Properties

Label 925.2.ba.d.99.25
Level $925$
Weight $2$
Character 925.99
Analytic conductor $7.386$
Analytic rank $0$
Dimension $156$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(99,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.ba (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [156,0,0,-6,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(26\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 99.25
Character \(\chi\) \(=\) 925.99
Dual form 925.2.ba.d.299.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.02455 - 1.69880i) q^{2} +(1.25718 - 1.49825i) q^{3} +(0.865587 - 4.90899i) q^{4} -5.16897i q^{6} +(-0.868717 - 2.38678i) q^{7} +(-3.94409 - 6.83137i) q^{8} +(-0.143302 - 0.812704i) q^{9} +(1.76172 + 3.05138i) q^{11} +(-6.26668 - 7.46833i) q^{12} +(-0.828967 + 4.70130i) q^{13} +(-5.81342 - 3.35638i) q^{14} +(-10.2219 - 3.72048i) q^{16} +(0.397373 + 2.25362i) q^{17} +(-1.67074 - 1.40192i) q^{18} +(4.07971 - 4.86201i) q^{19} +(-4.66812 - 1.69906i) q^{21} +(8.75036 + 3.18487i) q^{22} +(-3.48394 + 6.03437i) q^{23} +(-15.1935 - 2.67903i) q^{24} +(6.30828 + 10.9263i) q^{26} +(3.68359 + 2.12672i) q^{27} +(-12.4686 + 2.19856i) q^{28} +(2.56727 - 1.48222i) q^{29} -7.04104i q^{31} +(-12.1902 + 4.43687i) q^{32} +(6.78651 + 1.19665i) q^{33} +(4.63294 + 3.88750i) q^{34} -4.11359 q^{36} +(3.95288 + 4.62328i) q^{37} -16.7740i q^{38} +(6.00155 + 7.15237i) q^{39} +(0.250970 - 1.42332i) q^{41} +(-12.3372 + 4.49037i) q^{42} -4.36382 q^{43} +(16.5041 - 6.00700i) q^{44} +(3.19776 + 18.1354i) q^{46} +(-8.51267 - 4.91479i) q^{47} +(-18.4250 + 10.6377i) q^{48} +(0.420255 - 0.352636i) q^{49} +(3.87604 + 2.23783i) q^{51} +(22.3611 + 8.13877i) q^{52} +(-4.27534 + 11.7464i) q^{53} +(11.0705 - 1.95202i) q^{54} +(-12.8787 + 15.3482i) q^{56} +(-2.15557 - 12.2248i) q^{57} +(2.67959 - 7.36210i) q^{58} +(-0.273756 + 0.752139i) q^{59} +(-6.93044 - 1.22202i) q^{61} +(-11.9613 - 14.2549i) q^{62} +(-1.81526 + 1.04804i) q^{63} +(-6.26436 + 10.8502i) q^{64} +(15.7725 - 9.10625i) q^{66} +(-2.01910 - 5.54742i) q^{67} +11.4069 q^{68} +(4.66103 + 12.8061i) q^{69} +(-4.93562 - 4.14148i) q^{71} +(-4.98669 + 4.18433i) q^{72} +3.18903i q^{73} +(15.8568 + 2.64490i) q^{74} +(-20.3362 - 24.2358i) q^{76} +(5.75255 - 6.85562i) q^{77} +(24.3009 + 4.28490i) q^{78} +(-5.14320 - 14.1308i) q^{79} +(10.1437 - 3.69201i) q^{81} +(-1.90983 - 3.30793i) q^{82} +(9.56775 - 1.68705i) q^{83} +(-12.3813 + 21.4451i) q^{84} +(-8.83477 + 7.41325i) q^{86} +(1.00680 - 5.70982i) q^{87} +(13.8967 - 24.0699i) q^{88} +(-4.54660 + 12.4917i) q^{89} +(11.9411 - 2.10554i) q^{91} +(26.6070 + 22.3259i) q^{92} +(-10.5492 - 8.85185i) q^{93} +(-25.5836 + 4.51107i) q^{94} +(-8.67773 + 23.8419i) q^{96} +(1.61152 - 2.79124i) q^{97} +(0.251770 - 1.42786i) q^{98} +(2.22741 - 1.86902i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q - 6 q^{4} + 36 q^{14} + 18 q^{16} + 6 q^{21} - 30 q^{24} + 18 q^{29} + 102 q^{34} - 216 q^{36} + 66 q^{39} - 42 q^{41} + 6 q^{44} + 72 q^{46} - 108 q^{49} + 180 q^{51} + 78 q^{54} - 96 q^{56} - 30 q^{59}+ \cdots + 366 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.02455 1.69880i 1.43157 1.20123i 0.486796 0.873516i \(-0.338165\pi\)
0.944776 0.327716i \(-0.106279\pi\)
\(3\) 1.25718 1.49825i 0.725832 0.865013i −0.269351 0.963042i \(-0.586809\pi\)
0.995184 + 0.0980287i \(0.0312537\pi\)
\(4\) 0.865587 4.90899i 0.432793 2.45449i
\(5\) 0 0
\(6\) 5.16897i 2.11022i
\(7\) −0.868717 2.38678i −0.328344 0.902119i −0.988531 0.151017i \(-0.951745\pi\)
0.660187 0.751101i \(-0.270477\pi\)
\(8\) −3.94409 6.83137i −1.39445 2.41525i
\(9\) −0.143302 0.812704i −0.0477672 0.270901i
\(10\) 0 0
\(11\) 1.76172 + 3.05138i 0.531177 + 0.920026i 0.999338 + 0.0363828i \(0.0115836\pi\)
−0.468161 + 0.883643i \(0.655083\pi\)
\(12\) −6.26668 7.46833i −1.80903 2.15592i
\(13\) −0.828967 + 4.70130i −0.229914 + 1.30391i 0.623151 + 0.782102i \(0.285852\pi\)
−0.853065 + 0.521805i \(0.825259\pi\)
\(14\) −5.81342 3.35638i −1.55370 0.897030i
\(15\) 0 0
\(16\) −10.2219 3.72048i −2.55548 0.930120i
\(17\) 0.397373 + 2.25362i 0.0963772 + 0.546582i 0.994317 + 0.106463i \(0.0339526\pi\)
−0.897939 + 0.440119i \(0.854936\pi\)
\(18\) −1.67074 1.40192i −0.393798 0.330436i
\(19\) 4.07971 4.86201i 0.935951 1.11542i −0.0571743 0.998364i \(-0.518209\pi\)
0.993125 0.117058i \(-0.0373465\pi\)
\(20\) 0 0
\(21\) −4.66812 1.69906i −1.01867 0.370765i
\(22\) 8.75036 + 3.18487i 1.86558 + 0.679017i
\(23\) −3.48394 + 6.03437i −0.726453 + 1.25825i 0.231921 + 0.972735i \(0.425499\pi\)
−0.958373 + 0.285518i \(0.907834\pi\)
\(24\) −15.1935 2.67903i −3.10136 0.546854i
\(25\) 0 0
\(26\) 6.30828 + 10.9263i 1.23716 + 2.14282i
\(27\) 3.68359 + 2.12672i 0.708907 + 0.409288i
\(28\) −12.4686 + 2.19856i −2.35635 + 0.415488i
\(29\) 2.56727 1.48222i 0.476731 0.275241i −0.242322 0.970196i \(-0.577909\pi\)
0.719053 + 0.694955i \(0.244576\pi\)
\(30\) 0 0
\(31\) 7.04104i 1.26461i −0.774720 0.632304i \(-0.782109\pi\)
0.774720 0.632304i \(-0.217891\pi\)
\(32\) −12.1902 + 4.43687i −2.15494 + 0.784335i
\(33\) 6.78651 + 1.19665i 1.18138 + 0.208309i
\(34\) 4.63294 + 3.88750i 0.794543 + 0.666701i
\(35\) 0 0
\(36\) −4.11359 −0.685599
\(37\) 3.95288 + 4.62328i 0.649850 + 0.760062i
\(38\) 16.7740i 2.72110i
\(39\) 6.00155 + 7.15237i 0.961018 + 1.14530i
\(40\) 0 0
\(41\) 0.250970 1.42332i 0.0391949 0.222285i −0.958919 0.283681i \(-0.908444\pi\)
0.998113 + 0.0613962i \(0.0195553\pi\)
\(42\) −12.3372 + 4.49037i −1.90367 + 0.692879i
\(43\) −4.36382 −0.665477 −0.332738 0.943019i \(-0.607973\pi\)
−0.332738 + 0.943019i \(0.607973\pi\)
\(44\) 16.5041 6.00700i 2.48809 0.905590i
\(45\) 0 0
\(46\) 3.19776 + 18.1354i 0.471484 + 2.67392i
\(47\) −8.51267 4.91479i −1.24170 0.716897i −0.272261 0.962224i \(-0.587771\pi\)
−0.969440 + 0.245327i \(0.921105\pi\)
\(48\) −18.4250 + 10.6377i −2.65942 + 1.53542i
\(49\) 0.420255 0.352636i 0.0600364 0.0503765i
\(50\) 0 0
\(51\) 3.87604 + 2.23783i 0.542755 + 0.313360i
\(52\) 22.3611 + 8.13877i 3.10092 + 1.12864i
\(53\) −4.27534 + 11.7464i −0.587263 + 1.61349i 0.188224 + 0.982126i \(0.439727\pi\)
−0.775486 + 0.631364i \(0.782495\pi\)
\(54\) 11.0705 1.95202i 1.50650 0.265637i
\(55\) 0 0
\(56\) −12.8787 + 15.3482i −1.72099 + 2.05099i
\(57\) −2.15557 12.2248i −0.285512 1.61922i
\(58\) 2.67959 7.36210i 0.351847 0.966691i
\(59\) −0.273756 + 0.752139i −0.0356400 + 0.0979201i −0.956236 0.292596i \(-0.905481\pi\)
0.920596 + 0.390516i \(0.127703\pi\)
\(60\) 0 0
\(61\) −6.93044 1.22202i −0.887352 0.156464i −0.288649 0.957435i \(-0.593206\pi\)
−0.598703 + 0.800971i \(0.704317\pi\)
\(62\) −11.9613 14.2549i −1.51909 1.81038i
\(63\) −1.81526 + 1.04804i −0.228701 + 0.132041i
\(64\) −6.26436 + 10.8502i −0.783045 + 1.35627i
\(65\) 0 0
\(66\) 15.7725 9.10625i 1.94146 1.12090i
\(67\) −2.01910 5.54742i −0.246672 0.677725i −0.999803 0.0198546i \(-0.993680\pi\)
0.753131 0.657870i \(-0.228543\pi\)
\(68\) 11.4069 1.38329
\(69\) 4.66103 + 12.8061i 0.561123 + 1.54167i
\(70\) 0 0
\(71\) −4.93562 4.14148i −0.585750 0.491503i 0.301080 0.953599i \(-0.402653\pi\)
−0.886830 + 0.462096i \(0.847097\pi\)
\(72\) −4.98669 + 4.18433i −0.587687 + 0.493128i
\(73\) 3.18903i 0.373247i 0.982431 + 0.186624i \(0.0597545\pi\)
−0.982431 + 0.186624i \(0.940245\pi\)
\(74\) 15.8568 + 2.64490i 1.84332 + 0.307464i
\(75\) 0 0
\(76\) −20.3362 24.2358i −2.33272 2.78003i
\(77\) 5.75255 6.85562i 0.655564 0.781270i
\(78\) 24.3009 + 4.28490i 2.75153 + 0.485169i
\(79\) −5.14320 14.1308i −0.578655 1.58984i −0.790449 0.612528i \(-0.790153\pi\)
0.211794 0.977314i \(-0.432070\pi\)
\(80\) 0 0
\(81\) 10.1437 3.69201i 1.12708 0.410223i
\(82\) −1.90983 3.30793i −0.210906 0.365300i
\(83\) 9.56775 1.68705i 1.05020 0.185178i 0.378194 0.925726i \(-0.376545\pi\)
0.672003 + 0.740548i \(0.265434\pi\)
\(84\) −12.3813 + 21.4451i −1.35091 + 2.33985i
\(85\) 0 0
\(86\) −8.83477 + 7.41325i −0.952678 + 0.799392i
\(87\) 1.00680 5.70982i 0.107940 0.612157i
\(88\) 13.8967 24.0699i 1.48140 2.56586i
\(89\) −4.54660 + 12.4917i −0.481939 + 1.32412i 0.425890 + 0.904775i \(0.359961\pi\)
−0.907829 + 0.419341i \(0.862261\pi\)
\(90\) 0 0
\(91\) 11.9411 2.10554i 1.25177 0.220721i
\(92\) 26.6070 + 22.3259i 2.77397 + 2.32764i
\(93\) −10.5492 8.85185i −1.09390 0.917894i
\(94\) −25.5836 + 4.51107i −2.63874 + 0.465282i
\(95\) 0 0
\(96\) −8.67773 + 23.8419i −0.885667 + 2.43335i
\(97\) 1.61152 2.79124i 0.163625 0.283407i −0.772541 0.634965i \(-0.781015\pi\)
0.936166 + 0.351558i \(0.114348\pi\)
\(98\) 0.251770 1.42786i 0.0254326 0.144235i
\(99\) 2.22741 1.86902i 0.223864 0.187844i
\(100\) 0 0
\(101\) −7.84507 + 13.5881i −0.780613 + 1.35206i 0.150972 + 0.988538i \(0.451760\pi\)
−0.931585 + 0.363524i \(0.881574\pi\)
\(102\) 11.6489 2.05401i 1.15341 0.203377i
\(103\) 4.26623 + 7.38933i 0.420364 + 0.728092i 0.995975 0.0896317i \(-0.0285690\pi\)
−0.575611 + 0.817724i \(0.695236\pi\)
\(104\) 35.3859 12.8794i 3.46987 1.26293i
\(105\) 0 0
\(106\) 11.2991 + 31.0441i 1.09747 + 3.01527i
\(107\) −15.7538 2.77782i −1.52298 0.268542i −0.651376 0.758755i \(-0.725808\pi\)
−0.871603 + 0.490213i \(0.836919\pi\)
\(108\) 13.6285 16.2418i 1.31140 1.56287i
\(109\) 1.67519 + 1.99641i 0.160454 + 0.191221i 0.840281 0.542151i \(-0.182390\pi\)
−0.679827 + 0.733372i \(0.737945\pi\)
\(110\) 0 0
\(111\) 11.8963 0.110110i 1.12915 0.0104512i
\(112\) 27.6296i 2.61075i
\(113\) 2.65350 2.22655i 0.249620 0.209456i −0.509388 0.860537i \(-0.670128\pi\)
0.759009 + 0.651080i \(0.225684\pi\)
\(114\) −25.1316 21.0879i −2.35379 1.97506i
\(115\) 0 0
\(116\) −5.05398 13.8857i −0.469250 1.28925i
\(117\) 3.93956 0.364213
\(118\) 0.723499 + 1.98780i 0.0666035 + 0.182992i
\(119\) 5.03368 2.90620i 0.461437 0.266411i
\(120\) 0 0
\(121\) −0.707287 + 1.22506i −0.0642988 + 0.111369i
\(122\) −16.1070 + 9.29938i −1.45826 + 0.841926i
\(123\) −1.81697 2.16538i −0.163831 0.195246i
\(124\) −34.5644 6.09463i −3.10397 0.547314i
\(125\) 0 0
\(126\) −1.89467 + 5.20557i −0.168791 + 0.463749i
\(127\) −4.16376 + 11.4398i −0.369474 + 1.01512i 0.606088 + 0.795397i \(0.292738\pi\)
−0.975562 + 0.219724i \(0.929484\pi\)
\(128\) 1.24446 + 7.05771i 0.109996 + 0.623819i
\(129\) −5.48610 + 6.53808i −0.483024 + 0.575646i
\(130\) 0 0
\(131\) 12.5975 2.22128i 1.10065 0.194074i 0.406319 0.913731i \(-0.366812\pi\)
0.694330 + 0.719657i \(0.255701\pi\)
\(132\) 11.7486 32.2791i 1.02259 2.80954i
\(133\) −15.1487 5.51367i −1.31356 0.478096i
\(134\) −13.5117 7.80098i −1.16723 0.673902i
\(135\) 0 0
\(136\) 13.8280 11.6031i 1.18574 0.994956i
\(137\) −3.17406 + 1.83254i −0.271178 + 0.156565i −0.629423 0.777063i \(-0.716709\pi\)
0.358245 + 0.933628i \(0.383375\pi\)
\(138\) 31.1915 + 18.0084i 2.65519 + 1.53298i
\(139\) 3.27722 + 18.5861i 0.277970 + 1.57645i 0.729365 + 0.684125i \(0.239816\pi\)
−0.451395 + 0.892324i \(0.649073\pi\)
\(140\) 0 0
\(141\) −18.0655 + 6.57531i −1.52139 + 0.553741i
\(142\) −17.0279 −1.42895
\(143\) −15.8059 + 5.75287i −1.32175 + 0.481079i
\(144\) −1.55883 + 8.84056i −0.129902 + 0.736713i
\(145\) 0 0
\(146\) 5.41752 + 6.45634i 0.448357 + 0.534331i
\(147\) 1.07297i 0.0884972i
\(148\) 26.1172 15.4028i 2.14682 1.26610i
\(149\) 2.38935 0.195743 0.0978714 0.995199i \(-0.468797\pi\)
0.0978714 + 0.995199i \(0.468797\pi\)
\(150\) 0 0
\(151\) 4.13877 + 3.47284i 0.336808 + 0.282616i 0.795467 0.605997i \(-0.207226\pi\)
−0.458659 + 0.888612i \(0.651670\pi\)
\(152\) −49.3050 8.69380i −3.99916 0.705160i
\(153\) 1.77458 0.645894i 0.143466 0.0522175i
\(154\) 23.6520i 1.90593i
\(155\) 0 0
\(156\) 40.3058 23.2705i 3.22704 1.86313i
\(157\) 17.8252 3.14307i 1.42261 0.250844i 0.591208 0.806519i \(-0.298651\pi\)
0.831400 + 0.555675i \(0.187540\pi\)
\(158\) −34.4181 19.8713i −2.73816 1.58088i
\(159\) 12.2241 + 21.1728i 0.969437 + 1.67911i
\(160\) 0 0
\(161\) 17.4293 + 3.07325i 1.37362 + 0.242206i
\(162\) 14.2644 24.7067i 1.12072 1.94115i
\(163\) 19.6736 + 7.16061i 1.54096 + 0.560863i 0.966275 0.257514i \(-0.0829033\pi\)
0.574683 + 0.818376i \(0.305125\pi\)
\(164\) −6.76982 2.46401i −0.528634 0.192407i
\(165\) 0 0
\(166\) 16.5044 19.6692i 1.28099 1.52663i
\(167\) −7.19731 6.03926i −0.556944 0.467332i 0.320340 0.947303i \(-0.396203\pi\)
−0.877284 + 0.479971i \(0.840647\pi\)
\(168\) 6.80462 + 38.5909i 0.524988 + 2.97735i
\(169\) −9.19906 3.34818i −0.707620 0.257553i
\(170\) 0 0
\(171\) −4.53601 2.61887i −0.346877 0.200270i
\(172\) −3.77727 + 21.4219i −0.288014 + 1.63341i
\(173\) 12.7378 + 15.1803i 0.968437 + 1.15414i 0.988019 + 0.154330i \(0.0493220\pi\)
−0.0195820 + 0.999808i \(0.506234\pi\)
\(174\) −7.66153 13.2702i −0.580819 1.00601i
\(175\) 0 0
\(176\) −6.65554 37.7454i −0.501680 2.84517i
\(177\) 0.782729 + 1.35573i 0.0588335 + 0.101903i
\(178\) 12.0160 + 33.0138i 0.900640 + 2.47449i
\(179\) 7.53970i 0.563543i −0.959481 0.281772i \(-0.909078\pi\)
0.959481 0.281772i \(-0.0909221\pi\)
\(180\) 0 0
\(181\) −1.24809 + 7.07827i −0.0927698 + 0.526123i 0.902638 + 0.430400i \(0.141628\pi\)
−0.995408 + 0.0957233i \(0.969484\pi\)
\(182\) 20.5985 24.5483i 1.52686 1.81964i
\(183\) −10.5437 + 8.84721i −0.779413 + 0.654005i
\(184\) 54.9640 4.05200
\(185\) 0 0
\(186\) −36.3949 −2.66861
\(187\) −6.17658 + 5.18277i −0.451677 + 0.379002i
\(188\) −31.4951 + 37.5344i −2.29702 + 2.73748i
\(189\) 1.87602 10.6394i 0.136460 0.773905i
\(190\) 0 0
\(191\) 15.5444i 1.12475i −0.826881 0.562376i \(-0.809887\pi\)
0.826881 0.562376i \(-0.190113\pi\)
\(192\) 8.38084 + 23.0262i 0.604835 + 1.66177i
\(193\) −11.7838 20.4101i −0.848215 1.46915i −0.882800 0.469750i \(-0.844344\pi\)
0.0345847 0.999402i \(-0.488989\pi\)
\(194\) −1.47914 8.38864i −0.106196 0.602269i
\(195\) 0 0
\(196\) −1.36732 2.36826i −0.0976654 0.169161i
\(197\) −1.85165 2.20671i −0.131925 0.157222i 0.696038 0.718005i \(-0.254945\pi\)
−0.827963 + 0.560783i \(0.810500\pi\)
\(198\) 1.33442 7.56786i 0.0948329 0.537824i
\(199\) 13.0692 + 7.54550i 0.926451 + 0.534886i 0.885687 0.464282i \(-0.153688\pi\)
0.0407633 + 0.999169i \(0.487021\pi\)
\(200\) 0 0
\(201\) −10.8498 3.94899i −0.765283 0.278540i
\(202\) 7.20064 + 40.8369i 0.506635 + 2.87327i
\(203\) −5.76796 4.83990i −0.404832 0.339694i
\(204\) 14.3405 17.0904i 1.00404 1.19657i
\(205\) 0 0
\(206\) 21.1902 + 7.71259i 1.47639 + 0.537362i
\(207\) 5.40341 + 1.96668i 0.375563 + 0.136694i
\(208\) 25.9647 44.9722i 1.80033 3.11826i
\(209\) 22.0232 + 3.88328i 1.52337 + 0.268612i
\(210\) 0 0
\(211\) −6.02684 10.4388i −0.414904 0.718636i 0.580514 0.814250i \(-0.302852\pi\)
−0.995418 + 0.0956147i \(0.969518\pi\)
\(212\) 53.9622 + 31.1551i 3.70614 + 2.13974i
\(213\) −12.4099 + 2.18820i −0.850313 + 0.149933i
\(214\) −36.6133 + 21.1387i −2.50284 + 1.44501i
\(215\) 0 0
\(216\) 33.5519i 2.28292i
\(217\) −16.8054 + 6.11668i −1.14083 + 0.415227i
\(218\) 6.78300 + 1.19603i 0.459403 + 0.0810051i
\(219\) 4.77795 + 4.00918i 0.322864 + 0.270915i
\(220\) 0 0
\(221\) −10.9243 −0.734851
\(222\) 23.8976 20.4323i 1.60390 1.37133i
\(223\) 20.7126i 1.38702i −0.720448 0.693509i \(-0.756064\pi\)
0.720448 0.693509i \(-0.243936\pi\)
\(224\) 21.1797 + 25.2410i 1.41513 + 1.68648i
\(225\) 0 0
\(226\) 1.58968 9.01552i 0.105744 0.599704i
\(227\) −9.37125 + 3.41086i −0.621992 + 0.226387i −0.633742 0.773544i \(-0.718482\pi\)
0.0117501 + 0.999931i \(0.496260\pi\)
\(228\) −61.8774 −4.09793
\(229\) −9.44345 + 3.43714i −0.624041 + 0.227132i −0.634636 0.772812i \(-0.718850\pi\)
0.0105946 + 0.999944i \(0.496628\pi\)
\(230\) 0 0
\(231\) −3.03943 17.2375i −0.199980 1.13414i
\(232\) −20.2511 11.6920i −1.32955 0.767617i
\(233\) 5.76170 3.32652i 0.377462 0.217928i −0.299252 0.954174i \(-0.596737\pi\)
0.676713 + 0.736247i \(0.263404\pi\)
\(234\) 7.97584 6.69252i 0.521397 0.437504i
\(235\) 0 0
\(236\) 3.45528 + 1.99491i 0.224920 + 0.129857i
\(237\) −27.6374 10.0592i −1.79524 0.653414i
\(238\) 5.25390 14.4350i 0.340559 0.935679i
\(239\) −17.6102 + 3.10515i −1.13911 + 0.200855i −0.711215 0.702975i \(-0.751855\pi\)
−0.427892 + 0.903830i \(0.640744\pi\)
\(240\) 0 0
\(241\) −4.61553 + 5.50058i −0.297313 + 0.354323i −0.893933 0.448200i \(-0.852065\pi\)
0.596621 + 0.802523i \(0.296510\pi\)
\(242\) 0.649188 + 3.68173i 0.0417314 + 0.236670i
\(243\) 2.85662 7.84850i 0.183252 0.503481i
\(244\) −11.9978 + 32.9637i −0.768080 + 2.11028i
\(245\) 0 0
\(246\) −7.35709 1.29725i −0.469071 0.0827099i
\(247\) 19.4759 + 23.2104i 1.23922 + 1.47684i
\(248\) −48.1000 + 27.7705i −3.05435 + 1.76343i
\(249\) 9.50075 16.4558i 0.602086 1.04284i
\(250\) 0 0
\(251\) −1.93537 + 1.11739i −0.122160 + 0.0705289i −0.559835 0.828604i \(-0.689135\pi\)
0.437675 + 0.899133i \(0.355802\pi\)
\(252\) 3.57355 + 9.81825i 0.225113 + 0.618492i
\(253\) −24.5509 −1.54350
\(254\) 11.0042 + 30.2339i 0.690467 + 1.89704i
\(255\) 0 0
\(256\) −4.68601 3.93203i −0.292876 0.245752i
\(257\) 5.53602 4.64527i 0.345328 0.289764i −0.453583 0.891214i \(-0.649854\pi\)
0.798911 + 0.601450i \(0.205410\pi\)
\(258\) 22.5564i 1.40430i
\(259\) 7.60082 13.4510i 0.472292 0.835804i
\(260\) 0 0
\(261\) −1.57250 1.87403i −0.0973352 0.116000i
\(262\) 21.7307 25.8977i 1.34253 1.59997i
\(263\) 16.2296 + 2.86171i 1.00076 + 0.176461i 0.649942 0.759984i \(-0.274793\pi\)
0.350816 + 0.936444i \(0.385904\pi\)
\(264\) −18.5919 51.0809i −1.14425 3.14381i
\(265\) 0 0
\(266\) −40.0359 + 14.5719i −2.45476 + 0.893458i
\(267\) 12.9997 + 22.5162i 0.795571 + 1.37797i
\(268\) −28.9799 + 5.10994i −1.77023 + 0.312139i
\(269\) 2.19321 3.79875i 0.133722 0.231614i −0.791386 0.611316i \(-0.790640\pi\)
0.925109 + 0.379703i \(0.123974\pi\)
\(270\) 0 0
\(271\) 6.31192 5.29633i 0.383422 0.321729i −0.430622 0.902532i \(-0.641706\pi\)
0.814044 + 0.580803i \(0.197261\pi\)
\(272\) 4.32261 24.5147i 0.262097 1.48642i
\(273\) 11.8575 20.5378i 0.717648 1.24300i
\(274\) −3.31291 + 9.10215i −0.200140 + 0.549881i
\(275\) 0 0
\(276\) 66.8994 11.7962i 4.02687 0.710046i
\(277\) 2.55500 + 2.14390i 0.153515 + 0.128814i 0.716310 0.697782i \(-0.245830\pi\)
−0.562795 + 0.826596i \(0.690274\pi\)
\(278\) 38.2089 + 32.0610i 2.29162 + 1.92289i
\(279\) −5.72229 + 1.00899i −0.342584 + 0.0604069i
\(280\) 0 0
\(281\) −2.71616 + 7.46259i −0.162033 + 0.445181i −0.993965 0.109696i \(-0.965012\pi\)
0.831933 + 0.554877i \(0.187235\pi\)
\(282\) −25.4044 + 44.0017i −1.51281 + 2.62027i
\(283\) −1.90235 + 10.7888i −0.113083 + 0.641325i 0.874599 + 0.484848i \(0.161125\pi\)
−0.987682 + 0.156477i \(0.949986\pi\)
\(284\) −24.6026 + 20.6441i −1.45990 + 1.22500i
\(285\) 0 0
\(286\) −22.2268 + 38.4980i −1.31430 + 2.27643i
\(287\) −3.61518 + 0.637453i −0.213397 + 0.0376277i
\(288\) 5.35274 + 9.27122i 0.315413 + 0.546312i
\(289\) 11.0539 4.02329i 0.650229 0.236664i
\(290\) 0 0
\(291\) −2.15599 5.92354i −0.126386 0.347244i
\(292\) 15.6549 + 2.76038i 0.916133 + 0.161539i
\(293\) 5.80286 6.91558i 0.339007 0.404012i −0.569427 0.822042i \(-0.692835\pi\)
0.908433 + 0.418030i \(0.137279\pi\)
\(294\) −1.82276 2.17228i −0.106306 0.126690i
\(295\) 0 0
\(296\) 15.9928 45.2383i 0.929562 2.62942i
\(297\) 14.9867i 0.869617i
\(298\) 4.83735 4.05902i 0.280220 0.235133i
\(299\) −25.4813 21.3814i −1.47362 1.23652i
\(300\) 0 0
\(301\) 3.79093 + 10.4155i 0.218505 + 0.600339i
\(302\) 14.2788 0.821652
\(303\) 10.4956 + 28.8365i 0.602957 + 1.65661i
\(304\) −59.7916 + 34.5207i −3.42928 + 1.97990i
\(305\) 0 0
\(306\) 2.49548 4.32230i 0.142657 0.247089i
\(307\) 3.07935 1.77787i 0.175748 0.101468i −0.409545 0.912290i \(-0.634313\pi\)
0.585293 + 0.810822i \(0.300979\pi\)
\(308\) −28.6748 34.1733i −1.63390 1.94721i
\(309\) 16.4344 + 2.89784i 0.934923 + 0.164852i
\(310\) 0 0
\(311\) −5.70682 + 15.6794i −0.323604 + 0.889095i 0.666087 + 0.745874i \(0.267968\pi\)
−0.989691 + 0.143220i \(0.954254\pi\)
\(312\) 25.1898 69.2085i 1.42609 3.91816i
\(313\) 1.15135 + 6.52963i 0.0650781 + 0.369076i 0.999902 + 0.0139659i \(0.00444564\pi\)
−0.934824 + 0.355110i \(0.884443\pi\)
\(314\) 30.7486 36.6448i 1.73524 2.06798i
\(315\) 0 0
\(316\) −73.8199 + 13.0164i −4.15269 + 0.732232i
\(317\) −7.06246 + 19.4040i −0.396667 + 1.08983i 0.567230 + 0.823560i \(0.308015\pi\)
−0.963897 + 0.266275i \(0.914207\pi\)
\(318\) 60.7167 + 22.0991i 3.40482 + 1.23925i
\(319\) 9.04562 + 5.22249i 0.506457 + 0.292403i
\(320\) 0 0
\(321\) −23.9672 + 20.1109i −1.33772 + 1.12248i
\(322\) 40.5073 23.3869i 2.25738 1.30330i
\(323\) 12.5783 + 7.26208i 0.699875 + 0.404073i
\(324\) −9.34375 52.9910i −0.519097 2.94395i
\(325\) 0 0
\(326\) 51.9947 18.9245i 2.87972 1.04813i
\(327\) 5.09713 0.281872
\(328\) −10.7131 + 3.89924i −0.591530 + 0.215299i
\(329\) −4.33543 + 24.5875i −0.239020 + 1.35555i
\(330\) 0 0
\(331\) −10.3766 12.3663i −0.570348 0.679714i 0.401355 0.915923i \(-0.368540\pi\)
−0.971702 + 0.236209i \(0.924095\pi\)
\(332\) 48.4282i 2.65785i
\(333\) 3.19090 3.87505i 0.174860 0.212351i
\(334\) −24.8308 −1.35868
\(335\) 0 0
\(336\) 41.3959 + 34.7353i 2.25833 + 1.89497i
\(337\) −22.3023 3.93249i −1.21488 0.214216i −0.470761 0.882261i \(-0.656020\pi\)
−0.744121 + 0.668044i \(0.767132\pi\)
\(338\) −24.3118 + 8.84879i −1.32239 + 0.481310i
\(339\) 6.77477i 0.367955i
\(340\) 0 0
\(341\) 21.4849 12.4043i 1.16347 0.671732i
\(342\) −13.6323 + 2.40374i −0.737151 + 0.129980i
\(343\) −16.6044 9.58658i −0.896555 0.517626i
\(344\) 17.2113 + 29.8109i 0.927972 + 1.60729i
\(345\) 0 0
\(346\) 51.5766 + 9.09435i 2.77278 + 0.488915i
\(347\) 5.35808 9.28046i 0.287637 0.498201i −0.685608 0.727970i \(-0.740464\pi\)
0.973245 + 0.229769i \(0.0737971\pi\)
\(348\) −27.1580 9.88469i −1.45582 0.529875i
\(349\) −0.866831 0.315501i −0.0464004 0.0168884i 0.318716 0.947850i \(-0.396748\pi\)
−0.365116 + 0.930962i \(0.618971\pi\)
\(350\) 0 0
\(351\) −13.0519 + 15.5547i −0.696660 + 0.830248i
\(352\) −35.0143 29.3804i −1.86627 1.56598i
\(353\) −4.55689 25.8434i −0.242539 1.37551i −0.826140 0.563465i \(-0.809468\pi\)
0.583601 0.812041i \(-0.301643\pi\)
\(354\) 3.88778 + 1.41504i 0.206633 + 0.0752083i
\(355\) 0 0
\(356\) 57.3860 + 33.1318i 3.04145 + 1.75598i
\(357\) 1.97404 11.1953i 0.104477 0.592519i
\(358\) −12.8084 15.2645i −0.676946 0.806753i
\(359\) −8.57026 14.8441i −0.452321 0.783443i 0.546209 0.837649i \(-0.316070\pi\)
−0.998530 + 0.0542064i \(0.982737\pi\)
\(360\) 0 0
\(361\) −3.69580 20.9599i −0.194516 1.10315i
\(362\) 9.49773 + 16.4506i 0.499190 + 0.864622i
\(363\) 0.946252 + 2.59981i 0.0496653 + 0.136454i
\(364\) 60.4413i 3.16799i
\(365\) 0 0
\(366\) −6.31660 + 35.8232i −0.330174 + 1.87251i
\(367\) −2.38479 + 2.84209i −0.124485 + 0.148356i −0.824687 0.565589i \(-0.808649\pi\)
0.700202 + 0.713945i \(0.253093\pi\)
\(368\) 58.0634 48.7210i 3.02676 2.53976i
\(369\) −1.19270 −0.0620896
\(370\) 0 0
\(371\) 31.7501 1.64838
\(372\) −52.5849 + 44.1239i −2.72640 + 2.28772i
\(373\) −19.7993 + 23.5959i −1.02517 + 1.22175i −0.0503544 + 0.998731i \(0.516035\pi\)
−0.974814 + 0.223017i \(0.928409\pi\)
\(374\) −3.70032 + 20.9855i −0.191339 + 1.08514i
\(375\) 0 0
\(376\) 77.5376i 3.99870i
\(377\) 4.84016 + 13.2982i 0.249281 + 0.684894i
\(378\) −14.2762 24.7270i −0.734287 1.27182i
\(379\) −1.14733 6.50683i −0.0589344 0.334233i 0.941058 0.338246i \(-0.109834\pi\)
−0.999992 + 0.00401302i \(0.998723\pi\)
\(380\) 0 0
\(381\) 11.9051 + 20.6203i 0.609917 + 1.05641i
\(382\) −26.4068 31.4704i −1.35109 1.61017i
\(383\) 3.05957 17.3517i 0.156337 0.886629i −0.801217 0.598374i \(-0.795814\pi\)
0.957554 0.288255i \(-0.0930751\pi\)
\(384\) 12.1387 + 7.00828i 0.619450 + 0.357640i
\(385\) 0 0
\(386\) −58.5295 21.3030i −2.97907 1.08429i
\(387\) 0.625343 + 3.54650i 0.0317880 + 0.180279i
\(388\) −12.3072 10.3270i −0.624805 0.524273i
\(389\) 9.14062 10.8934i 0.463448 0.552315i −0.482812 0.875724i \(-0.660384\pi\)
0.946259 + 0.323409i \(0.104829\pi\)
\(390\) 0 0
\(391\) −14.9836 5.45358i −0.757752 0.275799i
\(392\) −4.06651 1.48009i −0.205390 0.0747557i
\(393\) 12.5093 21.6667i 0.631010 1.09294i
\(394\) −7.49752 1.32201i −0.377720 0.0666021i
\(395\) 0 0
\(396\) −7.24699 12.5521i −0.364175 0.630769i
\(397\) 2.20988 + 1.27587i 0.110911 + 0.0640342i 0.554429 0.832231i \(-0.312937\pi\)
−0.443519 + 0.896265i \(0.646270\pi\)
\(398\) 39.2775 6.92568i 1.96880 0.347153i
\(399\) −27.3054 + 15.7648i −1.36698 + 0.789227i
\(400\) 0 0
\(401\) 4.83800i 0.241598i −0.992677 0.120799i \(-0.961454\pi\)
0.992677 0.120799i \(-0.0385456\pi\)
\(402\) −28.6744 + 10.4366i −1.43015 + 0.520532i
\(403\) 33.1021 + 5.83679i 1.64893 + 0.290751i
\(404\) 59.9130 + 50.2730i 2.98078 + 2.50117i
\(405\) 0 0
\(406\) −19.8995 −0.987597
\(407\) −7.14353 + 20.2067i −0.354092 + 1.00161i
\(408\) 35.3049i 1.74785i
\(409\) −13.1076 15.6210i −0.648129 0.772410i 0.337502 0.941325i \(-0.390418\pi\)
−0.985631 + 0.168915i \(0.945974\pi\)
\(410\) 0 0
\(411\) −1.24475 + 7.05935i −0.0613992 + 0.348212i
\(412\) 39.9669 14.5468i 1.96903 0.716667i
\(413\) 2.03301 0.100038
\(414\) 14.2805 5.19767i 0.701847 0.255451i
\(415\) 0 0
\(416\) −10.7538 60.9878i −0.527248 2.99017i
\(417\) 31.9666 + 18.4559i 1.56541 + 0.903789i
\(418\) 51.1839 29.5510i 2.50349 1.44539i
\(419\) −21.7690 + 18.2664i −1.06349 + 0.892371i −0.994447 0.105243i \(-0.966438\pi\)
−0.0690394 + 0.997614i \(0.521993\pi\)
\(420\) 0 0
\(421\) −7.37565 4.25833i −0.359467 0.207538i 0.309380 0.950939i \(-0.399879\pi\)
−0.668847 + 0.743400i \(0.733212\pi\)
\(422\) −29.9350 10.8955i −1.45721 0.530382i
\(423\) −2.77439 + 7.62259i −0.134896 + 0.370623i
\(424\) 97.1062 17.1225i 4.71590 0.831540i
\(425\) 0 0
\(426\) −21.4071 + 25.5120i −1.03718 + 1.23606i
\(427\) 3.10389 + 17.6030i 0.150208 + 0.851871i
\(428\) −27.2726 + 74.9308i −1.31827 + 3.62192i
\(429\) −11.2516 + 30.9135i −0.543232 + 1.49252i
\(430\) 0 0
\(431\) 20.5717 + 3.62735i 0.990905 + 0.174723i 0.645525 0.763739i \(-0.276639\pi\)
0.345381 + 0.938463i \(0.387750\pi\)
\(432\) −29.7410 35.4439i −1.43091 1.70530i
\(433\) −10.2732 + 5.93122i −0.493697 + 0.285036i −0.726107 0.687582i \(-0.758672\pi\)
0.232410 + 0.972618i \(0.425339\pi\)
\(434\) −23.6324 + 40.9326i −1.13439 + 1.96483i
\(435\) 0 0
\(436\) 11.2504 6.49540i 0.538795 0.311073i
\(437\) 15.1257 + 41.5575i 0.723560 + 1.98796i
\(438\) 16.4840 0.787635
\(439\) −3.94682 10.8438i −0.188371 0.517546i 0.809174 0.587569i \(-0.199915\pi\)
−0.997545 + 0.0700232i \(0.977693\pi\)
\(440\) 0 0
\(441\) −0.346812 0.291010i −0.0165148 0.0138576i
\(442\) −22.1169 + 18.5583i −1.05199 + 0.882726i
\(443\) 16.9822i 0.806848i 0.915013 + 0.403424i \(0.132180\pi\)
−0.915013 + 0.403424i \(0.867820\pi\)
\(444\) 9.75674 58.4940i 0.463035 2.77600i
\(445\) 0 0
\(446\) −35.1865 41.9337i −1.66613 1.98562i
\(447\) 3.00383 3.57983i 0.142076 0.169320i
\(448\) 31.3390 + 5.52591i 1.48063 + 0.261075i
\(449\) 5.36509 + 14.7405i 0.253194 + 0.695645i 0.999547 + 0.0300946i \(0.00958087\pi\)
−0.746353 + 0.665550i \(0.768197\pi\)
\(450\) 0 0
\(451\) 4.78523 1.74168i 0.225328 0.0820126i
\(452\) −8.63327 14.9533i −0.406075 0.703343i
\(453\) 10.4063 1.83492i 0.488933 0.0862120i
\(454\) −13.1782 + 22.8253i −0.618484 + 1.07125i
\(455\) 0 0
\(456\) −75.0106 + 62.9414i −3.51269 + 2.94750i
\(457\) 3.20350 18.1680i 0.149854 0.849862i −0.813488 0.581582i \(-0.802434\pi\)
0.963341 0.268280i \(-0.0864551\pi\)
\(458\) −13.2797 + 23.0012i −0.620521 + 1.07477i
\(459\) −3.32905 + 9.14650i −0.155387 + 0.426922i
\(460\) 0 0
\(461\) −17.9884 + 3.17185i −0.837805 + 0.147728i −0.576058 0.817409i \(-0.695410\pi\)
−0.261747 + 0.965136i \(0.584299\pi\)
\(462\) −35.4365 29.7347i −1.64865 1.38338i
\(463\) −29.8866 25.0778i −1.38895 1.16547i −0.965764 0.259421i \(-0.916468\pi\)
−0.423183 0.906044i \(-0.639087\pi\)
\(464\) −31.7570 + 5.59962i −1.47428 + 0.259956i
\(465\) 0 0
\(466\) 6.01376 16.5227i 0.278582 0.765398i
\(467\) −2.43403 + 4.21587i −0.112634 + 0.195087i −0.916831 0.399275i \(-0.869262\pi\)
0.804198 + 0.594362i \(0.202595\pi\)
\(468\) 3.41003 19.3393i 0.157629 0.893957i
\(469\) −11.4865 + 9.63828i −0.530395 + 0.445054i
\(470\) 0 0
\(471\) 17.7004 30.6580i 0.815591 1.41265i
\(472\) 6.21786 1.09638i 0.286200 0.0504648i
\(473\) −7.68781 13.3157i −0.353486 0.612256i
\(474\) −73.0418 + 26.5850i −3.35492 + 1.22109i
\(475\) 0 0
\(476\) −9.90940 27.2259i −0.454197 1.24789i
\(477\) 10.1590 + 1.79131i 0.465149 + 0.0820183i
\(478\) −30.3776 + 36.2026i −1.38944 + 1.65587i
\(479\) −0.768832 0.916258i −0.0351288 0.0418649i 0.748194 0.663480i \(-0.230921\pi\)
−0.783323 + 0.621615i \(0.786477\pi\)
\(480\) 0 0
\(481\) −25.0122 + 14.7512i −1.14046 + 0.672595i
\(482\) 18.9770i 0.864381i
\(483\) 26.5162 22.2497i 1.20653 1.01240i
\(484\) 5.40157 + 4.53245i 0.245526 + 0.206021i
\(485\) 0 0
\(486\) −7.54965 20.7425i −0.342459 0.940898i
\(487\) −22.8962 −1.03752 −0.518762 0.854919i \(-0.673607\pi\)
−0.518762 + 0.854919i \(0.673607\pi\)
\(488\) 18.9862 + 52.1642i 0.859465 + 2.36136i
\(489\) 35.4616 20.4738i 1.60363 0.925856i
\(490\) 0 0
\(491\) −12.1475 + 21.0401i −0.548209 + 0.949526i 0.450188 + 0.892934i \(0.351357\pi\)
−0.998397 + 0.0565925i \(0.981976\pi\)
\(492\) −12.2026 + 7.04516i −0.550135 + 0.317620i
\(493\) 4.36051 + 5.19666i 0.196388 + 0.234046i
\(494\) 78.8597 + 13.9051i 3.54806 + 0.625619i
\(495\) 0 0
\(496\) −26.1960 + 71.9731i −1.17624 + 3.23169i
\(497\) −5.59714 + 15.3780i −0.251066 + 0.689798i
\(498\) −8.72032 49.4554i −0.390767 2.21615i
\(499\) −0.257419 + 0.306780i −0.0115237 + 0.0137334i −0.771775 0.635895i \(-0.780631\pi\)
0.760252 + 0.649628i \(0.225076\pi\)
\(500\) 0 0
\(501\) −18.0966 + 3.19092i −0.808496 + 0.142560i
\(502\) −2.02004 + 5.55001i −0.0901588 + 0.247709i
\(503\) 25.9835 + 9.45723i 1.15855 + 0.421677i 0.848578 0.529070i \(-0.177459\pi\)
0.309969 + 0.950747i \(0.399681\pi\)
\(504\) 14.3191 + 8.26714i 0.637824 + 0.368248i
\(505\) 0 0
\(506\) −49.7045 + 41.7070i −2.20963 + 1.85410i
\(507\) −16.5813 + 9.57320i −0.736400 + 0.425161i
\(508\) 52.5539 + 30.3420i 2.33170 + 1.34621i
\(509\) 3.55827 + 20.1800i 0.157718 + 0.894461i 0.956259 + 0.292521i \(0.0944942\pi\)
−0.798541 + 0.601940i \(0.794395\pi\)
\(510\) 0 0
\(511\) 7.61151 2.77036i 0.336714 0.122554i
\(512\) −30.5000 −1.34792
\(513\) 25.3681 9.23325i 1.12003 0.407658i
\(514\) 3.31656 18.8092i 0.146287 0.829637i
\(515\) 0 0
\(516\) 27.3467 + 32.5905i 1.20387 + 1.43472i
\(517\) 34.6339i 1.52320i
\(518\) −7.46230 40.1445i −0.327875 1.76385i
\(519\) 38.7576 1.70127
\(520\) 0 0
\(521\) 7.49284 + 6.28724i 0.328267 + 0.275449i 0.791993 0.610530i \(-0.209043\pi\)
−0.463726 + 0.885979i \(0.653488\pi\)
\(522\) −6.36720 1.12271i −0.278685 0.0491397i
\(523\) −20.9892 + 7.63944i −0.917793 + 0.334049i −0.757360 0.652997i \(-0.773511\pi\)
−0.160433 + 0.987047i \(0.551289\pi\)
\(524\) 63.7636i 2.78553i
\(525\) 0 0
\(526\) 37.7190 21.7771i 1.64463 0.949527i
\(527\) 15.8678 2.79792i 0.691213 0.121879i
\(528\) −64.9192 37.4811i −2.82524 1.63116i
\(529\) −12.7757 22.1282i −0.555467 0.962097i
\(530\) 0 0
\(531\) 0.650496 + 0.114700i 0.0282291 + 0.00497756i
\(532\) −40.1790 + 69.5921i −1.74198 + 3.01720i
\(533\) 6.48341 + 2.35977i 0.280828 + 0.102213i
\(534\) 64.5691 + 23.5012i 2.79418 + 1.01700i
\(535\) 0 0
\(536\) −29.9330 + 35.6727i −1.29291 + 1.54083i
\(537\) −11.2963 9.47874i −0.487473 0.409038i
\(538\) −2.01305 11.4166i −0.0867887 0.492203i
\(539\) 1.81640 + 0.661114i 0.0782377 + 0.0284762i
\(540\) 0 0
\(541\) −28.5009 16.4550i −1.22535 0.707455i −0.259295 0.965798i \(-0.583490\pi\)
−0.966053 + 0.258343i \(0.916823\pi\)
\(542\) 3.78139 21.4454i 0.162425 0.921157i
\(543\) 9.03592 + 10.7686i 0.387768 + 0.462124i
\(544\) −14.8431 25.7089i −0.636391 1.10226i
\(545\) 0 0
\(546\) −10.8835 61.7233i −0.465770 2.64151i
\(547\) −4.40299 7.62620i −0.188258 0.326073i 0.756411 0.654096i \(-0.226951\pi\)
−0.944670 + 0.328023i \(0.893618\pi\)
\(548\) 6.24850 + 17.1676i 0.266923 + 0.733364i
\(549\) 5.80752i 0.247859i
\(550\) 0 0
\(551\) 3.26719 18.5291i 0.139187 0.789368i
\(552\) 69.0996 82.3496i 2.94107 3.50503i
\(553\) −29.2592 + 24.5514i −1.24423 + 1.04403i
\(554\) 8.81478 0.374504
\(555\) 0 0
\(556\) 94.0754 3.98969
\(557\) 6.06388 5.08820i 0.256935 0.215594i −0.505217 0.862992i \(-0.668587\pi\)
0.762152 + 0.647399i \(0.224143\pi\)
\(558\) −9.87097 + 11.7638i −0.417872 + 0.498000i
\(559\) 3.61746 20.5156i 0.153002 0.867719i
\(560\) 0 0
\(561\) 15.7697i 0.665798i
\(562\) 7.17844 + 19.7226i 0.302804 + 0.831947i
\(563\) 11.9440 + 20.6877i 0.503381 + 0.871882i 0.999992 + 0.00390896i \(0.00124426\pi\)
−0.496611 + 0.867973i \(0.665422\pi\)
\(564\) 16.6408 + 94.3749i 0.700706 + 3.97390i
\(565\) 0 0
\(566\) 14.4765 + 25.0741i 0.608494 + 1.05394i
\(567\) −17.6240 21.0035i −0.740139 0.882064i
\(568\) −8.82541 + 50.0514i −0.370306 + 2.10011i
\(569\) 10.5425 + 6.08672i 0.441965 + 0.255169i 0.704431 0.709773i \(-0.251202\pi\)
−0.262466 + 0.964941i \(0.584536\pi\)
\(570\) 0 0
\(571\) 30.0566 + 10.9397i 1.25783 + 0.457812i 0.883039 0.469299i \(-0.155493\pi\)
0.374788 + 0.927111i \(0.377715\pi\)
\(572\) 14.5594 + 82.5704i 0.608759 + 3.45244i
\(573\) −23.2893 19.5421i −0.972926 0.816382i
\(574\) −6.23620 + 7.43201i −0.260294 + 0.310206i
\(575\) 0 0
\(576\) 9.71569 + 3.53622i 0.404820 + 0.147343i
\(577\) −20.2686 7.37717i −0.843794 0.307116i −0.116286 0.993216i \(-0.537099\pi\)
−0.727507 + 0.686100i \(0.759321\pi\)
\(578\) 15.5444 26.9237i 0.646562 1.11988i
\(579\) −45.3937 8.00413i −1.88650 0.332640i
\(580\) 0 0
\(581\) −12.3383 21.3706i −0.511879 0.886600i
\(582\) −14.4278 8.32990i −0.598052 0.345285i
\(583\) −43.3746 + 7.64812i −1.79639 + 0.316753i
\(584\) 21.7854 12.5778i 0.901487 0.520474i
\(585\) 0 0
\(586\) 23.8588i 0.985598i
\(587\) 30.8760 11.2380i 1.27439 0.463840i 0.385817 0.922575i \(-0.373920\pi\)
0.888573 + 0.458735i \(0.151697\pi\)
\(588\) −5.26720 0.928749i −0.217216 0.0383010i
\(589\) −34.2337 28.7255i −1.41057 1.18361i
\(590\) 0 0
\(591\) −5.63406 −0.231754
\(592\) −23.2053 61.9654i −0.953732 2.54676i
\(593\) 7.82707i 0.321419i −0.987002 0.160710i \(-0.948622\pi\)
0.987002 0.160710i \(-0.0513783\pi\)
\(594\) 25.4594 + 30.3413i 1.04461 + 1.24492i
\(595\) 0 0
\(596\) 2.06819 11.7293i 0.0847162 0.480449i
\(597\) 27.7353 10.0948i 1.13513 0.413154i
\(598\) −87.9108 −3.59494
\(599\) −31.7845 + 11.5686i −1.29868 + 0.472681i −0.896567 0.442909i \(-0.853947\pi\)
−0.402114 + 0.915590i \(0.631724\pi\)
\(600\) 0 0
\(601\) −2.71282 15.3852i −0.110658 0.627575i −0.988809 0.149190i \(-0.952334\pi\)
0.878150 0.478385i \(-0.158778\pi\)
\(602\) 25.3687 + 14.6466i 1.03395 + 0.596953i
\(603\) −4.21907 + 2.43588i −0.171814 + 0.0991968i
\(604\) 20.6306 17.3111i 0.839446 0.704379i
\(605\) 0 0
\(606\) 70.2362 + 40.5509i 2.85315 + 1.64727i
\(607\) −9.27710 3.37659i −0.376546 0.137051i 0.146812 0.989164i \(-0.453099\pi\)
−0.523358 + 0.852113i \(0.675321\pi\)
\(608\) −28.1604 + 77.3701i −1.14206 + 3.13777i
\(609\) −14.5027 + 2.55722i −0.587680 + 0.103624i
\(610\) 0 0
\(611\) 30.1627 35.9465i 1.22025 1.45424i
\(612\) −1.63463 9.27046i −0.0660761 0.374736i
\(613\) 0.178384 0.490106i 0.00720486 0.0197952i −0.936038 0.351899i \(-0.885536\pi\)
0.943243 + 0.332104i \(0.107758\pi\)
\(614\) 3.21407 8.83058i 0.129709 0.356373i
\(615\) 0 0
\(616\) −69.5219 12.2586i −2.80112 0.493912i
\(617\) −23.3512 27.8289i −0.940085 1.12035i −0.992563 0.121728i \(-0.961156\pi\)
0.0524782 0.998622i \(-0.483288\pi\)
\(618\) 38.1952 22.0520i 1.53644 0.887062i
\(619\) −14.1225 + 24.4609i −0.567632 + 0.983168i 0.429167 + 0.903225i \(0.358807\pi\)
−0.996799 + 0.0799427i \(0.974526\pi\)
\(620\) 0 0
\(621\) −25.6668 + 14.8188i −1.02997 + 0.594656i
\(622\) 15.0823 + 41.4384i 0.604746 + 1.66153i
\(623\) 33.7646 1.35275
\(624\) −34.7372 95.4397i −1.39060 3.82065i
\(625\) 0 0
\(626\) 13.4235 + 11.2636i 0.536510 + 0.450186i
\(627\) 33.5052 28.1142i 1.33807 1.12277i
\(628\) 90.2244i 3.60034i
\(629\) −8.84833 + 10.7455i −0.352806 + 0.428449i
\(630\) 0 0
\(631\) 5.79199 + 6.90263i 0.230576 + 0.274789i 0.868910 0.494970i \(-0.164821\pi\)
−0.638335 + 0.769759i \(0.720376\pi\)
\(632\) −76.2476 + 90.8684i −3.03297 + 3.61455i
\(633\) −23.2167 4.09373i −0.922780 0.162711i
\(634\) 18.6651 + 51.2820i 0.741286 + 2.03667i
\(635\) 0 0
\(636\) 114.518 41.6812i 4.54094 1.65277i
\(637\) 1.30947 + 2.26807i 0.0518831 + 0.0898641i
\(638\) 27.1852 4.79349i 1.07627 0.189776i
\(639\) −2.65851 + 4.60468i −0.105169 + 0.182158i
\(640\) 0 0
\(641\) −22.7157 + 19.0608i −0.897218 + 0.752855i −0.969645 0.244519i \(-0.921370\pi\)
0.0724270 + 0.997374i \(0.476926\pi\)
\(642\) −14.3585 + 81.4310i −0.566684 + 3.21382i
\(643\) −18.5922 + 32.2027i −0.733206 + 1.26995i 0.222300 + 0.974978i \(0.428644\pi\)
−0.955506 + 0.294972i \(0.904690\pi\)
\(644\) 30.1731 82.8999i 1.18899 3.26671i
\(645\) 0 0
\(646\) 37.8022 6.66554i 1.48731 0.262252i
\(647\) −1.29198 1.08410i −0.0507928 0.0426202i 0.617038 0.786933i \(-0.288333\pi\)
−0.667831 + 0.744313i \(0.732777\pi\)
\(648\) −65.2292 54.7338i −2.56244 2.15015i
\(649\) −2.77734 + 0.489721i −0.109020 + 0.0192232i
\(650\) 0 0
\(651\) −11.9631 + 32.8684i −0.468872 + 1.28822i
\(652\) 52.1806 90.3794i 2.04355 3.53953i
\(653\) 3.97750 22.5575i 0.155652 0.882744i −0.802536 0.596604i \(-0.796516\pi\)
0.958188 0.286141i \(-0.0923724\pi\)
\(654\) 10.3194 8.65899i 0.403520 0.338593i
\(655\) 0 0
\(656\) −7.86083 + 13.6153i −0.306914 + 0.531590i
\(657\) 2.59174 0.456993i 0.101113 0.0178290i
\(658\) 32.9918 + 57.1435i 1.28616 + 2.22769i
\(659\) 21.4927 7.82272i 0.837238 0.304730i 0.112412 0.993662i \(-0.464142\pi\)
0.724826 + 0.688932i \(0.241920\pi\)
\(660\) 0 0
\(661\) 8.63104 + 23.7136i 0.335709 + 0.922352i 0.986597 + 0.163178i \(0.0521746\pi\)
−0.650888 + 0.759174i \(0.725603\pi\)
\(662\) −42.0157 7.40851i −1.63299 0.287940i
\(663\) −13.7338 + 16.3674i −0.533378 + 0.635656i
\(664\) −49.2610 58.7070i −1.91170 2.27827i
\(665\) 0 0
\(666\) −0.122788 13.2659i −0.00475792 0.514044i
\(667\) 20.6558i 0.799797i
\(668\) −35.8765 + 30.1040i −1.38810 + 1.16476i
\(669\) −31.0326 26.0394i −1.19979 1.00674i
\(670\) 0 0
\(671\) −8.48061 23.3003i −0.327390 0.899498i
\(672\) 64.4438 2.48597
\(673\) −11.3509 31.1865i −0.437547 1.20215i −0.941083 0.338176i \(-0.890190\pi\)
0.503536 0.863974i \(-0.332032\pi\)
\(674\) −51.8326 + 29.9255i −1.99652 + 1.15269i
\(675\) 0 0
\(676\) −24.3988 + 42.2599i −0.938414 + 1.62538i
\(677\) 13.1625 7.59940i 0.505878 0.292069i −0.225260 0.974299i \(-0.572323\pi\)
0.731138 + 0.682230i \(0.238990\pi\)
\(678\) −11.5090 13.7159i −0.441999 0.526754i
\(679\) −8.06202 1.42155i −0.309392 0.0545542i
\(680\) 0 0
\(681\) −6.67103 + 18.3285i −0.255634 + 0.702350i
\(682\) 22.4248 61.6117i 0.858691 2.35923i
\(683\) −7.50013 42.5353i −0.286984 1.62757i −0.698110 0.715991i \(-0.745975\pi\)
0.411125 0.911579i \(-0.365136\pi\)
\(684\) −16.7823 + 20.0004i −0.641687 + 0.764733i
\(685\) 0 0
\(686\) −49.9022 + 8.79910i −1.90527 + 0.335951i
\(687\) −6.72243 + 18.4697i −0.256477 + 0.704664i
\(688\) 44.6067 + 16.2355i 1.70061 + 0.618973i
\(689\) −51.6792 29.8370i −1.96882 1.13670i
\(690\) 0 0
\(691\) 12.3367 10.3517i 0.469310 0.393797i −0.377233 0.926118i \(-0.623124\pi\)
0.846543 + 0.532321i \(0.178680\pi\)
\(692\) 85.5457 49.3898i 3.25196 1.87752i
\(693\) −6.39594 3.69270i −0.242962 0.140274i
\(694\) −4.91794 27.8910i −0.186683 1.05873i
\(695\) 0 0
\(696\) −42.9768 + 15.6423i −1.62903 + 0.592919i
\(697\) 3.30735 0.125275
\(698\) −2.29091 + 0.833825i −0.0867124 + 0.0315607i
\(699\) 2.25954 12.8145i 0.0854636 0.484688i
\(700\) 0 0
\(701\) −13.6132 16.2236i −0.514164 0.612756i 0.445027 0.895517i \(-0.353194\pi\)
−0.959190 + 0.282761i \(0.908750\pi\)
\(702\) 53.6638i 2.02541i
\(703\) 38.6051 0.357323i 1.45602 0.0134767i
\(704\) −44.1441 −1.66374
\(705\) 0 0
\(706\) −53.1284 44.5800i −1.99951 1.67779i
\(707\) 39.2469 + 6.92028i 1.47603 + 0.260264i
\(708\) 7.33276 2.66891i 0.275582 0.100304i
\(709\) 38.8909i 1.46058i −0.683138 0.730289i \(-0.739385\pi\)
0.683138 0.730289i \(-0.260615\pi\)
\(710\) 0 0
\(711\) −10.7472 + 6.20487i −0.403050 + 0.232701i
\(712\) 103.268 18.2089i 3.87011 0.682406i
\(713\) 42.4883 + 24.5306i 1.59120 + 0.918678i
\(714\) −15.0220 26.0190i −0.562186 0.973735i
\(715\) 0 0
\(716\) −37.0123 6.52626i −1.38321 0.243898i
\(717\) −17.4868 + 30.2881i −0.653058 + 1.13113i
\(718\) −42.5681 15.4935i −1.58863 0.578213i
\(719\) −9.46321 3.44433i −0.352918 0.128452i 0.159477 0.987202i \(-0.449019\pi\)
−0.512395 + 0.858750i \(0.671242\pi\)
\(720\) 0 0
\(721\) 13.9306 16.6018i 0.518801 0.618283i
\(722\) −43.0890 36.1560i −1.60361 1.34559i
\(723\) 2.43868 + 13.8304i 0.0906953 + 0.514359i
\(724\) 33.6668 + 12.2537i 1.25122 + 0.455405i
\(725\) 0 0
\(726\) 6.33228 + 3.65594i 0.235013 + 0.135685i
\(727\) 2.11479 11.9936i 0.0784332 0.444817i −0.920148 0.391570i \(-0.871932\pi\)
0.998581 0.0532466i \(-0.0169569\pi\)
\(728\) −61.4806 73.2698i −2.27862 2.71556i
\(729\) 8.02435 + 13.8986i 0.297198 + 0.514762i
\(730\) 0 0
\(731\) −1.73407 9.83438i −0.0641368 0.363738i
\(732\) 34.3044 + 59.4169i 1.26793 + 2.19611i
\(733\) −6.67122 18.3290i −0.246407 0.676998i −0.999811 0.0194399i \(-0.993812\pi\)
0.753404 0.657558i \(-0.228411\pi\)
\(734\) 9.80523i 0.361918i
\(735\) 0 0
\(736\) 15.6963 89.0180i 0.578572 3.28125i
\(737\) 13.3702 15.9340i 0.492498 0.586937i
\(738\) −2.41469 + 2.02616i −0.0888858 + 0.0745840i
\(739\) 31.2931 1.15114 0.575568 0.817754i \(-0.304781\pi\)
0.575568 + 0.817754i \(0.304781\pi\)
\(740\) 0 0
\(741\) 59.2596 2.17695
\(742\) 64.2797 53.9371i 2.35978 1.98009i
\(743\) −33.1594 + 39.5179i −1.21650 + 1.44977i −0.360530 + 0.932748i \(0.617404\pi\)
−0.855972 + 0.517023i \(0.827040\pi\)
\(744\) −18.8631 + 106.978i −0.691556 + 3.92201i
\(745\) 0 0
\(746\) 81.4060i 2.98049i
\(747\) −2.74215 7.53400i −0.100330 0.275655i
\(748\) 20.0958 + 34.8069i 0.734774 + 1.27267i
\(749\) 7.05556 + 40.0141i 0.257804 + 1.46208i
\(750\) 0 0
\(751\) 14.2057 + 24.6050i 0.518373 + 0.897848i 0.999772 + 0.0213468i \(0.00679542\pi\)
−0.481399 + 0.876501i \(0.659871\pi\)
\(752\) 68.7306 + 81.9099i 2.50635 + 2.98695i
\(753\) −0.758985 + 4.30442i −0.0276590 + 0.156862i
\(754\) 32.3902 + 18.7005i 1.17958 + 0.681031i
\(755\) 0 0
\(756\) −50.6050 18.4187i −1.84049 0.669882i
\(757\) −3.98991 22.6279i −0.145016 0.822425i −0.967355 0.253427i \(-0.918442\pi\)
0.822339 0.568998i \(-0.192669\pi\)
\(758\) −13.3766 11.2243i −0.485861 0.407685i
\(759\) −30.8648 + 36.7833i −1.12032 + 1.33515i
\(760\) 0 0
\(761\) 34.9807 + 12.7319i 1.26805 + 0.461532i 0.886462 0.462802i \(-0.153156\pi\)
0.381586 + 0.924333i \(0.375378\pi\)
\(762\) 59.1321 + 21.5223i 2.14213 + 0.779672i
\(763\) 3.30973 5.73262i 0.119820 0.207535i
\(764\) −76.3072 13.4550i −2.76070 0.486785i
\(765\) 0 0
\(766\) −23.2827 40.3269i −0.841239 1.45707i
\(767\) −3.30910 1.91051i −0.119485 0.0689845i
\(768\) −11.7823 + 2.07754i −0.425157 + 0.0749667i
\(769\) 30.4338 17.5709i 1.09747 0.633624i 0.161914 0.986805i \(-0.448233\pi\)
0.935555 + 0.353181i \(0.114900\pi\)
\(770\) 0 0
\(771\) 14.1343i 0.509033i
\(772\) −110.393 + 40.1797i −3.97312 + 1.44610i
\(773\) 50.1628 + 8.84505i 1.80423 + 0.318134i 0.971766 0.235946i \(-0.0758189\pi\)
0.832463 + 0.554080i \(0.186930\pi\)
\(774\) 7.29082 + 6.11773i 0.262063 + 0.219897i
\(775\) 0 0
\(776\) −25.4239 −0.912666
\(777\) −10.5973 28.2982i −0.380177 1.01519i
\(778\) 37.5822i 1.34739i
\(779\) −5.89632 7.02696i −0.211258 0.251767i
\(780\) 0 0
\(781\) 3.94206 22.3566i 0.141058 0.799981i
\(782\) −39.5995 + 14.4130i −1.41608 + 0.515409i
\(783\) 12.6090 0.450610
\(784\) −5.60779 + 2.04107i −0.200278 + 0.0728953i
\(785\) 0 0
\(786\) −11.4817 65.1161i −0.409539 2.32261i
\(787\) −14.3922 8.30936i −0.513027 0.296197i 0.221050 0.975263i \(-0.429052\pi\)
−0.734077 + 0.679066i \(0.762385\pi\)
\(788\) −12.4355 + 7.17963i −0.442996 + 0.255764i
\(789\) 24.6910 20.7182i 0.879024 0.737589i
\(790\) 0 0
\(791\) −7.61943 4.39908i −0.270916 0.156413i
\(792\) −21.5531 7.84469i −0.765857 0.278749i
\(793\) 11.4902 31.5691i 0.408029 1.12105i
\(794\) 6.64145 1.17107i 0.235696 0.0415596i
\(795\) 0 0
\(796\) 48.3533 57.6252i 1.71384 2.04247i
\(797\) −5.90405 33.4835i −0.209132 1.18605i −0.890803 0.454389i \(-0.849858\pi\)
0.681671 0.731659i \(-0.261254\pi\)
\(798\) −28.5000 + 78.3031i −1.00889 + 2.77190i
\(799\) 7.69335 21.1373i 0.272171 0.747784i
\(800\) 0 0
\(801\) 10.8036 + 1.90496i 0.381726 + 0.0673086i
\(802\) −8.21878 9.79476i −0.290215 0.345865i
\(803\) −9.73094 + 5.61816i −0.343397 + 0.198261i
\(804\) −28.7770 + 49.8431i −1.01488 + 1.75783i
\(805\) 0 0
\(806\) 76.9323 44.4169i 2.70983 1.56452i
\(807\) −2.93421 8.06167i −0.103289 0.283784i
\(808\) 123.767 4.35410
\(809\) −5.96995 16.4023i −0.209892 0.576674i 0.789416 0.613858i \(-0.210383\pi\)
−0.999308 + 0.0371842i \(0.988161\pi\)
\(810\) 0 0
\(811\) −12.2898 10.3124i −0.431554 0.362117i 0.400984 0.916085i \(-0.368668\pi\)
−0.832538 + 0.553968i \(0.813113\pi\)
\(812\) −28.7516 + 24.1255i −1.00898 + 0.846639i
\(813\) 16.1152i 0.565186i
\(814\) 19.8646 + 53.0448i 0.696255 + 1.85922i
\(815\) 0 0
\(816\) −31.2948 37.2957i −1.09554 1.30561i
\(817\) −17.8031 + 21.2170i −0.622853 + 0.742288i
\(818\) −53.0739 9.35837i −1.85569 0.327208i
\(819\) −3.42237 9.40287i −0.119587 0.328563i
\(820\) 0 0
\(821\) 23.4887 8.54919i 0.819761 0.298369i 0.102112 0.994773i \(-0.467440\pi\)
0.717650 + 0.696404i \(0.245218\pi\)
\(822\) 9.47235 + 16.4066i 0.330386 + 0.572246i
\(823\) 14.3251 2.52591i 0.499343 0.0880477i 0.0816967 0.996657i \(-0.473966\pi\)
0.417647 + 0.908610i \(0.362855\pi\)
\(824\) 33.6528 58.2884i 1.17235 2.03057i
\(825\) 0 0
\(826\) 4.11592 3.45367i 0.143211 0.120169i
\(827\) −0.497534 + 2.82166i −0.0173010 + 0.0981186i −0.992235 0.124373i \(-0.960308\pi\)
0.974935 + 0.222492i \(0.0714191\pi\)
\(828\) 14.3315 24.8229i 0.498055 0.862657i
\(829\) 1.35407 3.72028i 0.0470288 0.129211i −0.913955 0.405816i \(-0.866987\pi\)
0.960984 + 0.276606i \(0.0892095\pi\)
\(830\) 0 0
\(831\) 6.42418 1.13276i 0.222852 0.0392949i
\(832\) −45.8171 38.4451i −1.58842 1.33284i
\(833\) 0.961703 + 0.806965i 0.0333210 + 0.0279597i
\(834\) 96.0707 16.9399i 3.32666 0.586579i
\(835\) 0 0
\(836\) 38.1259 104.750i 1.31861 3.62286i
\(837\) 14.9743 25.9363i 0.517589 0.896490i
\(838\) −13.0416 + 73.9623i −0.450513 + 2.55499i
\(839\) 19.2397 16.1441i 0.664230 0.557355i −0.247122 0.968984i \(-0.579485\pi\)
0.911351 + 0.411630i \(0.135040\pi\)
\(840\) 0 0
\(841\) −10.1061 + 17.5042i −0.348485 + 0.603594i
\(842\) −22.1664 + 3.90854i −0.763905 + 0.134697i
\(843\) 7.76610 + 13.4513i 0.267479 + 0.463287i
\(844\) −56.4606 + 20.5500i −1.94345 + 0.707359i
\(845\) 0 0
\(846\) 7.33234 + 20.1454i 0.252091 + 0.692614i
\(847\) 3.53838 + 0.623911i 0.121580 + 0.0214378i
\(848\) 87.4044 104.164i 3.00148 3.57702i
\(849\) 13.7726 + 16.4136i 0.472675 + 0.563313i
\(850\) 0 0
\(851\) −41.6702 + 7.74592i −1.42844 + 0.265527i
\(852\) 62.8141i 2.15198i
\(853\) 7.29765 6.12346i 0.249867 0.209663i −0.509248 0.860620i \(-0.670076\pi\)
0.759115 + 0.650957i \(0.225632\pi\)
\(854\) 36.1880 + 30.3653i 1.23833 + 1.03908i
\(855\) 0 0
\(856\) 43.1582 + 118.576i 1.47512 + 4.05285i
\(857\) 11.0923 0.378906 0.189453 0.981890i \(-0.439329\pi\)
0.189453 + 0.981890i \(0.439329\pi\)
\(858\) 29.7364 + 81.7000i 1.01518 + 2.78919i
\(859\) 40.6649 23.4779i 1.38747 0.801056i 0.394440 0.918922i \(-0.370939\pi\)
0.993029 + 0.117866i \(0.0376054\pi\)
\(860\) 0 0
\(861\) −3.58986 + 6.21782i −0.122342 + 0.211903i
\(862\) 47.8106 27.6035i 1.62844 0.940178i
\(863\) 12.0857 + 14.4032i 0.411402 + 0.490290i 0.931461 0.363840i \(-0.118535\pi\)
−0.520059 + 0.854130i \(0.674090\pi\)
\(864\) −54.3397 9.58155i −1.84867 0.325971i
\(865\) 0 0
\(866\) −10.7226 + 29.4601i −0.364369 + 1.00109i
\(867\) 7.86884 21.6195i 0.267240 0.734235i
\(868\) 15.4801 + 87.7921i 0.525430 + 2.97986i
\(869\) 34.0577 40.5884i 1.15533 1.37687i
\(870\) 0 0
\(871\) 27.7539 4.89375i 0.940404 0.165819i
\(872\) 7.03112 19.3179i 0.238104 0.654185i
\(873\) −2.49938 0.909701i −0.0845913 0.0307887i
\(874\) 101.220 + 58.4397i 3.42383 + 1.97675i
\(875\) 0 0
\(876\) 23.8167 19.9846i 0.804693 0.675217i
\(877\) 10.4495 6.03302i 0.352855 0.203721i −0.313087 0.949724i \(-0.601363\pi\)
0.665942 + 0.746004i \(0.268030\pi\)
\(878\) −26.4119 15.2489i −0.891359 0.514627i
\(879\) −3.06601 17.3882i −0.103414 0.586490i
\(880\) 0 0
\(881\) 2.13298 0.776343i 0.0718620 0.0261556i −0.305839 0.952083i \(-0.598937\pi\)
0.377701 + 0.925928i \(0.376715\pi\)
\(882\) −1.19650 −0.0402884
\(883\) −49.1725 + 17.8973i −1.65479 + 0.602293i −0.989531 0.144323i \(-0.953900\pi\)
−0.665256 + 0.746616i \(0.731677\pi\)
\(884\) −9.45596 + 53.6274i −0.318039 + 1.80369i
\(885\) 0 0
\(886\) 28.8493 + 34.3813i 0.969211 + 1.15506i
\(887\) 31.2761i 1.05015i 0.851056 + 0.525075i \(0.175963\pi\)
−0.851056 + 0.525075i \(0.824037\pi\)
\(888\) −47.6723 80.8337i −1.59978 2.71260i
\(889\) 30.9215 1.03707
\(890\) 0 0
\(891\) 29.1360 + 24.4480i 0.976094 + 0.819040i
\(892\) −101.678 17.9286i −3.40443 0.600292i
\(893\) −58.6251 + 21.3378i −1.96181 + 0.714042i
\(894\) 12.3505i 0.413061i
\(895\) 0 0
\(896\) 15.7641 9.10142i 0.526642 0.304057i
\(897\) −64.0691 + 11.2971i −2.13921 + 0.377200i
\(898\) 35.9029 + 20.7286i 1.19810 + 0.691721i
\(899\) −10.4364 18.0763i −0.348072 0.602878i
\(900\) 0 0
\(901\) −28.1708 4.96726i −0.938504 0.165484i
\(902\) 6.72917 11.6553i 0.224057 0.388078i
\(903\) 20.3708 + 7.41438i 0.677899 + 0.246735i
\(904\) −25.6760 9.34532i −0.853973 0.310821i
\(905\) 0 0
\(906\) 17.9510 21.3932i 0.596382 0.710740i
\(907\) 33.3775 + 28.0070i 1.10828 + 0.929958i 0.997954 0.0639374i \(-0.0203658\pi\)
0.110327 + 0.993895i \(0.464810\pi\)
\(908\) 8.63222 + 48.9557i 0.286470 + 1.62465i
\(909\) 12.1673 + 4.42853i 0.403563 + 0.146885i
\(910\) 0 0
\(911\) 36.3275 + 20.9737i 1.20358 + 0.694889i 0.961350 0.275329i \(-0.0887869\pi\)
0.242233 + 0.970218i \(0.422120\pi\)
\(912\) −23.4482 + 132.981i −0.776447 + 4.40345i
\(913\) 22.0035 + 26.2228i 0.728210 + 0.867847i
\(914\) −24.3781 42.2241i −0.806355 1.39665i
\(915\) 0 0
\(916\) 8.69873 + 49.3329i 0.287414 + 1.63001i
\(917\) −16.2454 28.1378i −0.536470 0.929193i
\(918\) 8.79822 + 24.1729i 0.290385 + 0.797825i
\(919\) 43.9144i 1.44860i 0.689483 + 0.724302i \(0.257838\pi\)
−0.689483 + 0.724302i \(0.742162\pi\)
\(920\) 0 0
\(921\) 1.20762 6.84873i 0.0397923 0.225673i
\(922\) −31.0302 + 36.9803i −1.02192 + 1.21788i
\(923\) 23.5618 19.7707i 0.775546 0.650760i
\(924\) −87.2494 −2.87029
\(925\) 0 0
\(926\) −103.109 −3.38837
\(927\) 5.39398 4.52609i 0.177162 0.148656i
\(928\) −24.7192 + 29.4592i −0.811447 + 0.967045i
\(929\) −3.89742 + 22.1034i −0.127870 + 0.725188i 0.851691 + 0.524044i \(0.175577\pi\)
−0.979562 + 0.201144i \(0.935534\pi\)
\(930\) 0 0
\(931\) 3.48194i 0.114116i
\(932\) −11.3426 31.1635i −0.371539 1.02079i
\(933\) 16.3171 + 28.2620i 0.534197 + 0.925255i
\(934\) 2.23409 + 12.6702i 0.0731017 + 0.414580i
\(935\) 0 0
\(936\) −15.5380 26.9126i −0.507875 0.879666i
\(937\) −15.5470 18.5282i −0.507900 0.605291i 0.449776 0.893142i \(-0.351504\pi\)
−0.957675 + 0.287850i \(0.907060\pi\)
\(938\) −6.88140 + 39.0263i −0.224686 + 1.27425i
\(939\) 11.2304 + 6.48390i 0.366492 + 0.211594i
\(940\) 0 0
\(941\) −50.4649 18.3677i −1.64511 0.598771i −0.657188 0.753726i \(-0.728254\pi\)
−0.987921 + 0.154955i \(0.950477\pi\)
\(942\) −16.2464 92.1380i −0.529337 3.00202i
\(943\) 7.71447 + 6.47321i 0.251218 + 0.210797i
\(944\) 5.59663 6.66981i 0.182155 0.217084i
\(945\) 0 0
\(946\) −38.1850 13.8982i −1.24150 0.451870i
\(947\) −26.3867 9.60396i −0.857452 0.312087i −0.124377 0.992235i \(-0.539693\pi\)
−0.733075 + 0.680148i \(0.761915\pi\)
\(948\) −73.3030 + 126.964i −2.38077 + 4.12361i
\(949\) −14.9926 2.64360i −0.486680 0.0858148i
\(950\) 0 0
\(951\) 20.1931 + 34.9755i 0.654808 + 1.13416i
\(952\) −39.7066 22.9246i −1.28690 0.742992i
\(953\) 24.8303 4.37825i 0.804331 0.141825i 0.243657 0.969862i \(-0.421653\pi\)
0.560675 + 0.828036i \(0.310542\pi\)
\(954\) 23.6105 13.6315i 0.764417 0.441337i
\(955\) 0 0
\(956\) 89.1358i 2.88286i
\(957\) 19.1965 6.98697i 0.620536 0.225857i
\(958\) −3.11308 0.548919i −0.100579 0.0177348i
\(959\) 7.13123 + 5.98382i 0.230280 + 0.193228i
\(960\) 0 0
\(961\) −18.5763 −0.599235
\(962\) −25.5793 + 72.3552i −0.824708 + 2.33283i
\(963\) 13.2013i 0.425405i
\(964\) 23.0071 + 27.4188i 0.741009 + 0.883100i
\(965\) 0 0
\(966\) 15.8855 90.0914i 0.511109 2.89864i
\(967\) −13.0601 + 4.75348i −0.419983 + 0.152861i −0.543363 0.839498i \(-0.682849\pi\)
0.123379 + 0.992360i \(0.460627\pi\)
\(968\) 11.1584 0.358645
\(969\) 26.6935 9.71565i 0.857520 0.312112i
\(970\) 0 0
\(971\) 6.65366 + 37.7348i 0.213526 + 1.21097i 0.883446 + 0.468534i \(0.155218\pi\)
−0.669919 + 0.742434i \(0.733671\pi\)
\(972\) −36.0555 20.8167i −1.15648 0.667695i
\(973\) 41.5139 23.9681i 1.33087 0.768380i
\(974\) −46.3544 + 38.8960i −1.48529 + 1.24631i
\(975\) 0 0
\(976\) 66.2960 + 38.2760i 2.12208 + 1.22519i
\(977\) −7.53002 2.74070i −0.240907 0.0876828i 0.218745 0.975782i \(-0.429804\pi\)
−0.459652 + 0.888099i \(0.652026\pi\)
\(978\) 37.0130 101.692i 1.18354 3.25176i
\(979\) −46.1267 + 8.13339i −1.47422 + 0.259944i
\(980\) 0 0
\(981\) 1.38243 1.64752i 0.0441377 0.0526013i
\(982\) 11.1497 + 63.2329i 0.355800 + 2.01784i
\(983\) 7.33639 20.1566i 0.233995 0.642895i −0.766005 0.642834i \(-0.777758\pi\)
1.00000 6.07699e-5i \(-1.93437e-5\pi\)
\(984\) −7.62622 + 20.9529i −0.243115 + 0.667953i
\(985\) 0 0
\(986\) 17.6561 + 3.11325i 0.562286 + 0.0991462i
\(987\) 31.3877 + 37.4064i 0.999081 + 1.19066i
\(988\) 130.798 75.5161i 4.16123 2.40249i
\(989\) 15.2033 26.3329i 0.483437 0.837338i
\(990\) 0 0
\(991\) 21.8303 12.6037i 0.693462 0.400371i −0.111446 0.993771i \(-0.535548\pi\)
0.804908 + 0.593400i \(0.202215\pi\)
\(992\) 31.2402 + 85.8317i 0.991877 + 2.72516i
\(993\) −31.5730 −1.00194
\(994\) 14.7925 + 40.6420i 0.469188 + 1.28908i
\(995\) 0 0
\(996\) −72.5575 60.8829i −2.29907 1.92915i
\(997\) 33.9416 28.4804i 1.07494 0.901984i 0.0794515 0.996839i \(-0.474683\pi\)
0.995491 + 0.0948547i \(0.0302387\pi\)
\(998\) 1.05839i 0.0335029i
\(999\) 4.72838 + 25.4369i 0.149599 + 0.804789i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.ba.d.99.25 156
5.2 odd 4 925.2.bb.c.876.13 yes 78
5.3 odd 4 925.2.bb.d.876.1 yes 78
5.4 even 2 inner 925.2.ba.d.99.2 156
37.3 even 18 inner 925.2.ba.d.299.2 156
185.3 odd 36 925.2.bb.d.151.1 yes 78
185.77 odd 36 925.2.bb.c.151.13 78
185.114 even 18 inner 925.2.ba.d.299.25 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.ba.d.99.2 156 5.4 even 2 inner
925.2.ba.d.99.25 156 1.1 even 1 trivial
925.2.ba.d.299.2 156 37.3 even 18 inner
925.2.ba.d.299.25 156 185.114 even 18 inner
925.2.bb.c.151.13 78 185.77 odd 36
925.2.bb.c.876.13 yes 78 5.2 odd 4
925.2.bb.d.151.1 yes 78 185.3 odd 36
925.2.bb.d.876.1 yes 78 5.3 odd 4