3.47284i 0.336808 0.282616i −0.458659 0.888612i \(-0.651670\pi\)
0.795467 + 0.605997i \(0.207226\pi\)
\(152\) −8.69380 49.3050i −0.705160 3.99916i
\(153\) 0.645894 1.77458i 0.0522175 0.143466i
\(154\) 23.6520i 1.90593i
\(155\) 0 0
\(156\) 40.3058 + 23.2705i 3.22704 + 1.86313i
\(157\) −3.14307 + 17.8252i −0.250844 + 1.42261i 0.555675 + 0.831400i \(0.312460\pi\)
−0.806519 + 0.591208i \(0.798651\pi\)
\(158\) 19.8713 + 34.4181i 1.58088 + 2.73816i
\(159\) −12.2241 + 21.1728i −0.969437 + 1.67911i
\(160\) 0 0
\(161\) 17.4293 3.07325i 1.37362 0.242206i
\(162\) −24.7067 + 14.2644i −1.94115 + 1.12072i
\(163\) −7.16061 19.6736i −0.560863 1.54096i −0.818376 0.574683i \(-0.805125\pi\)
0.257514 0.966275i \(-0.417097\pi\)
\(164\) 6.76982 2.46401i 0.528634 0.192407i
\(165\) 0 0
\(166\) 16.5044 + 19.6692i 1.28099 + 1.52663i
\(167\) −6.03926 7.19731i −0.467332 0.556944i 0.479971 0.877284i \(-0.340647\pi\)
−0.947303 + 0.320340i \(0.896203\pi\)
\(168\) −38.5909 6.80462i −2.97735 0.524988i
\(169\) 9.19906 3.34818i 0.707620 0.257553i
\(170\) 0 0
\(171\) −4.53601 + 2.61887i −0.346877 + 0.200270i
\(172\) 21.4219 3.77727i 1.63341 0.288014i
\(173\) −15.1803 12.7378i −1.15414 0.968437i −0.154330 0.988019i \(-0.549322\pi\)
−0.999808 + 0.0195820i \(0.993766\pi\)
\(174\) 7.66153 13.2702i 0.580819 1.00601i
\(175\) 0 0
\(176\) −6.65554 + 37.7454i −0.501680 + 2.84517i
\(177\) 1.35573 + 0.782729i 0.101903 + 0.0588335i
\(178\) −33.0138 12.0160i −2.47449 0.900640i
\(179\) 7.53970i 0.563543i −0.959481 0.281772i \(-0.909078\pi\)
0.959481 0.281772i \(-0.0909221\pi\)
\(180\) 0 0
\(181\) −1.24809 7.07827i −0.0927698 0.526123i −0.995408 0.0957233i \(-0.969484\pi\)
0.902638 0.430400i \(-0.141628\pi\)
\(182\) −24.5483 + 20.5985i −1.81964 + 1.52686i
\(183\) −8.84721 + 10.5437i −0.654005 + 0.779413i
\(184\) −54.9640 −4.05200
\(185\) 0 0
\(186\) −36.3949 −2.66861
\(187\) 5.18277 6.17658i 0.379002 0.451677i
\(188\) −37.5344 + 31.4951i −2.73748 + 2.29702i
\(189\) −1.87602 10.6394i −0.136460 0.773905i
\(190\) 0 0
\(191\) 15.5444i 1.12475i 0.826881 + 0.562376i \(0.190113\pi\)
−0.826881 + 0.562376i \(0.809887\pi\)
\(192\) 23.0262 + 8.38084i 1.66177 + 0.604835i
\(193\) 20.4101 + 11.7838i 1.46915 + 0.848215i 0.999402 0.0345847i \(-0.0110108\pi\)
0.469750 + 0.882800i \(0.344344\pi\)
\(194\) 1.47914 8.38864i 0.106196 0.602269i
\(195\) 0 0
\(196\) −1.36732 + 2.36826i −0.0976654 + 0.169161i
\(197\) −2.20671 1.85165i −0.157222 0.131925i 0.560783 0.827963i \(-0.310500\pi\)
−0.718005 + 0.696038i \(0.754945\pi\)
\(198\) 7.56786 1.33442i 0.537824 0.0948329i
\(199\) −13.0692 + 7.54550i −0.926451 + 0.534886i −0.885687 0.464282i \(-0.846312\pi\)
−0.0407633 + 0.999169i \(0.512979\pi\)
\(200\) 0 0
\(201\) −10.8498 + 3.94899i −0.765283 + 0.278540i
\(202\) 40.8369 + 7.20064i 2.87327 + 0.506635i
\(203\) 4.83990 + 5.76796i 0.339694 + 0.404832i
\(204\) −14.3405 17.0904i −1.00404 1.19657i
\(205\) 0 0
\(206\) 21.1902 7.71259i 1.47639 0.537362i
\(207\) 1.96668 + 5.40341i 0.136694 + 0.375563i
\(208\) 44.9722 25.9647i 3.11826 1.80033i
\(209\) −22.0232 + 3.88328i −1.52337 + 0.268612i
\(210\) 0 0
\(211\) −6.02684 + 10.4388i −0.414904 + 0.718636i −0.995418 0.0956147i \(-0.969518\pi\)
0.580514 + 0.814250i \(0.302852\pi\)
\(212\) 31.1551 + 53.9622i 2.13974 + 3.70614i
\(213\) −2.18820 + 12.4099i −0.149933 + 0.850313i
\(214\) 36.6133 + 21.1387i 2.50284 + 1.44501i
\(215\) 0 0
\(216\) 33.5519i 2.28292i
\(217\) 6.11668 16.8054i 0.415227 1.14083i
\(218\) −1.19603 6.78300i −0.0810051 0.459403i
\(219\) −4.77795 + 4.00918i −0.322864 + 0.270915i
\(220\) 0 0
\(221\) −10.9243 −0.734851
\(222\) −20.4323 + 23.8976i −1.37133 + 1.60390i
\(223\) 20.7126 1.38702 0.693509 0.720448i \(-0.256064\pi\)
0.693509 + 0.720448i \(0.256064\pi\)
\(224\) −21.1797 + 25.2410i −1.41513 + 1.68648i
\(225\) 0 0
\(226\) 1.58968 + 9.01552i 0.105744 + 0.599704i
\(227\) 3.41086 9.37125i 0.226387 0.621992i −0.773544 0.633742i \(-0.781518\pi\)
0.999931 + 0.0117501i \(0.00374027\pi\)
\(228\) 61.8774i 4.09793i
\(229\) 9.44345 + 3.43714i 0.624041 + 0.227132i 0.634636 0.772812i \(-0.281150\pi\)
−0.0105946 + 0.999944i \(0.503372\pi\)
\(230\) 0 0
\(231\) −3.03943 + 17.2375i −0.199980 + 1.13414i
\(232\) −11.6920 20.2511i −0.767617 1.32955i
\(233\) 3.32652 5.76170i 0.217928 0.377462i −0.736247 0.676713i \(-0.763404\pi\)
0.954174 + 0.299252i \(0.0967370\pi\)
\(234\) −7.97584 6.69252i −0.521397 0.437504i
\(235\) 0 0
\(236\) 3.45528 1.99491i 0.224920 0.129857i
\(237\) −10.0592 27.6374i −0.653414 1.79524i
\(238\) 14.4350 5.25390i 0.935679 0.340559i
\(239\) 17.6102 + 3.10515i 1.13911 + 0.200855i 0.711215 0.702975i \(-0.248145\pi\)
0.427892 + 0.903830i \(0.359256\pi\)
\(240\) 0 0
\(241\) −4.61553 5.50058i −0.297313 0.354323i 0.596621 0.802523i \(-0.296510\pi\)
−0.893933 + 0.448200i \(0.852065\pi\)
\(242\) 3.68173 + 0.649188i 0.236670 + 0.0417314i
\(243\) 7.84850 2.85662i 0.503481 0.183252i
\(244\) 11.9978 + 32.9637i 0.768080 + 2.11028i
\(245\) 0 0
\(246\) −7.35709 + 1.29725i −0.469071 + 0.0827099i
\(247\) 23.2104 + 19.4759i 1.47684 + 1.23922i
\(248\) −27.7705 + 48.1000i −1.76343 + 3.05435i
\(249\) −9.50075 16.4558i −0.602086 1.04284i
\(250\) 0 0
\(251\) −1.93537 1.11739i −0.122160 0.0705289i 0.437675 0.899133i \(-0.355802\pi\)
−0.559835 + 0.828604i \(0.689135\pi\)
\(252\) 9.81825 + 3.57355i 0.618492 + 0.225113i
\(253\) 24.5509i 1.54350i
\(254\) −11.0042 + 30.2339i −0.690467 + 1.89704i
\(255\) 0 0
\(256\) −4.68601 + 3.93203i −0.292876 + 0.245752i
\(257\) −4.64527 + 5.53602i −0.289764 + 0.345328i −0.891214 0.453583i \(-0.850146\pi\)
0.601450 + 0.798911i \(0.294590\pi\)
\(258\) −22.5564 −1.40430
\(259\) −7.60082 13.4510i −0.472292 0.835804i
\(260\) 0 0
\(261\) −1.57250 + 1.87403i −0.0973352 + 0.116000i
\(262\) −25.8977 + 21.7307i −1.59997 + 1.34253i
\(263\) −2.86171 16.2296i −0.176461 1.00076i −0.936444 0.350816i \(-0.885904\pi\)
0.759984 0.649942i \(-0.225207\pi\)
\(264\) 18.5919 51.0809i 1.14425 3.14381i
\(265\) 0 0
\(266\) −40.0359 14.5719i −2.45476 0.893458i
\(267\) 22.5162 + 12.9997i 1.37797 + 0.795571i
\(268\) −5.10994 + 28.9799i −0.312139 + 1.77023i
\(269\) −2.19321 3.79875i −0.133722 0.231614i 0.791386 0.611316i \(-0.209360\pi\)
−0.925109 + 0.379703i \(0.876026\pi\)
\(270\) 0 0
\(271\) 6.31192 + 5.29633i 0.383422 + 0.321729i 0.814044 0.580803i \(-0.197261\pi\)
−0.430622 + 0.902532i \(0.641706\pi\)
\(272\) −24.5147 + 4.32261i −1.48642 + 0.262097i
\(273\) 20.5378 11.8575i 1.24300 0.717648i
\(274\) 3.31291 + 9.10215i 0.200140 + 0.549881i
\(275\) 0 0
\(276\) 66.8994 + 11.7962i 4.02687 + 0.710046i
\(277\) 2.14390 + 2.55500i 0.128814 + 0.153515i 0.826596 0.562795i \(-0.190274\pi\)
−0.697782 + 0.716310i \(0.745830\pi\)
\(278\) −32.0610 38.2089i −1.92289 2.29162i
\(279\) 5.72229 + 1.00899i 0.342584 + 0.0604069i
\(280\) 0 0
\(281\) −2.71616 7.46259i −0.162033 0.445181i 0.831933 0.554877i \(-0.187235\pi\)
−0.993965 + 0.109696i \(0.965012\pi\)
\(282\) 44.0017 25.4044i 2.62027 1.51281i
\(283\) −10.7888 + 1.90235i −0.641325 + 0.113083i −0.484848 0.874599i \(-0.661125\pi\)
−0.156477 + 0.987682i \(0.550014\pi\)
\(284\) 24.6026 + 20.6441i 1.45990 + 1.22500i
\(285\) 0 0
\(286\) −22.2268 38.4980i −1.31430 2.27643i
\(287\) 0.637453 3.61518i 0.0376277 0.213397i
\(288\) −9.27122 5.35274i −0.546312 0.315413i
\(289\) −11.0539 4.02329i −0.650229 0.236664i
\(290\) 0 0
\(291\) −2.15599 + 5.92354i −0.126386 + 0.347244i
\(292\) 2.76038 + 15.6549i 0.161539 + 0.916133i
\(293\) 6.91558 5.80286i 0.404012 0.339007i −0.418030 0.908433i \(-0.637279\pi\)
0.822042 + 0.569427i \(0.192835\pi\)
\(294\) 1.82276 2.17228i 0.106306 0.126690i
\(295\) 0 0
\(296\) 15.9928 + 45.2383i 0.929562 + 2.62942i
\(297\) 14.9867 0.869617
\(298\) 4.05902 4.83735i 0.235133 0.280220i
\(299\) 25.4813 21.3814i 1.47362 1.23652i
\(300\) 0 0
\(301\) 3.79093 10.4155i 0.218505 0.600339i
\(302\) 14.2788i 0.821652i
\(303\) −28.8365 10.4956i −1.65661 0.602957i
\(304\) 59.7916 + 34.5207i 3.42928 + 1.97990i
\(305\) 0 0
\(306\) 2.49548 + 4.32230i 0.142657 + 0.247089i
\(307\) −1.77787 + 3.07935i −0.101468 + 0.175748i −0.912290 0.409545i \(-0.865687\pi\)
0.810822 + 0.585293i \(0.199021\pi\)
\(308\) 34.1733 + 28.6748i 1.94721 + 1.63390i
\(309\) −16.4344 + 2.89784i −0.934923 + 0.164852i
\(310\) 0 0
\(311\) −5.70682 15.6794i −0.323604 0.889095i −0.989691 0.143220i \(-0.954254\pi\)
0.666087 0.745874i \(-0.267968\pi\)
\(312\) −69.2085 + 25.1898i −3.91816 + 1.42609i
\(313\) −6.52963 1.15135i −0.369076 0.0650781i −0.0139659 0.999902i \(-0.504446\pi\)
−0.355110 + 0.934824i \(0.615557\pi\)
\(314\) −30.7486 36.6448i −1.73524 2.06798i
\(315\) 0 0
\(316\) −73.8199 13.0164i −4.15269 0.732232i
\(317\) 19.4040 7.06246i 1.08983 0.396667i 0.266275 0.963897i \(-0.414207\pi\)
0.823560 + 0.567230i \(0.191985\pi\)
\(318\) −22.0991 60.7167i −1.23925 3.40482i
\(319\) −9.04562 + 5.22249i −0.506457 + 0.292403i
\(320\) 0 0
\(321\) −23.9672 20.1109i −1.33772 1.12248i
\(322\) −23.3869 + 40.5073i −1.30330 + 2.25738i
\(323\) −7.26208 12.5783i −0.404073 0.699875i
\(324\) 9.34375 52.9910i 0.519097 2.94395i
\(325\) 0 0
\(326\) 51.9947 + 18.9245i 2.87972 + 1.04813i
\(327\) 5.09713i 0.281872i
\(328\) −3.89924 + 10.7131i −0.215299 + 0.591530i
\(329\) 4.33543 + 24.5875i 0.239020 + 1.35555i
\(330\) 0 0
\(331\) −10.3766 + 12.3663i −0.570348 + 0.679714i −0.971702 0.236209i \(-0.924095\pi\)
0.401355 + 0.915923i \(0.368540\pi\)
\(332\) −48.4282 −2.65785
\(333\) 3.87505 3.19090i 0.212351 0.174860i
\(334\) 24.8308 1.35868
\(335\) 0 0
\(336\) 41.3959 34.7353i 2.25833 1.89497i
\(337\) −3.93249 22.3023i −0.214216 1.21488i −0.882261 0.470761i \(-0.843980\pi\)
0.668044 0.744121i \(-0.267132\pi\)
\(338\) −8.84879 + 24.3118i −0.481310 + 1.32239i
\(339\) 6.77477i 0.367955i
\(340\) 0 0
\(341\) 21.4849 + 12.4043i 1.16347 + 0.671732i
\(342\) 2.40374 13.6323i 0.129980 0.737151i
\(343\) 9.58658 + 16.6044i 0.517626 + 0.896555i
\(344\) −17.2113 + 29.8109i −0.927972 + 1.60729i
\(345\) 0 0
\(346\) 51.5766 9.09435i 2.77278 0.488915i
\(347\) −9.28046 + 5.35808i −0.498201 + 0.287637i −0.727970 0.685608i \(-0.759536\pi\)
0.229769 + 0.973245i \(0.426203\pi\)
\(348\) 9.88469 + 27.1580i 0.529875 + 1.45582i
\(349\) 0.866831 0.315501i 0.0464004 0.0168884i −0.318716 0.947850i \(-0.603252\pi\)
0.365116 + 0.930962i \(0.381029\pi\)
\(350\) 0 0
\(351\) −13.0519 15.5547i −0.696660 0.830248i
\(352\) −29.3804 35.0143i −1.56598 1.86627i
\(353\) 25.8434 + 4.55689i 1.37551 + 0.242539i 0.812041 0.583601i \(-0.198357\pi\)
0.563465 + 0.826140i \(0.309468\pi\)
\(354\) −3.88778 + 1.41504i −0.206633 + 0.0752083i
\(355\) 0 0
\(356\) 57.3860 33.1318i 3.04145 1.75598i
\(357\) −11.1953 + 1.97404i −0.592519 + 0.104477i
\(358\) 15.2645 + 12.8084i 0.806753 + 0.676946i
\(359\) 8.57026 14.8441i 0.452321 0.783443i −0.546209 0.837649i \(-0.683930\pi\)
0.998530 + 0.0542064i \(0.0172629\pi\)
\(360\) 0 0
\(361\) −3.69580 + 20.9599i −0.194516 + 1.10315i
\(362\) 16.4506 + 9.49773i 0.864622 + 0.499190i
\(363\) −2.59981 0.946252i −0.136454 0.0496653i
\(364\) 60.4413i 3.16799i
\(365\) 0 0
\(366\) −6.31660 35.8232i −0.330174 1.87251i
\(367\) 2.84209 2.38479i 0.148356 0.124485i −0.565589 0.824687i \(-0.691351\pi\)
0.713945 + 0.700202i \(0.246907\pi\)
\(368\) 48.7210 58.0634i 2.53976 3.02676i
\(369\) 1.19270 0.0620896
\(370\) 0 0
\(371\) 31.7501 1.64838
\(372\) 44.1239 52.5849i 2.28772 2.72640i
\(373\) −23.5959 + 19.7993i −1.22175 + 1.02517i −0.223017 + 0.974814i \(0.571591\pi\)
−0.998731 + 0.0503544i \(0.983965\pi\)
\(374\) 3.70032 + 20.9855i 0.191339 + 1.08514i
\(375\) 0 0
\(376\) 77.5376i 3.99870i
\(377\) 13.2982 + 4.84016i 0.684894 + 0.249281i
\(378\) 24.7270 + 14.2762i 1.27182 + 0.734287i
\(379\) 1.14733 6.50683i 0.0589344 0.334233i −0.941058 0.338246i \(-0.890166\pi\)
0.999992 + 0.00401302i \(0.00127739\pi\)
\(380\) 0 0
\(381\) 11.9051 20.6203i 0.609917 1.05641i
\(382\) −31.4704 26.4068i −1.61017 1.35109i
\(383\) 17.3517 3.05957i 0.886629 0.156337i 0.288255 0.957554i \(-0.406925\pi\)
0.598374 + 0.801217i \(0.295814\pi\)
\(384\) −12.1387 + 7.00828i −0.619450 + 0.357640i
\(385\) 0 0
\(386\) −58.5295 + 21.3030i −2.97907 + 1.08429i
\(387\) 3.54650 + 0.625343i 0.180279 + 0.0317880i
\(388\) 10.3270 + 12.3072i 0.524273 + 0.624805i
\(389\) −9.14062 10.8934i −0.463448 0.552315i 0.482812 0.875724i \(-0.339616\pi\)
−0.946259 + 0.323409i \(0.895171\pi\)
\(390\) 0 0
\(391\) −14.9836 + 5.45358i −0.757752 + 0.275799i
\(392\) −1.48009 4.06651i −0.0747557 0.205390i
\(393\) 21.6667 12.5093i 1.09294 0.631010i
\(394\) 7.49752 1.32201i 0.377720 0.0666021i
\(395\) 0 0
\(396\) −7.24699 + 12.5521i −0.364175 + 0.630769i
\(397\) 1.27587 + 2.20988i 0.0640342 + 0.110911i 0.896265 0.443519i \(-0.146270\pi\)
−0.832231 + 0.554429i \(0.812937\pi\)
\(398\) 6.92568 39.2775i 0.347153 1.96880i
\(399\) 27.3054 + 15.7648i 1.36698 + 0.789227i
\(400\) 0 0
\(401\) 4.83800i 0.241598i 0.992677 + 0.120799i \(0.0385456\pi\)
−0.992677 + 0.120799i \(0.961454\pi\)
\(402\) 10.4366 28.6744i 0.520532 1.43015i
\(403\) −5.83679 33.1021i −0.290751 1.64893i
\(404\) −59.9130 + 50.2730i −2.98078 + 2.50117i
\(405\) 0 0
\(406\) −19.8995 −0.987597
\(407\) 20.2067 7.14353i 1.00161 0.354092i
\(408\) 35.3049 1.74785
\(409\) 13.1076 15.6210i 0.648129 0.772410i −0.337502 0.941325i \(-0.609582\pi\)
0.985631 + 0.168915i \(0.0540263\pi\)
\(410\) 0 0
\(411\) −1.24475 7.05935i −0.0613992 0.348212i
\(412\) −14.5468 + 39.9669i −0.716667 + 1.96903i
\(413\) 2.03301i 0.100038i
\(414\) −14.2805 5.19767i −0.701847 0.255451i
\(415\) 0 0
\(416\) −10.7538 + 60.9878i −0.527248 + 2.99017i
\(417\) 18.4559 + 31.9666i 0.903789 + 1.56541i
\(418\) 29.5510 51.1839i 1.44539 2.50349i
\(419\) 21.7690 + 18.2664i 1.06349 + 0.892371i 0.994447 0.105243i \(-0.0335621\pi\)
0.0690394 + 0.997614i \(0.478007\pi\)
\(420\) 0 0
\(421\) −7.37565 + 4.25833i −0.359467 + 0.207538i −0.668847 0.743400i \(-0.733212\pi\)
0.309380 + 0.950939i \(0.399879\pi\)
\(422\) −10.8955 29.9350i −0.530382 1.45721i
\(423\) −7.62259 + 2.77439i −0.370623 + 0.134896i
\(424\) −97.1062 17.1225i −4.71590 0.831540i
\(425\) 0 0
\(426\) −21.4071 25.5120i −1.03718 1.23606i
\(427\) 17.6030 + 3.10389i 0.851871 + 0.150208i
\(428\) −74.9308 + 27.2726i −3.62192 + 1.31827i
\(429\) 11.2516 + 30.9135i 0.543232 + 1.49252i
\(430\) 0 0
\(431\) 20.5717 3.62735i 0.990905 0.174723i 0.345381 0.938463i \(-0.387750\pi\)
0.645525 + 0.763739i \(0.276639\pi\)
\(432\) −35.4439 29.7410i −1.70530 1.43091i
\(433\) −5.93122 + 10.2732i −0.285036 + 0.493697i −0.972618 0.232410i \(-0.925339\pi\)
0.687582 + 0.726107i \(0.258672\pi\)
\(434\) 23.6324 + 40.9326i 1.13439 + 1.96483i
\(435\) 0 0
\(436\) 11.2504 + 6.49540i 0.538795 + 0.311073i
\(437\) 41.5575 + 15.1257i 1.98796 + 0.723560i
\(438\) 16.4840i 0.787635i
\(439\) 3.94682 10.8438i 0.188371 0.517546i −0.809174 0.587569i \(-0.800085\pi\)
0.997545 + 0.0700232i \(0.0223073\pi\)
\(440\) 0 0
\(441\) −0.346812 + 0.291010i −0.0165148 + 0.0138576i
\(442\) 18.5583 22.1169i 0.882726 1.05199i
\(443\) −16.9822 −0.806848 −0.403424 0.915013i \(-0.632180\pi\)
−0.403424 + 0.915013i \(0.632180\pi\)
\(444\) −9.75674 58.4940i −0.463035 2.77600i
\(445\) 0 0
\(446\) −35.1865 + 41.9337i −1.66613 + 1.98562i
\(447\) −3.57983 + 3.00383i −0.169320 + 0.142076i
\(448\) −5.52591 31.3390i −0.261075 1.48063i
\(449\) −5.36509 + 14.7405i −0.253194 + 0.695645i 0.746353 + 0.665550i \(0.231803\pi\)
−0.999547 + 0.0300946i \(0.990419\pi\)
\(450\) 0 0
\(451\) 4.78523 + 1.74168i 0.225328 + 0.0820126i
\(452\) −14.9533 8.63327i −0.703343 0.406075i
\(453\) 1.83492 10.4063i 0.0862120 0.488933i
\(454\) 13.1782 + 22.8253i 0.618484 + 1.07125i
\(455\) 0 0
\(456\) −75.0106 62.9414i −3.51269 2.94750i
\(457\) −18.1680 + 3.20350i −0.849862 + 0.149854i −0.581582 0.813488i \(-0.697566\pi\)
−0.268280 + 0.963341i \(0.586455\pi\)
\(458\) −23.0012 + 13.2797i −1.07477 + 0.620521i
\(459\) 3.32905 + 9.14650i 0.155387 + 0.426922i
\(460\) 0 0
\(461\) −17.9884 3.17185i −0.837805 0.147728i −0.261747 0.965136i \(-0.584299\pi\)
−0.576058 + 0.817409i \(0.695410\pi\)
\(462\) −29.7347 35.4365i −1.38338 1.64865i
\(463\) 25.0778 + 29.8866i 1.16547 + 1.38895i 0.906044 + 0.423183i \(0.139087\pi\)
0.259421 + 0.965764i \(0.416468\pi\)
\(464\) 31.7570 + 5.59962i 1.47428 + 0.259956i
\(465\) 0 0
\(466\) 6.01376 + 16.5227i 0.278582 + 0.765398i
\(467\) 4.21587 2.43403i 0.195087 0.112634i −0.399275 0.916831i \(-0.630738\pi\)
0.594362 + 0.804198i \(0.297405\pi\)
\(468\) 19.3393 3.41003i 0.893957 0.157629i
\(469\) 11.4865 + 9.63828i 0.530395 + 0.445054i
\(470\) 0 0
\(471\) 17.7004 + 30.6580i 0.815591 + 1.41265i
\(472\) −1.09638 + 6.21786i −0.0504648 + 0.286200i
\(473\) 13.3157 + 7.68781i 0.612256 + 0.353486i
\(474\) 73.0418 + 26.5850i 3.35492 + 1.22109i
\(475\) 0 0
\(476\) −9.90940 + 27.2259i −0.454197 + 1.24789i
\(477\) 1.79131 + 10.1590i 0.0820183 + 0.465149i
\(478\) −36.2026 + 30.3776i −1.65587 + 1.38944i
\(479\) 0.768832 0.916258i 0.0351288 0.0418649i −0.748194 0.663480i \(-0.769079\pi\)
0.783323 + 0.621615i \(0.213523\pi\)
\(480\) 0 0
\(481\) −25.0122 14.7512i −1.14046 0.672595i
\(482\) 18.9770 0.864381
\(483\) 22.2497 26.5162i 1.01240 1.20653i
\(484\) −5.40157 + 4.53245i −0.245526 + 0.206021i
\(485\) 0 0
\(486\) −7.54965 + 20.7425i −0.342459 + 0.940898i
\(487\) 22.8962i 1.03752i −0.854919 0.518762i \(-0.826393\pi\)
0.854919 0.518762i \(-0.173607\pi\)
\(488\) −52.1642 18.9862i −2.36136 0.859465i
\(489\) −35.4616 20.4738i −1.60363 0.925856i
\(490\) 0 0
\(491\) −12.1475 21.0401i −0.548209 0.949526i −0.998397 0.0565925i \(-0.981976\pi\)
0.450188 0.892934i \(-0.351357\pi\)
\(492\) 7.04516 12.2026i 0.317620 0.550135i
\(493\) −5.19666 4.36051i −0.234046 0.196388i
\(494\) −78.8597 + 13.9051i −3.54806 + 0.625619i
\(495\) 0 0
\(496\) −26.1960 71.9731i −1.17624 3.23169i
\(497\) 15.3780 5.59714i 0.689798 0.251066i
\(498\) 49.4554 + 8.72032i 2.21615 + 0.390767i
\(499\) 0.257419 + 0.306780i 0.0115237 + 0.0137334i 0.771775 0.635895i \(-0.219369\pi\)
−0.760252 + 0.649628i \(0.774924\pi\)
\(500\) 0 0
\(501\) −18.0966 3.19092i −0.808496 0.142560i
\(502\) 5.55001 2.02004i 0.247709 0.0901588i
\(503\) −9.45723 25.9835i −0.421677 1.15855i −0.950747 0.309969i \(-0.899681\pi\)
0.529070 0.848578i \(-0.322541\pi\)
\(504\) −14.3191 + 8.26714i −0.637824 + 0.368248i
\(505\) 0 0
\(506\) −49.7045 41.7070i −2.20963 1.85410i
\(507\) 9.57320 16.5813i 0.425161 0.736400i
\(508\) −30.3420 52.5539i −1.34621 2.33170i
\(509\) −3.55827 + 20.1800i −0.157718 + 0.894461i 0.798541 + 0.601940i \(0.205605\pi\)
−0.956259 + 0.292521i \(0.905506\pi\)
\(510\) 0 0
\(511\) 7.61151 + 2.77036i 0.336714 + 0.122554i
\(512\) 30.5000i 1.34792i
\(513\) 9.23325 25.3681i 0.407658 1.12003i
\(514\) −3.31656 18.8092i −0.146287 0.829637i
\(515\) 0 0
\(516\) 27.3467 32.5905i 1.20387 1.43472i
\(517\) −34.6339 −1.52320
\(518\) 40.1445 + 7.46230i 1.76385 + 0.327875i
\(519\) −38.7576 −1.70127
\(520\) 0 0
\(521\) 7.49284 6.28724i 0.328267 0.275449i −0.463726 0.885979i \(-0.653488\pi\)
0.791993 + 0.610530i \(0.209043\pi\)
\(522\) −1.12271 6.36720i −0.0491397 0.278685i
\(523\) −7.63944 + 20.9892i −0.334049 + 0.917793i 0.652997 + 0.757360i \(0.273511\pi\)
−0.987047 + 0.160433i \(0.948711\pi\)
\(524\) 63.7636i 2.78553i
\(525\) 0 0
\(526\) 37.7190 + 21.7771i 1.64463 + 0.949527i
\(527\) −2.79792 + 15.8678i −0.121879 + 0.691213i
\(528\) 37.4811 + 64.9192i 1.63116 + 2.82524i
\(529\) 12.7757 22.1282i 0.555467 0.962097i
\(530\) 0 0
\(531\) 0.650496 0.114700i 0.0282291 0.00497756i
\(532\) 69.5921 40.1790i 3.01720 1.74198i
\(533\) −2.35977 6.48341i −0.102213 0.280828i
\(534\) −64.5691 + 23.5012i −2.79418 + 1.01700i
\(535\) 0 0
\(536\) −29.9330 35.6727i −1.29291 1.54083i
\(537\) −9.47874 11.2963i −0.409038 0.487473i
\(538\) 11.4166 + 2.01305i 0.492203 + 0.0867887i
\(539\) −1.81640 + 0.661114i −0.0782377 + 0.0284762i
\(540\) 0 0
\(541\) −28.5009 + 16.4550i −1.22535 + 0.707455i −0.966053 0.258343i \(-0.916823\pi\)
−0.259295 + 0.965798i \(0.583490\pi\)
\(542\) −21.4454 + 3.78139i −0.921157 + 0.162425i
\(543\) −10.7686 9.03592i −0.462124 0.387768i
\(544\) 14.8431 25.7089i 0.636391 1.10226i
\(545\) 0 0
\(546\) −10.8835 + 61.7233i −0.465770 + 2.64151i
\(547\) −7.62620 4.40299i −0.326073 0.188258i 0.328023 0.944670i \(-0.393618\pi\)
−0.654096 + 0.756411i \(0.726951\pi\)
\(548\) −17.1676 6.24850i −0.733364 0.266923i
\(549\) 5.80752i 0.247859i
\(550\) 0 0
\(551\) 3.26719 + 18.5291i 0.139187 + 0.789368i
\(552\) −82.3496 + 69.0996i −3.50503 + 2.94107i
\(553\) −24.5514 + 29.2592i −1.04403 + 1.24423i
\(554\) −8.81478 −0.374504
\(555\) 0 0
\(556\) 94.0754 3.98969
\(557\) −5.08820 + 6.06388i −0.215594 + 0.256935i −0.862992 0.505217i \(-0.831413\pi\)
0.647399 + 0.762152i \(0.275857\pi\)
\(558\) −11.7638 + 9.87097i −0.498000 + 0.417872i
\(559\) −3.61746 20.5156i −0.153002 0.867719i
\(560\) 0 0
\(561\) 15.7697i 0.665798i
\(562\) 19.7226 + 7.17844i 0.831947 + 0.302804i
\(563\) −20.6877 11.9440i −0.871882 0.503381i −0.00390896 0.999992i \(-0.501244\pi\)
−0.867973 + 0.496611i \(0.834578\pi\)
\(564\) −16.6408 + 94.3749i −0.700706 + 3.97390i
\(565\) 0 0
\(566\) 14.4765 25.0741i 0.608494 1.05394i
\(567\) −21.0035 17.6240i −0.882064 0.740139i
\(568\) −50.0514 + 8.82541i −2.10011 + 0.370306i
\(569\) −10.5425 + 6.08672i −0.441965 + 0.255169i −0.704431 0.709773i \(-0.748798\pi\)
0.262466 + 0.964941i \(0.415464\pi\)
\(570\) 0 0
\(571\) 30.0566 10.9397i 1.25783 0.457812i 0.374788 0.927111i \(-0.377715\pi\)
0.883039 + 0.469299i \(0.155493\pi\)
\(572\) 82.5704 + 14.5594i 3.45244 + 0.608759i
\(573\) 19.5421 + 23.2893i 0.816382 + 0.972926i
\(574\) 6.23620 + 7.43201i 0.260294 + 0.310206i
\(575\) 0 0
\(576\) 9.71569 3.53622i 0.404820 0.147343i
\(577\) −7.37717 20.2686i −0.307116 0.843794i −0.993216 0.116286i \(-0.962901\pi\)
0.686100 0.727507i \(-0.259321\pi\)
\(578\) 26.9237 15.5444i 1.11988 0.646562i
\(579\) 45.3937 8.00413i 1.88650 0.332640i
\(580\) 0 0
\(581\) −12.3383 + 21.3706i −0.511879 + 0.886600i
\(582\) −8.32990 14.4278i −0.345285 0.598052i
\(583\) −7.64812 + 43.3746i −0.316753 + 1.79639i
\(584\) −21.7854 12.5778i −0.901487 0.520474i
\(585\) 0 0
\(586\) 23.8588i 0.985598i
\(587\) −11.2380 + 30.8760i −0.463840 + 1.27439i 0.458735 + 0.888573i \(0.348303\pi\)
−0.922575 + 0.385817i \(0.873920\pi\)
\(588\) 0.928749 + 5.26720i 0.0383010 + 0.217216i
\(589\) 34.2337 28.7255i 1.41057 1.18361i
\(590\) 0 0
\(591\) −5.63406 −0.231754
\(592\) −61.9654 23.2053i −2.54676 0.953732i
\(593\) 7.82707 0.321419 0.160710 0.987002i \(-0.448622\pi\)
0.160710 + 0.987002i \(0.448622\pi\)
\(594\) −25.4594 + 30.3413i −1.04461 + 1.24492i
\(595\) 0 0
\(596\) 2.06819 + 11.7293i 0.0847162 + 0.480449i
\(597\) −10.0948 + 27.7353i −0.413154 + 1.13513i
\(598\) 87.9108i 3.59494i
\(599\) 31.7845 + 11.5686i 1.29868 + 0.472681i 0.896567 0.442909i \(-0.146053\pi\)
0.402114 + 0.915590i \(0.368276\pi\)
\(600\) 0 0
\(601\) −2.71282 + 15.3852i −0.110658 + 0.627575i 0.878150 + 0.478385i \(0.158778\pi\)
−0.988809 + 0.149190i \(0.952334\pi\)
\(602\) 14.6466 + 25.3687i 0.596953 + 1.03395i
\(603\) −2.43588 + 4.21907i −0.0991968 + 0.171814i
\(604\) −20.6306 17.3111i −0.839446 0.704379i
\(605\) 0 0
\(606\) 70.2362 40.5509i 2.85315 1.64727i
\(607\) −3.37659 9.27710i −0.137051 0.376546i 0.852113 0.523358i \(-0.175321\pi\)
−0.989164 + 0.146812i \(0.953099\pi\)
\(608\) −77.3701 + 28.1604i −3.13777 + 1.14206i
\(609\) 14.5027 + 2.55722i 0.587680 + 0.103624i
\(610\) 0 0
\(611\) 30.1627 + 35.9465i 1.22025 + 1.45424i
\(612\) −9.27046 1.63463i −0.374736 0.0660761i
\(613\) 0.490106 0.178384i 0.0197952 0.00720486i −0.332104 0.943243i \(-0.607758\pi\)
0.351899 + 0.936038i \(0.385536\pi\)
\(614\) −3.21407 8.83058i −0.129709 0.356373i
\(615\) 0 0
\(616\) −69.5219 + 12.2586i −2.80112 + 0.493912i
\(617\) −27.8289 23.3512i −1.12035 0.940085i −0.121728 0.992563i \(-0.538844\pi\)
−0.998622 + 0.0524782i \(0.983288\pi\)
\(618\) 22.0520 38.1952i 0.887062 1.53644i
\(619\) 14.1225 + 24.4609i 0.567632 + 0.983168i 0.996799 + 0.0799427i \(0.0254737\pi\)
−0.429167 + 0.903225i \(0.641193\pi\)
\(620\) 0 0
\(621\) −25.6668 14.8188i −1.02997 0.594656i
\(622\) 41.4384 + 15.0823i 1.66153 + 0.604746i
\(623\) 33.7646i 1.35275i
\(624\) 34.7372 95.4397i 1.39060 3.82065i
\(625\) 0 0
\(626\) 13.4235 11.2636i 0.536510 0.450186i
\(627\) −28.1142 + 33.5052i −1.12277 + 1.33807i
\(628\) 90.2244 3.60034
\(629\) 8.84833 + 10.7455i 0.352806 + 0.428449i
\(630\) 0 0
\(631\) 5.79199 6.90263i 0.230576 0.274789i −0.638335 0.769759i \(-0.720376\pi\)
0.868910 + 0.494970i \(0.164821\pi\)
\(632\) 90.8684 76.2476i 3.61455 3.03297i
\(633\) 4.09373 + 23.2167i 0.162711 + 0.922780i
\(634\) −18.6651 + 51.2820i −0.741286 + 2.03667i
\(635\) 0 0
\(636\) 114.518 + 41.6812i 4.54094 + 1.65277i
\(637\) 2.26807 + 1.30947i 0.0898641 + 0.0518831i
\(638\) 4.79349 27.1852i 0.189776 1.07627i
\(639\) 2.65851 + 4.60468i 0.105169 + 0.182158i
\(640\) 0 0
\(641\) −22.7157 19.0608i −0.897218 0.752855i 0.0724270 0.997374i \(-0.476926\pi\)
−0.969645 + 0.244519i \(0.921370\pi\)
\(642\) 81.4310 14.3585i 3.21382 0.566684i
\(643\) −32.2027 + 18.5922i −1.26995 + 0.733206i −0.974978 0.222300i \(-0.928644\pi\)
−0.294972 + 0.955506i \(0.595310\pi\)
\(644\) −30.1731 82.8999i −1.18899 3.26671i
\(645\) 0 0
\(646\) 37.8022 + 6.66554i 1.48731 + 0.262252i
\(647\) −1.08410 1.29198i −0.0426202 0.0507928i 0.744313 0.667831i \(-0.232777\pi\)
−0.786933 + 0.617038i \(0.788333\pi\)
\(648\) 54.7338 + 65.2292i 2.15015 + 2.56244i
\(649\) 2.77734 + 0.489721i 0.109020 + 0.0192232i
\(650\) 0 0
\(651\) −11.9631 32.8684i −0.468872 1.28822i
\(652\) −90.3794 + 52.1806i −3.53953 + 2.04355i
\(653\) 22.5575 3.97750i 0.882744 0.155652i 0.286141 0.958188i \(-0.407628\pi\)
0.596604 + 0.802536i \(0.296516\pi\)
\(654\) −10.3194 8.65899i −0.403520 0.338593i
\(655\) 0 0
\(656\) −7.86083 13.6153i −0.306914 0.531590i
\(657\) −0.456993 + 2.59174i −0.0178290 + 0.101113i
\(658\) −57.1435 32.9918i −2.22769 1.28616i
\(659\) −21.4927 7.82272i −0.837238 0.304730i −0.112412 0.993662i \(-0.535858\pi\)
−0.724826 + 0.688932i \(0.758080\pi\)
\(660\) 0 0
\(661\) 8.63104 23.7136i 0.335709 0.922352i −0.650888 0.759174i \(-0.725603\pi\)
0.986597 0.163178i \(-0.0521746\pi\)
\(662\) −7.40851 42.0157i −0.287940 1.63299i
\(663\) −16.3674 + 13.7338i −0.635656 + 0.533378i
\(664\) 49.2610 58.7070i 1.91170 2.27827i
\(665\) 0 0
\(666\) −0.122788 + 13.2659i −0.00475792 + 0.514044i
\(667\) 20.6558 0.799797
\(668\) −30.1040 + 35.8765i −1.16476 + 1.38810i
\(669\) 31.0326 26.0394i 1.19979 1.00674i
\(670\) 0 0
\(671\) −8.48061 + 23.3003i −0.327390 + 0.899498i
\(672\) 64.4438i 2.48597i
\(673\) 31.1865 + 11.3509i 1.20215 + 0.437547i 0.863974 0.503536i \(-0.167968\pi\)
0.338176 + 0.941083i \(0.390190\pi\)
\(674\) 51.8326 + 29.9255i 1.99652 + 1.15269i
\(675\) 0 0
\(676\) −24.3988 42.2599i −0.938414 1.62538i
\(677\) −7.59940 + 13.1625i −0.292069 + 0.505878i −0.974299 0.225260i \(-0.927677\pi\)
0.682230 + 0.731138i \(0.261010\pi\)
\(678\) 13.7159 + 11.5090i 0.526754 + 0.441999i
\(679\) 8.06202 1.42155i 0.309392 0.0545542i
\(680\) 0 0
\(681\) −6.67103 18.3285i −0.255634 0.702350i
\(682\) −61.6117 + 22.4248i −2.35923 + 0.858691i
\(683\) 42.5353 + 7.50013i 1.62757 + 0.286984i 0.911579 0.411125i \(-0.134864\pi\)
0.715991 + 0.698110i \(0.245975\pi\)
\(684\) 16.7823 + 20.0004i 0.641687 + 0.764733i
\(685\) 0 0
\(686\) −49.9022 8.79910i −1.90527 0.335951i
\(687\) 18.4697 6.72243i 0.704664 0.256477i
\(688\) −16.2355 44.6067i −0.618973 1.70061i
\(689\) 51.6792 29.8370i 1.96882 1.13670i
\(690\) 0 0
\(691\) 12.3367 + 10.3517i 0.469310 + 0.393797i 0.846543 0.532321i \(-0.178680\pi\)
−0.377233 + 0.926118i \(0.623124\pi\)
\(692\) −49.3898 + 85.5457i −1.87752 + 3.25196i
\(693\) 3.69270 + 6.39594i 0.140274 + 0.242962i
\(694\) 4.91794 27.8910i 0.186683 1.05873i
\(695\) 0 0
\(696\) −42.9768 15.6423i −1.62903 0.592919i
\(697\) 3.30735i 0.125275i
\(698\) −0.833825 + 2.29091i −0.0315607 + 0.0867124i
\(699\) −2.25954 12.8145i −0.0854636 0.484688i
\(700\) 0 0
\(701\) −13.6132 + 16.2236i −0.514164 + 0.612756i −0.959190 0.282761i \(-0.908750\pi\)
0.445027 + 0.895517i \(0.353194\pi\)
\(702\) 53.6638 2.02541
\(703\) 0.357323 38.6051i 0.0134767 1.45602i
\(704\) 44.1441 1.66374
\(705\) 0 0
\(706\) −53.1284 + 44.5800i −1.99951 + 1.67779i
\(707\) 6.92028 + 39.2469i 0.260264 + 1.47603i
\(708\) 2.66891 7.33276i 0.100304 0.275582i
\(709\) 38.8909i 1.46058i −0.683138 0.730289i \(-0.739385\pi\)
0.683138 0.730289i \(-0.260615\pi\)
\(710\) 0 0
\(711\) −10.7472 6.20487i −0.403050 0.232701i
\(712\) −18.2089 + 103.268i −0.682406 + 3.87011i
\(713\) −24.5306 42.4883i −0.918678 1.59120i
\(714\) 15.0220 26.0190i 0.562186 0.973735i
\(715\) 0 0
\(716\) −37.0123 + 6.52626i −1.38321 + 0.243898i
\(717\) 30.2881 17.4868i 1.13113 0.653058i
\(718\) 15.4935 + 42.5681i 0.578213 + 1.58863i
\(719\) 9.46321 3.44433i 0.352918 0.128452i −0.159477 0.987202i \(-0.550981\pi\)
0.512395 + 0.858750i \(0.328758\pi\)
\(720\) 0 0
\(721\) 13.9306 + 16.6018i 0.518801 + 0.618283i
\(722\) −36.1560 43.0890i −1.34559 1.60361i
\(723\) −13.8304 2.43868i −0.514359 0.0906953i
\(724\) −33.6668 + 12.2537i −1.25122 + 0.455405i
\(725\) 0 0
\(726\) 6.33228 3.65594i 0.235013 0.135685i
\(727\) −11.9936 + 2.11479i −0.444817 + 0.0784332i −0.391570 0.920148i \(-0.628068\pi\)
−0.0532466 + 0.998581i \(0.516957\pi\)
\(728\) 73.2698 + 61.4806i 2.71556 + 2.27862i
\(729\) −8.02435 + 13.8986i −0.297198 + 0.514762i
\(730\) 0 0
\(731\) −1.73407 + 9.83438i −0.0641368 + 0.363738i
\(732\) 59.4169 + 34.3044i 2.19611 + 1.26793i
\(733\) 18.3290 + 6.67122i 0.676998 + 0.246407i 0.657558 0.753404i \(-0.271589\pi\)
0.0194399 + 0.999811i \(0.493812\pi\)
\(734\) 9.80523i 0.361918i
\(735\) 0 0
\(736\) 15.6963 + 89.0180i 0.578572 + 3.28125i
\(737\) −15.9340 + 13.3702i −0.586937 + 0.492498i
\(738\) −2.02616 + 2.41469i −0.0745840 + 0.0888858i
\(739\) −31.2931 −1.15114 −0.575568 0.817754i \(-0.695219\pi\)
−0.575568 + 0.817754i \(0.695219\pi\)
\(740\) 0 0
\(741\) 59.2596 2.17695
\(742\) −53.9371 + 64.2797i −1.98009 + 2.35978i
\(743\) −39.5179 + 33.1594i −1.44977 + 1.21650i −0.517023 + 0.855972i \(0.672960\pi\)
−0.932748 + 0.360530i \(0.882596\pi\)
\(744\) 18.8631 + 106.978i 0.691556 + 3.92201i
\(745\) 0 0
\(746\) 81.4060i 2.98049i
\(747\) −7.53400 2.74215i −0.275655 0.100330i
\(748\) −34.8069 20.0958i −1.27267 0.734774i
\(749\) −7.05556 + 40.0141i −0.257804 + 1.46208i
\(750\) 0 0
\(751\) 14.2057 24.6050i 0.518373 0.897848i −0.481399 0.876501i \(-0.659871\pi\)
0.999772 0.0213468i \(-0.00679542\pi\)
\(752\) 81.9099 + 68.7306i 2.98695 + 2.50635i
\(753\) −4.30442 + 0.758985i −0.156862 + 0.0276590i
\(754\) −32.3902 + 18.7005i −1.17958 + 0.681031i
\(755\) 0 0
\(756\) −50.6050 + 18.4187i −1.84049 + 0.669882i
\(757\) −22.6279 3.98991i −0.822425 0.145016i −0.253427 0.967355i \(-0.581558\pi\)
−0.568998 + 0.822339i \(0.692669\pi\)
\(758\) 11.2243 + 13.3766i 0.407685 + 0.485861i
\(759\) 30.8648 + 36.7833i 1.12032 + 1.33515i
\(760\) 0 0
\(761\) 34.9807 12.7319i 1.26805 0.461532i 0.381586 0.924333i \(-0.375378\pi\)
0.886462 + 0.462802i \(0.153156\pi\)
\(762\) 21.5223 + 59.1321i 0.779672 + 2.14213i
\(763\) 5.73262 3.30973i 0.207535 0.119820i
\(764\) 76.3072 13.4550i 2.76070 0.486785i
\(765\) 0 0
\(766\) −23.2827 + 40.3269i −0.841239 + 1.45707i
\(767\) −1.91051 3.30910i −0.0689845 0.119485i
\(768\) −2.07754 + 11.7823i −0.0749667 + 0.425157i
\(769\) −30.4338 17.5709i −1.09747 0.633624i −0.161914 0.986805i \(-0.551767\pi\)
−0.935555 + 0.353181i \(0.885100\pi\)
\(770\) 0 0
\(771\) 14.1343i 0.509033i
\(772\) 40.1797 110.393i 1.44610 3.97312i
\(773\) −8.84505 50.1628i −0.318134 1.80423i −0.554080 0.832463i \(-0.686930\pi\)
0.235946 0.971766i \(-0.424181\pi\)
\(774\) −7.29082 + 6.11773i −0.262063 + 0.219897i
\(775\) 0 0
\(776\) −25.4239 −0.912666
\(777\) −28.2982 10.5973i −1.01519 0.380177i
\(778\) 37.5822 1.34739
\(779\) 5.89632 7.02696i 0.211258 0.251767i
\(780\) 0 0
\(781\) 3.94206 + 22.3566i 0.141058 + 0.799981i
\(782\) 14.4130 39.5995i 0.515409 1.41608i
\(783\) 12.6090i 0.450610i
\(784\) 5.60779 + 2.04107i 0.200278 + 0.0728953i
\(785\) 0 0
\(786\) −11.4817 + 65.1161i −0.409539 + 2.32261i
\(787\) −8.30936 14.3922i −0.296197 0.513027i 0.679066 0.734077i \(-0.262385\pi\)
−0.975263 + 0.221050i \(0.929052\pi\)
\(788\) −7.17963 + 12.4355i −0.255764 + 0.442996i
\(789\) −24.6910 20.7182i −0.879024 0.737589i
\(790\) 0 0
\(791\) −7.61943 + 4.39908i −0.270916 + 0.156413i
\(792\) −7.84469 21.5531i −0.278749 0.765857i
\(793\) 31.5691 11.4902i 1.12105 0.408029i
\(794\) −6.64145 1.17107i −0.235696 0.0415596i
\(795\) 0 0
\(796\) 48.3533 + 57.6252i 1.71384 + 2.04247i
\(797\) −33.4835 5.90405i −1.18605 0.209132i −0.454389 0.890803i \(-0.650142\pi\)
−0.731659 + 0.681671i \(0.761254\pi\)
\(798\) −78.3031 + 28.5000i −2.77190 + 1.00889i
\(799\) −7.69335 21.1373i −0.272171 0.747784i
\(800\) 0 0
\(801\) 10.8036 1.90496i 0.381726 0.0673086i
\(802\) −9.79476 8.21878i −0.345865 0.290215i
\(803\) −5.61816 + 9.73094i −0.198261 + 0.343397i
\(804\) 28.7770 + 49.8431i 1.01488 + 1.75783i
\(805\) 0 0
\(806\) 76.9323 + 44.4169i 2.70983 + 1.56452i
\(807\) −8.06167 2.93421i −0.283784 0.103289i
\(808\) 123.767i 4.35410i
\(809\) 5.96995 16.4023i 0.209892 0.576674i −0.789416 0.613858i \(-0.789617\pi\)
0.999308 + 0.0371842i \(0.0118388\pi\)
\(810\) 0 0
\(811\) −12.2898 + 10.3124i −0.431554 + 0.362117i −0.832538 0.553968i \(-0.813113\pi\)
0.400984 + 0.916085i \(0.368668\pi\)
\(812\) 24.1255 28.7516i 0.846639 1.00898i
\(813\) 16.1152 0.565186
\(814\) −19.8646 + 53.0448i −0.696255 + 1.85922i
\(815\) 0 0
\(816\) −31.2948 + 37.2957i −1.09554 + 1.30561i
\(817\) 21.2170 17.8031i 0.742288 0.622853i
\(818\) 9.35837 + 53.0739i 0.327208 + 1.85569i
\(819\) 3.42237 9.40287i 0.119587 0.328563i
\(820\) 0 0
\(821\) 23.4887 + 8.54919i 0.819761 + 0.298369i 0.717650 0.696404i \(-0.245218\pi\)
0.102112 + 0.994773i \(0.467440\pi\)
\(822\) 16.4066 + 9.47235i 0.572246 + 0.330386i
\(823\) 2.52591 14.3251i 0.0880477 0.499343i −0.908610 0.417647i \(-0.862855\pi\)
0.996657 0.0816967i \(-0.0260339\pi\)
\(824\) −33.6528 58.2884i −1.17235 2.03057i
\(825\) 0 0
\(826\) 4.11592 + 3.45367i 0.143211 + 0.120169i
\(827\) 2.82166 0.497534i 0.0981186 0.0173010i −0.124373 0.992235i \(-0.539692\pi\)
0.222492 + 0.974935i \(0.428581\pi\)
\(828\) 24.8229 14.3315i 0.862657 0.498055i
\(829\) −1.35407 3.72028i −0.0470288 0.129211i 0.913955 0.405816i \(-0.133013\pi\)
−0.960984 + 0.276606i \(0.910790\pi\)
\(830\) 0 0
\(831\) 6.42418 + 1.13276i 0.222852 + 0.0392949i
\(832\) −38.4451 45.8171i −1.33284 1.58842i
\(833\) −0.806965 0.961703i −0.0279597 0.0333210i
\(834\) −96.0707 16.9399i −3.32666 0.586579i
\(835\) 0 0
\(836\) 38.1259 + 104.750i 1.31861 + 3.62286i
\(837\) −25.9363 + 14.9743i −0.896490 + 0.517589i
\(838\) −73.9623 + 13.0416i −2.55499 + 0.450513i
\(839\) −19.2397 16.1441i −0.664230 0.557355i 0.247122 0.968984i \(-0.420515\pi\)
−0.911351 + 0.411630i \(0.864960\pi\)
\(840\) 0 0
\(841\) −10.1061 17.5042i −0.348485 0.603594i
\(842\) 3.90854 22.1664i 0.134697 0.763905i
\(843\) −13.4513 7.76610i −0.463287 0.267479i
\(844\) 56.4606 + 20.5500i 1.94345 + 0.707359i
\(845\) 0 0
\(846\) 7.33234 20.1454i 0.252091 0.692614i
\(847\) 0.623911 + 3.53838i 0.0214378 + 0.121580i
\(848\) 104.164 87.4044i 3.57702 3.00148i
\(849\) −13.7726 + 16.4136i −0.472675 + 0.563313i
\(850\) 0 0
\(851\) −41.6702 7.74592i −1.42844 0.265527i
\(852\) 62.8141 2.15198
\(853\) 6.12346 7.29765i 0.209663 0.249867i −0.650957 0.759115i \(-0.725632\pi\)
0.860620 + 0.509248i \(0.170076\pi\)
\(854\) −36.1880 + 30.3653i −1.23833 + 1.03908i
\(855\) 0 0
\(856\) 43.1582 118.576i 1.47512 4.05285i
\(857\) 11.0923i 0.378906i 0.981890 + 0.189453i \(0.0606714\pi\)
−0.981890 + 0.189453i \(0.939329\pi\)
\(858\) −81.7000 29.7364i −2.78919 1.01518i
\(859\) −40.6649 23.4779i −1.38747 0.801056i −0.394440 0.918922i \(-0.629061\pi\)
−0.993029 + 0.117866i \(0.962395\pi\)
\(860\) 0 0
\(861\) −3.58986 6.21782i −0.122342 0.211903i
\(862\) −27.6035 + 47.8106i −0.940178 + 1.62844i
\(863\) −14.4032 12.0857i −0.490290 0.411402i 0.363840 0.931461i \(-0.381465\pi\)
−0.854130 + 0.520059i \(0.825910\pi\)
\(864\) 54.3397 9.58155i 1.84867 0.325971i
\(865\) 0 0
\(866\) −10.7226 29.4601i −0.364369 1.00109i
\(867\) −21.6195 + 7.86884i −0.734235 + 0.267240i
\(868\) −87.7921 15.4801i −2.97986 0.525430i
\(869\) −34.0577 40.5884i −1.15533 1.37687i
\(870\) 0 0
\(871\) 27.7539 + 4.89375i 0.940404 + 0.165819i
\(872\) −19.3179 + 7.03112i −0.654185 + 0.238104i
\(873\) 0.909701 + 2.49938i 0.0307887 + 0.0845913i
\(874\) −101.220 + 58.4397i −3.42383 + 1.97675i
\(875\) 0 0
\(876\) 23.8167 + 19.9846i 0.804693 + 0.675217i
\(877\) −6.03302 + 10.4495i −0.203721 + 0.352855i −0.949724 0.313087i \(-0.898637\pi\)
0.746004 + 0.665942i \(0.231970\pi\)
\(878\) 15.2489 + 26.4119i 0.514627 + 0.891359i
\(879\) 3.06601 17.3882i 0.103414 0.586490i
\(880\) 0 0
\(881\) 2.13298 + 0.776343i 0.0718620 + 0.0261556i 0.377701 0.925928i \(-0.376715\pi\)
−0.305839 + 0.952083i \(0.598937\pi\)
\(882\) 1.19650i 0.0402884i
\(883\) −17.8973 + 49.1725i −0.602293 + 1.65479i 0.144323 + 0.989531i \(0.453900\pi\)
−0.746616 + 0.665256i \(0.768323\pi\)
\(884\) 9.45596 + 53.6274i 0.318039 + 1.80369i
\(885\) 0 0
\(886\) 28.8493 34.3813i 0.969211 1.15506i
\(887\) 31.2761 1.05015 0.525075 0.851056i \(-0.324037\pi\)
0.525075 + 0.851056i \(0.324037\pi\)
\(888\) 80.8337 + 47.6723i 2.71260 + 1.59978i
\(889\) −30.9215 −1.03707
\(890\) 0 0
\(891\) 29.1360 24.4480i 0.976094 0.819040i
\(892\) −17.9286 101.678i −0.600292 3.40443i
\(893\) −21.3378 + 58.6251i −0.714042 + 1.96181i
\(894\) 12.3505i 0.413061i
\(895\) 0 0
\(896\) 15.7641 + 9.10142i 0.526642 + 0.304057i
\(897\) 11.2971 64.0691i 0.377200 2.13921i
\(898\) −20.7286 35.9029i −0.691721 1.19810i
\(899\) 10.4364 18.0763i 0.348072 0.602878i
\(900\) 0 0
\(901\) −28.1708 + 4.96726i −0.938504 + 0.165484i
\(902\) −11.6553 + 6.72917i −0.388078 + 0.224057i
\(903\) −7.41438 20.3708i −0.246735 0.677899i
\(904\) 25.6760 9.34532i 0.853973 0.310821i
\(905\) 0 0
\(906\) 17.9510 + 21.3932i 0.596382 + 0.710740i
\(907\) 28.0070 + 33.3775i 0.929958 + 1.10828i 0.993895 + 0.110327i \(0.0351897\pi\)
−0.0639374 + 0.997954i \(0.520366\pi\)
\(908\) −48.9557 8.63222i −1.62465 0.286470i
\(909\) −12.1673 + 4.42853i −0.403563 + 0.146885i
\(910\) 0 0
\(911\) 36.3275 20.9737i 1.20358 0.694889i 0.242233 0.970218i \(-0.422120\pi\)
0.961350 + 0.275329i \(0.0887869\pi\)
\(912\) 132.981 23.4482i 4.40345 0.776447i
\(913\) −26.2228 22.0035i −0.867847 0.728210i
\(914\) 24.3781 42.2241i 0.806355 1.39665i
\(915\) 0 0
\(916\) 8.69873 49.3329i 0.287414 1.63001i
\(917\) −28.1378 16.2454i −0.929193 0.536470i
\(918\) −24.1729 8.79822i −0.797825 0.290385i
\(919\) 43.9144i 1.44860i 0.689483 + 0.724302i \(0.257838\pi\)
−0.689483 + 0.724302i \(0.742162\pi\)
\(920\) 0 0
\(921\) 1.20762 + 6.84873i 0.0397923 + 0.225673i
\(922\) 36.9803 31.0302i 1.21788 1.02192i
\(923\) 19.7707 23.5618i 0.650760 0.775546i
\(924\) 87.2494 2.87029
\(925\) 0 0
\(926\) −103.109 −3.38837
\(927\) −4.52609 + 5.39398i −0.148656 + 0.177162i
\(928\) −29.4592 + 24.7192i −0.967045 + 0.811447i
\(929\) 3.89742 + 22.1034i 0.127870 + 0.725188i 0.979562 + 0.201144i \(0.0644660\pi\)
−0.851691 + 0.524044i \(0.824423\pi\)
\(930\) 0 0
\(931\) 3.48194i 0.114116i
\(932\) −31.1635 11.3426i −1.02079 0.371539i
\(933\) −28.2620 16.3171i −0.925255 0.534197i
\(934\) −2.23409 + 12.6702i −0.0731017 + 0.414580i
\(935\) 0 0
\(936\) −15.5380 + 26.9126i −0.507875 + 0.879666i
\(937\) −18.5282 15.5470i −0.605291 0.507900i 0.287850 0.957675i \(-0.407060\pi\)
−0.893142 + 0.449776i \(0.851504\pi\)
\(938\) −39.0263 + 6.88140i −1.27425 + 0.224686i
\(939\) −11.2304 + 6.48390i −0.366492 + 0.211594i
\(940\) 0 0
\(941\) −50.4649 + 18.3677i −1.64511 + 0.598771i −0.987921 0.154955i \(-0.950477\pi\)
−0.657188 + 0.753726i \(0.728254\pi\)
\(942\) −92.1380 16.2464i −3.00202 0.529337i
\(943\) −6.47321 7.71447i −0.210797 0.251218i
\(944\) −5.59663 6.66981i −0.182155 0.217084i
\(945\) 0 0
\(946\) −38.1850 + 13.8982i −1.24150 + 0.451870i
\(947\) −9.60396 26.3867i −0.312087 0.857452i −0.992235 0.124377i \(-0.960307\pi\)
0.680148 0.733075i \(-0.261915\pi\)
\(948\) −126.964 + 73.3030i −4.12361 + 2.38077i
\(949\) 14.9926 2.64360i 0.486680 0.0858148i
\(950\) 0 0
\(951\) 20.1931 34.9755i 0.654808 1.13416i
\(952\) −22.9246 39.7066i −0.742992 1.28690i
\(953\) 4.37825 24.8303i 0.141825 0.804331i −0.828036 0.560675i \(-0.810542\pi\)
0.969862 0.243657i \(-0.0783470\pi\)
\(954\) −23.6105 13.6315i −0.764417 0.441337i
\(955\) 0 0
\(956\) 89.1358i 2.88286i
\(957\) −6.98697 + 19.1965i −0.225857 + 0.620536i
\(958\) 0.548919 + 3.11308i 0.0177348 + 0.100579i
\(959\) −7.13123 + 5.98382i −0.230280 + 0.193228i
\(960\) 0 0
\(961\) −18.5763 −0.599235
\(962\) 72.3552 25.5793i 2.33283 0.824708i
\(963\) −13.2013 −0.425405
\(964\) −23.0071 + 27.4188i −0.741009 + 0.883100i
\(965\) 0 0
\(966\) 15.8855 + 90.0914i 0.511109 + 2.89864i
\(967\) 4.75348 13.0601i 0.152861 0.419983i −0.839498 0.543363i \(-0.817151\pi\)
0.992360 + 0.123379i \(0.0393731\pi\)
\(968\) 11.1584i 0.358645i
\(969\) −26.6935 9.71565i −0.857520 0.312112i
\(970\) 0 0
\(971\) 6.65366 37.7348i 0.213526 1.21097i −0.669919 0.742434i \(-0.733671\pi\)
0.883446 0.468534i \(-0.155218\pi\)
\(972\) −20.8167 36.0555i −0.667695 1.15648i
\(973\) 23.9681 41.5139i 0.768380 1.33087i
\(974\) 46.3544 + 38.8960i 1.48529 + 1.24631i
\(975\) 0 0
\(976\) 66.2960 38.2760i 2.12208 1.22519i
\(977\) −2.74070 7.53002i −0.0876828 0.240907i 0.888099 0.459652i \(-0.152026\pi\)
−0.975782 + 0.218745i \(0.929804\pi\)
\(978\) 101.692 37.0130i 3.25176 1.18354i
\(979\) 46.1267 + 8.13339i 1.47422 + 0.259944i
\(980\) 0 0
\(981\) 1.38243 + 1.64752i 0.0441377 + 0.0526013i
\(982\) 63.2329 + 11.1497i 2.01784 + 0.355800i
\(983\) 20.1566 7.33639i 0.642895 0.233995i 6.07699e−5 1.00000i \(-0.499981\pi\)
0.642834 + 0.766005i \(0.277758\pi\)
\(984\) 7.62622 + 20.9529i 0.243115 + 0.667953i
\(985\) 0 0
\(986\) 17.6561 3.11325i 0.562286 0.0991462i
\(987\) 37.4064 + 31.3877i 1.19066 + 0.999081i
\(988\) 75.5161 130.798i 2.40249 4.16123i
\(989\) −15.2033 26.3329i −0.483437 0.837338i
\(990\) 0 0
\(991\) 21.8303 + 12.6037i 0.693462 + 0.400371i 0.804908 0.593400i \(-0.202215\pi\)
−0.111446 + 0.993771i \(0.535548\pi\)
\(992\) 85.8317 + 31.2402i 2.72516 + 0.991877i
\(993\) 31.5730i 1.00194i
\(994\) −14.7925 + 40.6420i −0.469188 + 1.28908i
\(995\) 0 0
\(996\) −72.5575 + 60.8829i −2.29907 + 1.92915i
\(997\) −28.4804 + 33.9416i −0.901984 + 1.07494i 0.0948547 + 0.995491i \(0.469761\pi\)
−0.996839 + 0.0794515i \(0.974683\pi\)
\(998\) −1.05839 −0.0335029
\(999\) −4.72838 + 25.4369i −0.149599 + 0.804789i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.d.151.1 yes 78
5.2 odd 4 925.2.ba.d.299.2 156
5.3 odd 4 925.2.ba.d.299.25 156
5.4 even 2 925.2.bb.c.151.13 78
37.25 even 18 inner 925.2.bb.d.876.1 yes 78
185.62 odd 36 925.2.ba.d.99.25 156
185.99 even 18 925.2.bb.c.876.13 yes 78
185.173 odd 36 925.2.ba.d.99.2 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.ba.d.99.2 156 185.173 odd 36
925.2.ba.d.99.25 156 185.62 odd 36
925.2.ba.d.299.2 156 5.2 odd 4
925.2.ba.d.299.25 156 5.3 odd 4
925.2.bb.c.151.13 78 5.4 even 2
925.2.bb.c.876.13 yes 78 185.99 even 18
925.2.bb.d.151.1 yes 78 1.1 even 1 trivial
925.2.bb.d.876.1 yes 78 37.25 even 18 inner