gp: [N,k,chi] = [925,2,Mod(151,925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("925.151");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 13]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [78,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{78} - 3 T_{2}^{77} + 3 T_{2}^{76} - 6 T_{2}^{75} + 18 T_{2}^{74} - 63 T_{2}^{73} + \cdots + 86607387 \)
T2^78 - 3*T2^77 + 3*T2^76 - 6*T2^75 + 18*T2^74 - 63*T2^73 - 459*T2^72 + 1650*T2^71 - 2250*T2^70 + 5022*T2^69 - 6318*T2^68 + 29307*T2^67 + 172470*T2^66 - 673227*T2^65 + 966594*T2^64 - 2143638*T2^63 + 2915457*T2^62 - 10997298*T2^61 - 16584130*T2^60 + 123963474*T2^59 - 220015668*T2^58 + 439410711*T2^57 - 510650841*T2^56 + 1342640886*T2^55 + 1893076484*T2^54 - 14331486420*T2^53 + 28856284146*T2^52 - 57263271348*T2^51 + 84211875000*T2^50 - 213361093461*T2^49 + 131441202546*T2^48 + 491335080987*T2^47 - 1181355807189*T2^46 + 2194208692359*T2^45 - 1825083813144*T2^44 + 5304138200355*T2^43 + 369254478054*T2^42 - 15886763679282*T2^41 + 26994777240105*T2^40 - 31310512889415*T2^39 - 8621808456453*T2^38 - 82940072733597*T2^37 + 59245036592084*T2^36 + 34560529660935*T2^35 - 182323044231687*T2^34 + 353050685735013*T2^33 + 395444632499259*T2^32 + 741345317901651*T2^31 + 444927441664321*T2^30 + 644895124118586*T2^29 + 1263185006909250*T2^28 - 294443060061864*T2^27 - 67169438614443*T2^26 - 836364460229871*T2^25 + 973846292559296*T2^24 - 31262161652445*T2^23 - 1087732824170475*T2^22 - 281753372242440*T2^21 + 164489510042016*T2^20 + 1006676135778345*T2^19 - 362315275409125*T2^18 - 372344338931094*T2^17 + 175099343809533*T2^16 + 100499331667212*T2^15 + 101686820389929*T2^14 - 277392608378727*T2^13 + 139183439468676*T2^12 + 34446557765979*T2^11 - 80444986555875*T2^10 + 42368656806090*T2^9 - 4061436698268*T2^8 - 6547231492884*T2^7 + 4518885356812*T2^6 - 1595644782993*T2^5 + 353819603385*T2^4 - 65305516221*T2^3 + 11708810172*T2^2 - 1286054415*T2 + 86607387
acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\).