Properties

Label 925.2.bb.b.151.3
Level $925$
Weight $2$
Character 925.151
Analytic conductor $7.386$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(151,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.bb (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(12\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 151.3
Character \(\chi\) \(=\) 925.151
Dual form 925.2.bb.b.876.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.829311 + 0.988334i) q^{2} +(1.25448 - 1.05263i) q^{3} +(0.0582485 + 0.330344i) q^{4} +2.11280i q^{6} +(-2.68169 - 0.976055i) q^{7} +(-2.60945 - 1.50657i) q^{8} +(-0.0552654 + 0.313426i) q^{9} +(1.17577 - 2.03650i) q^{11} +(0.420801 + 0.353094i) q^{12} +(2.55154 - 0.449906i) q^{13} +(3.18862 - 1.84095i) q^{14} +(3.02262 - 1.10014i) q^{16} +(-6.62084 - 1.16743i) q^{17} +(-0.263937 - 0.314548i) q^{18} +(-4.53076 - 5.39955i) q^{19} +(-4.39154 + 1.59839i) q^{21} +(1.03766 + 2.85095i) q^{22} +(7.75287 - 4.47612i) q^{23} +(-4.85935 + 0.856835i) q^{24} +(-1.67136 + 2.89489i) q^{26} +(2.71699 + 4.70597i) q^{27} +(0.166229 - 0.942733i) q^{28} +(0.496364 + 0.286576i) q^{29} -4.07319i q^{31} +(0.641726 - 1.76313i) q^{32} +(-0.668701 - 3.79239i) q^{33} +(6.64455 - 5.57544i) q^{34} -0.106757 q^{36} +(5.55973 - 2.46767i) q^{37} +9.09397 q^{38} +(2.72726 - 3.25023i) q^{39} +(-1.54272 - 8.74921i) q^{41} +(2.06221 - 5.66587i) q^{42} +1.85159i q^{43} +(0.741232 + 0.269786i) q^{44} +(-2.00563 + 11.3745i) q^{46} +(-2.49863 - 4.32775i) q^{47} +(2.63375 - 4.56180i) q^{48} +(0.876457 + 0.735435i) q^{49} +(-9.53456 + 5.50478i) q^{51} +(0.297247 + 0.816680i) q^{52} +(-12.8323 + 4.67057i) q^{53} +(-6.90430 - 1.21742i) q^{54} +(5.52724 + 6.58711i) q^{56} +(-11.3675 - 2.00439i) q^{57} +(-0.694873 + 0.252913i) q^{58} +(-0.214282 - 0.588735i) q^{59} +(-2.25236 + 0.397151i) q^{61} +(4.02567 + 3.37794i) q^{62} +(0.454125 - 0.786568i) q^{63} +(4.42697 + 7.66773i) q^{64} +(4.30271 + 2.48417i) q^{66} +(11.5716 + 4.21171i) q^{67} -2.25516i q^{68} +(5.01409 - 13.7761i) q^{69} +(-2.29519 + 1.92589i) q^{71} +(0.616409 - 0.734608i) q^{72} -12.2346 q^{73} +(-2.17186 + 7.54134i) q^{74} +(1.51980 - 1.81123i) q^{76} +(-5.14079 + 4.31363i) q^{77} +(0.950560 + 5.39090i) q^{78} +(0.188725 - 0.518518i) q^{79} +(7.46485 + 2.71698i) q^{81} +(9.92654 + 5.73109i) q^{82} +(0.303143 - 1.71921i) q^{83} +(-0.783819 - 1.35761i) q^{84} +(-1.82999 - 1.53554i) q^{86} +(0.924336 - 0.162985i) q^{87} +(-6.13624 + 3.54276i) q^{88} +(-2.18420 - 6.00103i) q^{89} +(-7.28157 - 1.28394i) q^{91} +(1.93025 + 2.30039i) q^{92} +(-4.28756 - 5.10971i) q^{93} +(6.34940 + 1.11957i) q^{94} +(-1.05089 - 2.88730i) q^{96} +(2.90286 - 1.67596i) q^{97} +(-1.45371 + 0.256328i) q^{98} +(0.573311 + 0.481065i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 6 q^{2} - 6 q^{4} + 6 q^{7} + 18 q^{8} - 30 q^{12} + 30 q^{13} - 18 q^{14} - 18 q^{16} + 30 q^{18} - 18 q^{19} - 30 q^{22} - 30 q^{24} + 24 q^{27} - 30 q^{28} + 18 q^{29} + 36 q^{32} + 12 q^{33}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.829311 + 0.988334i −0.586411 + 0.698858i −0.974912 0.222591i \(-0.928549\pi\)
0.388501 + 0.921448i \(0.372993\pi\)
\(3\) 1.25448 1.05263i 0.724272 0.607736i −0.204292 0.978910i \(-0.565489\pi\)
0.928563 + 0.371174i \(0.121045\pi\)
\(4\) 0.0582485 + 0.330344i 0.0291243 + 0.165172i
\(5\) 0 0
\(6\) 2.11280i 0.862546i
\(7\) −2.68169 0.976055i −1.01358 0.368914i −0.218775 0.975775i \(-0.570206\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(8\) −2.60945 1.50657i −0.922580 0.532652i
\(9\) −0.0552654 + 0.313426i −0.0184218 + 0.104475i
\(10\) 0 0
\(11\) 1.17577 2.03650i 0.354509 0.614027i −0.632525 0.774540i \(-0.717981\pi\)
0.987034 + 0.160513i \(0.0513148\pi\)
\(12\) 0.420801 + 0.353094i 0.121475 + 0.101930i
\(13\) 2.55154 0.449906i 0.707671 0.124781i 0.191783 0.981437i \(-0.438573\pi\)
0.515888 + 0.856656i \(0.327462\pi\)
\(14\) 3.18862 1.84095i 0.852195 0.492015i
\(15\) 0 0
\(16\) 3.02262 1.10014i 0.755654 0.275035i
\(17\) −6.62084 1.16743i −1.60579 0.283144i −0.702342 0.711840i \(-0.747862\pi\)
−0.903449 + 0.428696i \(0.858973\pi\)
\(18\) −0.263937 0.314548i −0.0622105 0.0741396i
\(19\) −4.53076 5.39955i −1.03943 1.23874i −0.970495 0.241121i \(-0.922485\pi\)
−0.0689331 0.997621i \(-0.521960\pi\)
\(20\) 0 0
\(21\) −4.39154 + 1.59839i −0.958312 + 0.348797i
\(22\) 1.03766 + 2.85095i 0.221230 + 0.607824i
\(23\) 7.75287 4.47612i 1.61659 0.933336i 0.628790 0.777575i \(-0.283550\pi\)
0.987795 0.155761i \(-0.0497829\pi\)
\(24\) −4.85935 + 0.856835i −0.991911 + 0.174901i
\(25\) 0 0
\(26\) −1.67136 + 2.89489i −0.327782 + 0.567734i
\(27\) 2.71699 + 4.70597i 0.522886 + 0.905665i
\(28\) 0.166229 0.942733i 0.0314144 0.178160i
\(29\) 0.496364 + 0.286576i 0.0921726 + 0.0532159i 0.545378 0.838190i \(-0.316386\pi\)
−0.453205 + 0.891406i \(0.649720\pi\)
\(30\) 0 0
\(31\) 4.07319i 0.731566i −0.930700 0.365783i \(-0.880801\pi\)
0.930700 0.365783i \(-0.119199\pi\)
\(32\) 0.641726 1.76313i 0.113442 0.311680i
\(33\) −0.668701 3.79239i −0.116406 0.660171i
\(34\) 6.64455 5.57544i 1.13953 0.956180i
\(35\) 0 0
\(36\) −0.106757 −0.0177929
\(37\) 5.55973 2.46767i 0.914014 0.405683i
\(38\) 9.09397 1.47524
\(39\) 2.72726 3.25023i 0.436712 0.520453i
\(40\) 0 0
\(41\) −1.54272 8.74921i −0.240933 1.36640i −0.829752 0.558133i \(-0.811518\pi\)
0.588819 0.808265i \(-0.299593\pi\)
\(42\) 2.06221 5.66587i 0.318205 0.874262i
\(43\) 1.85159i 0.282365i 0.989984 + 0.141182i \(0.0450904\pi\)
−0.989984 + 0.141182i \(0.954910\pi\)
\(44\) 0.741232 + 0.269786i 0.111745 + 0.0406718i
\(45\) 0 0
\(46\) −2.00563 + 11.3745i −0.295715 + 1.67708i
\(47\) −2.49863 4.32775i −0.364462 0.631267i 0.624227 0.781243i \(-0.285414\pi\)
−0.988690 + 0.149975i \(0.952081\pi\)
\(48\) 2.63375 4.56180i 0.380150 0.658439i
\(49\) 0.876457 + 0.735435i 0.125208 + 0.105062i
\(50\) 0 0
\(51\) −9.53456 + 5.50478i −1.33511 + 0.770824i
\(52\) 0.297247 + 0.816680i 0.0412208 + 0.113253i
\(53\) −12.8323 + 4.67057i −1.76265 + 0.641552i −0.999986 0.00524360i \(-0.998331\pi\)
−0.762663 + 0.646796i \(0.776109\pi\)
\(54\) −6.90430 1.21742i −0.939557 0.165669i
\(55\) 0 0
\(56\) 5.52724 + 6.58711i 0.738609 + 0.880239i
\(57\) −11.3675 2.00439i −1.50566 0.265488i
\(58\) −0.694873 + 0.252913i −0.0912413 + 0.0332091i
\(59\) −0.214282 0.588735i −0.0278971 0.0766467i 0.924962 0.380059i \(-0.124096\pi\)
−0.952859 + 0.303412i \(0.901874\pi\)
\(60\) 0 0
\(61\) −2.25236 + 0.397151i −0.288385 + 0.0508500i −0.315969 0.948769i \(-0.602330\pi\)
0.0275844 + 0.999619i \(0.491218\pi\)
\(62\) 4.02567 + 3.37794i 0.511260 + 0.428998i
\(63\) 0.454125 0.786568i 0.0572144 0.0990982i
\(64\) 4.42697 + 7.66773i 0.553371 + 0.958467i
\(65\) 0 0
\(66\) 4.30271 + 2.48417i 0.529627 + 0.305780i
\(67\) 11.5716 + 4.21171i 1.41369 + 0.514542i 0.932211 0.361914i \(-0.117877\pi\)
0.481481 + 0.876456i \(0.340099\pi\)
\(68\) 2.25516i 0.273478i
\(69\) 5.01409 13.7761i 0.603625 1.65845i
\(70\) 0 0
\(71\) −2.29519 + 1.92589i −0.272389 + 0.228562i −0.768742 0.639559i \(-0.779117\pi\)
0.496353 + 0.868121i \(0.334672\pi\)
\(72\) 0.616409 0.734608i 0.0726445 0.0865743i
\(73\) −12.2346 −1.43196 −0.715978 0.698123i \(-0.754019\pi\)
−0.715978 + 0.698123i \(0.754019\pi\)
\(74\) −2.17186 + 7.54134i −0.252474 + 0.876662i
\(75\) 0 0
\(76\) 1.51980 1.81123i 0.174333 0.207762i
\(77\) −5.14079 + 4.31363i −0.585847 + 0.491584i
\(78\) 0.950560 + 5.39090i 0.107630 + 0.610399i
\(79\) 0.188725 0.518518i 0.0212332 0.0583378i −0.928623 0.371024i \(-0.879007\pi\)
0.949856 + 0.312686i \(0.101229\pi\)
\(80\) 0 0
\(81\) 7.46485 + 2.71698i 0.829428 + 0.301887i
\(82\) 9.92654 + 5.73109i 1.09620 + 0.632893i
\(83\) 0.303143 1.71921i 0.0332743 0.188708i −0.963640 0.267203i \(-0.913900\pi\)
0.996914 + 0.0784954i \(0.0250116\pi\)
\(84\) −0.783819 1.35761i −0.0855216 0.148128i
\(85\) 0 0
\(86\) −1.82999 1.53554i −0.197333 0.165582i
\(87\) 0.924336 0.162985i 0.0990992 0.0174739i
\(88\) −6.13624 + 3.54276i −0.654126 + 0.377660i
\(89\) −2.18420 6.00103i −0.231524 0.636108i 0.768469 0.639887i \(-0.221019\pi\)
−0.999993 + 0.00377986i \(0.998797\pi\)
\(90\) 0 0
\(91\) −7.28157 1.28394i −0.763316 0.134593i
\(92\) 1.93025 + 2.30039i 0.201243 + 0.239832i
\(93\) −4.28756 5.10971i −0.444599 0.529852i
\(94\) 6.34940 + 1.11957i 0.654891 + 0.115475i
\(95\) 0 0
\(96\) −1.05089 2.88730i −0.107256 0.294684i
\(97\) 2.90286 1.67596i 0.294740 0.170168i −0.345337 0.938479i \(-0.612235\pi\)
0.640078 + 0.768310i \(0.278902\pi\)
\(98\) −1.45371 + 0.256328i −0.146847 + 0.0258931i
\(99\) 0.573311 + 0.481065i 0.0576199 + 0.0483489i
\(100\) 0 0
\(101\) −0.441106 0.764018i −0.0438917 0.0760226i 0.843245 0.537529i \(-0.180642\pi\)
−0.887137 + 0.461507i \(0.847309\pi\)
\(102\) 2.46655 13.9885i 0.244225 1.38507i
\(103\) 4.32531 + 2.49722i 0.426186 + 0.246059i 0.697720 0.716370i \(-0.254198\pi\)
−0.271535 + 0.962429i \(0.587531\pi\)
\(104\) −7.33594 2.67006i −0.719348 0.261821i
\(105\) 0 0
\(106\) 6.02587 16.5559i 0.585284 1.60805i
\(107\) −1.31674 7.46760i −0.127294 0.721920i −0.979919 0.199397i \(-0.936102\pi\)
0.852625 0.522524i \(-0.175009\pi\)
\(108\) −1.39633 + 1.17166i −0.134362 + 0.112743i
\(109\) 2.70074 3.21862i 0.258684 0.308288i −0.621034 0.783784i \(-0.713287\pi\)
0.879718 + 0.475496i \(0.157731\pi\)
\(110\) 0 0
\(111\) 4.37700 8.94797i 0.415446 0.849304i
\(112\) −9.17951 −0.867382
\(113\) 8.85914 10.5579i 0.833398 0.993205i −0.166576 0.986029i \(-0.553271\pi\)
0.999974 0.00717669i \(-0.00228443\pi\)
\(114\) 11.4082 9.57259i 1.06847 0.896555i
\(115\) 0 0
\(116\) −0.0657562 + 0.180664i −0.00610531 + 0.0167742i
\(117\) 0.824583i 0.0762327i
\(118\) 0.759573 + 0.276462i 0.0699243 + 0.0254504i
\(119\) 16.6156 + 9.59300i 1.52315 + 0.879389i
\(120\) 0 0
\(121\) 2.73512 + 4.73736i 0.248647 + 0.430669i
\(122\) 1.47539 2.55544i 0.133575 0.231359i
\(123\) −11.1450 9.35176i −1.00491 0.843220i
\(124\) 1.34555 0.237257i 0.120834 0.0213063i
\(125\) 0 0
\(126\) 0.400781 + 1.10114i 0.0357044 + 0.0980970i
\(127\) −7.38236 + 2.68696i −0.655078 + 0.238429i −0.648110 0.761547i \(-0.724440\pi\)
−0.00696839 + 0.999976i \(0.502218\pi\)
\(128\) −7.55406 1.33198i −0.667691 0.117732i
\(129\) 1.94904 + 2.32278i 0.171603 + 0.204509i
\(130\) 0 0
\(131\) 0.191601 + 0.0337844i 0.0167402 + 0.00295175i 0.182012 0.983296i \(-0.441739\pi\)
−0.165272 + 0.986248i \(0.552850\pi\)
\(132\) 1.21384 0.441803i 0.105651 0.0384540i
\(133\) 6.87983 + 18.9022i 0.596557 + 1.63903i
\(134\) −13.7590 + 7.94376i −1.18860 + 0.686237i
\(135\) 0 0
\(136\) 15.5180 + 13.0211i 1.33065 + 1.11655i
\(137\) 6.65526 11.5272i 0.568597 0.984839i −0.428108 0.903727i \(-0.640820\pi\)
0.996705 0.0811112i \(-0.0258469\pi\)
\(138\) 9.45714 + 16.3802i 0.805045 + 1.39438i
\(139\) −1.77564 + 10.0702i −0.150608 + 0.854140i 0.812084 + 0.583540i \(0.198333\pi\)
−0.962692 + 0.270599i \(0.912778\pi\)
\(140\) 0 0
\(141\) −7.68999 2.79893i −0.647614 0.235712i
\(142\) 3.86558i 0.324392i
\(143\) 2.08380 5.72520i 0.174256 0.478765i
\(144\) 0.177767 + 1.00816i 0.0148139 + 0.0840137i
\(145\) 0 0
\(146\) 10.1463 12.0919i 0.839715 1.00073i
\(147\) 1.87364 0.154535
\(148\) 1.13903 + 1.69288i 0.0936274 + 0.139154i
\(149\) 11.8503 0.970814 0.485407 0.874288i \(-0.338671\pi\)
0.485407 + 0.874288i \(0.338671\pi\)
\(150\) 0 0
\(151\) −10.0127 + 8.40164i −0.814821 + 0.683716i −0.951753 0.306864i \(-0.900720\pi\)
0.136932 + 0.990580i \(0.456276\pi\)
\(152\) 3.68801 + 20.9158i 0.299137 + 1.69649i
\(153\) 0.731807 2.01062i 0.0591631 0.162549i
\(154\) 8.65816i 0.697694i
\(155\) 0 0
\(156\) 1.23255 + 0.711614i 0.0986831 + 0.0569747i
\(157\) −0.223084 + 1.26517i −0.0178040 + 0.100972i −0.992415 0.122934i \(-0.960770\pi\)
0.974611 + 0.223906i \(0.0718808\pi\)
\(158\) 0.355957 + 0.616536i 0.0283184 + 0.0490489i
\(159\) −11.1814 + 19.3668i −0.886743 + 1.53588i
\(160\) 0 0
\(161\) −25.1597 + 4.43634i −1.98286 + 0.349632i
\(162\) −8.87597 + 5.12454i −0.697362 + 0.402622i
\(163\) 4.49222 + 12.3423i 0.351857 + 0.966720i 0.981773 + 0.190057i \(0.0608672\pi\)
−0.629916 + 0.776664i \(0.716911\pi\)
\(164\) 2.80039 1.01926i 0.218674 0.0795907i
\(165\) 0 0
\(166\) 1.44775 + 1.72537i 0.112368 + 0.133914i
\(167\) 3.40703 + 4.06035i 0.263644 + 0.314199i 0.881585 0.472026i \(-0.156477\pi\)
−0.617940 + 0.786225i \(0.712033\pi\)
\(168\) 13.8676 + 2.44523i 1.06991 + 0.188653i
\(169\) −5.90805 + 2.15035i −0.454465 + 0.165412i
\(170\) 0 0
\(171\) 1.94275 1.12165i 0.148566 0.0857746i
\(172\) −0.611662 + 0.107852i −0.0466388 + 0.00822368i
\(173\) −8.41510 7.06111i −0.639788 0.536846i 0.264165 0.964478i \(-0.414904\pi\)
−0.903953 + 0.427631i \(0.859348\pi\)
\(174\) −0.605478 + 1.04872i −0.0459011 + 0.0795031i
\(175\) 0 0
\(176\) 1.31347 7.44907i 0.0990066 0.561495i
\(177\) −0.888531 0.512994i −0.0667861 0.0385590i
\(178\) 7.74240 + 2.81800i 0.580317 + 0.211218i
\(179\) 23.6348i 1.76655i 0.468857 + 0.883274i \(0.344666\pi\)
−0.468857 + 0.883274i \(0.655334\pi\)
\(180\) 0 0
\(181\) 1.23808 + 7.02152i 0.0920260 + 0.521905i 0.995618 + 0.0935116i \(0.0298092\pi\)
−0.903592 + 0.428394i \(0.859080\pi\)
\(182\) 7.30765 6.13184i 0.541679 0.454522i
\(183\) −2.40747 + 2.86912i −0.177966 + 0.212091i
\(184\) −26.9743 −1.98857
\(185\) 0 0
\(186\) 8.60582 0.631009
\(187\) −10.1621 + 12.1107i −0.743125 + 0.885622i
\(188\) 1.28411 1.07749i 0.0936530 0.0785842i
\(189\) −2.69285 15.2719i −0.195876 1.11087i
\(190\) 0 0
\(191\) 22.0138i 1.59286i −0.604729 0.796431i \(-0.706719\pi\)
0.604729 0.796431i \(-0.293281\pi\)
\(192\) 13.6248 + 4.95903i 0.983286 + 0.357887i
\(193\) 8.88195 + 5.12800i 0.639337 + 0.369121i 0.784359 0.620307i \(-0.212992\pi\)
−0.145022 + 0.989428i \(0.546325\pi\)
\(194\) −0.750957 + 4.25889i −0.0539155 + 0.305770i
\(195\) 0 0
\(196\) −0.191894 + 0.332370i −0.0137067 + 0.0237407i
\(197\) −15.4027 12.9244i −1.09740 0.920826i −0.100151 0.994972i \(-0.531933\pi\)
−0.997247 + 0.0741458i \(0.976377\pi\)
\(198\) −0.950906 + 0.167670i −0.0675779 + 0.0119158i
\(199\) −10.1954 + 5.88631i −0.722732 + 0.417270i −0.815757 0.578394i \(-0.803680\pi\)
0.0930253 + 0.995664i \(0.470346\pi\)
\(200\) 0 0
\(201\) 18.9496 6.89710i 1.33660 0.486484i
\(202\) 1.12092 + 0.197648i 0.0788676 + 0.0139065i
\(203\) −1.05138 1.25299i −0.0737925 0.0879424i
\(204\) −2.37385 2.82904i −0.166202 0.198072i
\(205\) 0 0
\(206\) −6.05512 + 2.20388i −0.421880 + 0.153552i
\(207\) 0.974466 + 2.67732i 0.0677300 + 0.186087i
\(208\) 7.21737 4.16695i 0.500435 0.288926i
\(209\) −16.3233 + 2.87824i −1.12911 + 0.199092i
\(210\) 0 0
\(211\) 7.26159 12.5774i 0.499909 0.865867i −0.500091 0.865973i \(-0.666700\pi\)
1.00000 0.000105566i \(3.36028e-5\pi\)
\(212\) −2.29036 3.96701i −0.157302 0.272456i
\(213\) −0.852008 + 4.83198i −0.0583786 + 0.331081i
\(214\) 8.47247 + 4.89158i 0.579166 + 0.334382i
\(215\) 0 0
\(216\) 16.3733i 1.11406i
\(217\) −3.97565 + 10.9230i −0.269885 + 0.741502i
\(218\) 0.941316 + 5.33847i 0.0637540 + 0.361567i
\(219\) −15.3481 + 12.8785i −1.03713 + 0.870251i
\(220\) 0 0
\(221\) −17.4186 −1.17170
\(222\) 5.21369 + 11.7466i 0.349920 + 0.788379i
\(223\) −8.41603 −0.563579 −0.281789 0.959476i \(-0.590928\pi\)
−0.281789 + 0.959476i \(0.590928\pi\)
\(224\) −3.44182 + 4.10180i −0.229966 + 0.274063i
\(225\) 0 0
\(226\) 3.08776 + 17.5116i 0.205395 + 1.16485i
\(227\) −4.53186 + 12.4512i −0.300790 + 0.826413i 0.693573 + 0.720386i \(0.256035\pi\)
−0.994363 + 0.106027i \(0.966187\pi\)
\(228\) 3.87193i 0.256425i
\(229\) −0.694444 0.252757i −0.0458902 0.0167026i 0.318973 0.947764i \(-0.396662\pi\)
−0.364863 + 0.931061i \(0.618884\pi\)
\(230\) 0 0
\(231\) −1.90833 + 10.8227i −0.125559 + 0.712081i
\(232\) −0.863492 1.49561i −0.0566911 0.0981918i
\(233\) −6.83794 + 11.8437i −0.447968 + 0.775904i −0.998254 0.0590727i \(-0.981186\pi\)
0.550285 + 0.834977i \(0.314519\pi\)
\(234\) −0.814963 0.683835i −0.0532758 0.0447037i
\(235\) 0 0
\(236\) 0.182003 0.105080i 0.0118474 0.00684010i
\(237\) −0.309056 0.849126i −0.0200754 0.0551566i
\(238\) −23.2605 + 8.46615i −1.50776 + 0.548779i
\(239\) 21.2667 + 3.74990i 1.37563 + 0.242561i 0.812092 0.583530i \(-0.198329\pi\)
0.563538 + 0.826090i \(0.309440\pi\)
\(240\) 0 0
\(241\) 11.7564 + 14.0107i 0.757296 + 0.902510i 0.997674 0.0681692i \(-0.0217158\pi\)
−0.240378 + 0.970679i \(0.577271\pi\)
\(242\) −6.95036 1.22554i −0.446786 0.0787804i
\(243\) −3.09439 + 1.12626i −0.198505 + 0.0722499i
\(244\) −0.262393 0.720919i −0.0167980 0.0461521i
\(245\) 0 0
\(246\) 18.4853 3.25946i 1.17858 0.207816i
\(247\) −13.9897 11.7388i −0.890145 0.746920i
\(248\) −6.13653 + 10.6288i −0.389670 + 0.674928i
\(249\) −1.42941 2.47581i −0.0905850 0.156898i
\(250\) 0 0
\(251\) −17.0537 9.84598i −1.07642 0.621473i −0.146493 0.989212i \(-0.546799\pi\)
−0.929929 + 0.367739i \(0.880132\pi\)
\(252\) 0.286290 + 0.104201i 0.0180346 + 0.00656405i
\(253\) 21.0516i 1.32350i
\(254\) 3.46666 9.52456i 0.217517 0.597624i
\(255\) 0 0
\(256\) −5.98391 + 5.02110i −0.373994 + 0.313818i
\(257\) 2.23742 2.66645i 0.139566 0.166329i −0.691734 0.722153i \(-0.743153\pi\)
0.831300 + 0.555824i \(0.187597\pi\)
\(258\) −3.91204 −0.243553
\(259\) −17.3180 + 1.19093i −1.07609 + 0.0740005i
\(260\) 0 0
\(261\) −0.117252 + 0.139736i −0.00725772 + 0.00864941i
\(262\) −0.192287 + 0.161348i −0.0118795 + 0.00996809i
\(263\) −3.59770 20.4036i −0.221843 1.25814i −0.868628 0.495464i \(-0.834998\pi\)
0.646785 0.762673i \(-0.276113\pi\)
\(264\) −3.96855 + 10.9035i −0.244247 + 0.671064i
\(265\) 0 0
\(266\) −24.3872 8.87621i −1.49527 0.544235i
\(267\) −9.05688 5.22899i −0.554272 0.320009i
\(268\) −0.717285 + 4.06793i −0.0438152 + 0.248488i
\(269\) −3.40112 5.89091i −0.207370 0.359175i 0.743515 0.668719i \(-0.233157\pi\)
−0.950885 + 0.309544i \(0.899824\pi\)
\(270\) 0 0
\(271\) 15.4121 + 12.9323i 0.936219 + 0.785581i 0.976923 0.213590i \(-0.0685156\pi\)
−0.0407041 + 0.999171i \(0.512960\pi\)
\(272\) −21.2966 + 3.75517i −1.29130 + 0.227690i
\(273\) −10.4861 + 6.05414i −0.634646 + 0.366413i
\(274\) 5.87349 + 16.1373i 0.354830 + 0.974889i
\(275\) 0 0
\(276\) 4.84291 + 0.853936i 0.291509 + 0.0514009i
\(277\) −7.24002 8.62832i −0.435011 0.518426i 0.503350 0.864082i \(-0.332101\pi\)
−0.938361 + 0.345657i \(0.887656\pi\)
\(278\) −8.48012 10.1062i −0.508604 0.606131i
\(279\) 1.27664 + 0.225106i 0.0764305 + 0.0134768i
\(280\) 0 0
\(281\) 5.88669 + 16.1735i 0.351170 + 0.964833i 0.981995 + 0.188907i \(0.0604945\pi\)
−0.630825 + 0.775925i \(0.717283\pi\)
\(282\) 9.14367 5.27910i 0.544497 0.314366i
\(283\) 21.6004 3.80874i 1.28401 0.226406i 0.510330 0.859979i \(-0.329523\pi\)
0.773683 + 0.633573i \(0.218412\pi\)
\(284\) −0.769899 0.646022i −0.0456851 0.0383344i
\(285\) 0 0
\(286\) 3.93029 + 6.80746i 0.232403 + 0.402534i
\(287\) −4.40261 + 24.9684i −0.259878 + 1.47384i
\(288\) 0.517144 + 0.298573i 0.0304730 + 0.0175936i
\(289\) 26.4979 + 9.64445i 1.55870 + 0.567321i
\(290\) 0 0
\(291\) 1.87739 5.15809i 0.110055 0.302373i
\(292\) −0.712650 4.04164i −0.0417047 0.236519i
\(293\) −17.9516 + 15.0632i −1.04874 + 0.880001i −0.992961 0.118442i \(-0.962210\pi\)
−0.0557832 + 0.998443i \(0.517766\pi\)
\(294\) −1.55383 + 1.85178i −0.0906210 + 0.107998i
\(295\) 0 0
\(296\) −18.2256 1.93684i −1.05934 0.112576i
\(297\) 12.7783 0.741471
\(298\) −9.82757 + 11.7120i −0.569296 + 0.678461i
\(299\) 17.7679 14.9091i 1.02755 0.862214i
\(300\) 0 0
\(301\) 1.80725 4.96539i 0.104168 0.286200i
\(302\) 16.8635i 0.970383i
\(303\) −1.35758 0.494120i −0.0779912 0.0283865i
\(304\) −19.6350 11.3363i −1.12615 0.650181i
\(305\) 0 0
\(306\) 1.38027 + 2.39070i 0.0789049 + 0.136667i
\(307\) 5.85992 10.1497i 0.334443 0.579273i −0.648934 0.760844i \(-0.724785\pi\)
0.983378 + 0.181571i \(0.0581183\pi\)
\(308\) −1.72443 1.44697i −0.0982583 0.0824485i
\(309\) 8.05465 1.42025i 0.458213 0.0807953i
\(310\) 0 0
\(311\) −4.31379 11.8520i −0.244612 0.672067i −0.999862 0.0166295i \(-0.994706\pi\)
0.755249 0.655438i \(-0.227516\pi\)
\(312\) −12.0133 + 4.37250i −0.680122 + 0.247544i
\(313\) 28.6761 + 5.05637i 1.62087 + 0.285803i 0.909089 0.416602i \(-0.136779\pi\)
0.711778 + 0.702404i \(0.247890\pi\)
\(314\) −1.06541 1.26970i −0.0601244 0.0716534i
\(315\) 0 0
\(316\) 0.182282 + 0.0321413i 0.0102542 + 0.00180809i
\(317\) 0.114150 0.0415473i 0.00641132 0.00233353i −0.338812 0.940854i \(-0.610025\pi\)
0.345224 + 0.938520i \(0.387803\pi\)
\(318\) −9.86797 27.1120i −0.553368 1.52037i
\(319\) 1.16722 0.673897i 0.0653520 0.0377310i
\(320\) 0 0
\(321\) −9.51244 7.98189i −0.530933 0.445505i
\(322\) 16.4806 28.5453i 0.918430 1.59077i
\(323\) 23.6939 + 41.0390i 1.31836 + 2.28347i
\(324\) −0.462722 + 2.62423i −0.0257068 + 0.145790i
\(325\) 0 0
\(326\) −15.9237 5.79576i −0.881933 0.320997i
\(327\) 6.88056i 0.380496i
\(328\) −9.15562 + 25.1549i −0.505534 + 1.38894i
\(329\) 2.47642 + 14.0445i 0.136529 + 0.774297i
\(330\) 0 0
\(331\) 16.9850 20.2419i 0.933579 1.11260i −0.0598575 0.998207i \(-0.519065\pi\)
0.993436 0.114389i \(-0.0364909\pi\)
\(332\) 0.585589 0.0321384
\(333\) 0.466171 + 1.87894i 0.0255460 + 0.102965i
\(334\) −6.83847 −0.374184
\(335\) 0 0
\(336\) −11.5155 + 9.66263i −0.628221 + 0.527140i
\(337\) 5.42237 + 30.7518i 0.295375 + 1.67516i 0.665673 + 0.746244i \(0.268145\pi\)
−0.370298 + 0.928913i \(0.620744\pi\)
\(338\) 2.77434 7.62244i 0.150904 0.414606i
\(339\) 22.5701i 1.22584i
\(340\) 0 0
\(341\) −8.29504 4.78914i −0.449201 0.259347i
\(342\) −0.502582 + 2.85028i −0.0271765 + 0.154126i
\(343\) 8.35571 + 14.4725i 0.451166 + 0.781443i
\(344\) 2.78955 4.83164i 0.150402 0.260504i
\(345\) 0 0
\(346\) 13.9575 2.46108i 0.750358 0.132308i
\(347\) 2.40327 1.38753i 0.129014 0.0744863i −0.434104 0.900863i \(-0.642935\pi\)
0.563118 + 0.826376i \(0.309602\pi\)
\(348\) 0.107682 + 0.295855i 0.00577238 + 0.0158595i
\(349\) −18.2247 + 6.63323i −0.975544 + 0.355069i −0.780106 0.625647i \(-0.784835\pi\)
−0.195438 + 0.980716i \(0.562613\pi\)
\(350\) 0 0
\(351\) 9.04977 + 10.7851i 0.483041 + 0.575666i
\(352\) −2.83608 3.37991i −0.151164 0.180150i
\(353\) −32.5635 5.74182i −1.73318 0.305606i −0.784098 0.620637i \(-0.786874\pi\)
−0.949082 + 0.315030i \(0.897985\pi\)
\(354\) 1.24388 0.452734i 0.0661113 0.0240626i
\(355\) 0 0
\(356\) 1.85518 1.07109i 0.0983242 0.0567675i
\(357\) 30.9417 5.45586i 1.63761 0.288755i
\(358\) −23.3591 19.6006i −1.23457 1.03592i
\(359\) 2.73471 4.73666i 0.144332 0.249991i −0.784791 0.619760i \(-0.787230\pi\)
0.929124 + 0.369769i \(0.120563\pi\)
\(360\) 0 0
\(361\) −5.32804 + 30.2168i −0.280423 + 1.59036i
\(362\) −7.96636 4.59938i −0.418703 0.241738i
\(363\) 8.41783 + 3.06384i 0.441821 + 0.160810i
\(364\) 2.48021i 0.129998i
\(365\) 0 0
\(366\) −0.839100 4.75878i −0.0438605 0.248745i
\(367\) −1.99764 + 1.67622i −0.104276 + 0.0874978i −0.693435 0.720519i \(-0.743904\pi\)
0.589159 + 0.808017i \(0.299459\pi\)
\(368\) 18.5096 22.0588i 0.964878 1.14990i
\(369\) 2.82749 0.147193
\(370\) 0 0
\(371\) 38.9709 2.02327
\(372\) 1.43822 1.71400i 0.0745682 0.0888669i
\(373\) 9.88776 8.29681i 0.511969 0.429593i −0.349853 0.936805i \(-0.613768\pi\)
0.861821 + 0.507212i \(0.169324\pi\)
\(374\) −3.54189 20.0871i −0.183147 1.03868i
\(375\) 0 0
\(376\) 15.0574i 0.776526i
\(377\) 1.39543 + 0.507894i 0.0718682 + 0.0261579i
\(378\) 17.3269 + 10.0037i 0.891201 + 0.514535i
\(379\) 0.171916 0.974984i 0.00883073 0.0500816i −0.980074 0.198633i \(-0.936350\pi\)
0.988905 + 0.148551i \(0.0474610\pi\)
\(380\) 0 0
\(381\) −6.43262 + 11.1416i −0.329553 + 0.570802i
\(382\) 21.7570 + 18.2563i 1.11318 + 0.934072i
\(383\) −1.25724 + 0.221686i −0.0642422 + 0.0113276i −0.205677 0.978620i \(-0.565940\pi\)
0.141435 + 0.989948i \(0.454828\pi\)
\(384\) −10.8785 + 6.28069i −0.555140 + 0.320510i
\(385\) 0 0
\(386\) −12.4341 + 4.52563i −0.632878 + 0.230349i
\(387\) −0.580336 0.102329i −0.0295001 0.00520167i
\(388\) 0.722732 + 0.861318i 0.0366912 + 0.0437268i
\(389\) 11.7099 + 13.9554i 0.593718 + 0.707565i 0.976316 0.216350i \(-0.0694151\pi\)
−0.382598 + 0.923915i \(0.624971\pi\)
\(390\) 0 0
\(391\) −56.5561 + 20.5847i −2.86017 + 1.04102i
\(392\) −1.17909 3.23952i −0.0595530 0.163621i
\(393\) 0.275921 0.159303i 0.0139184 0.00803577i
\(394\) 25.5473 4.50467i 1.28705 0.226942i
\(395\) 0 0
\(396\) −0.125522 + 0.217411i −0.00630774 + 0.0109253i
\(397\) 3.13082 + 5.42274i 0.157131 + 0.272160i 0.933833 0.357709i \(-0.116442\pi\)
−0.776702 + 0.629869i \(0.783109\pi\)
\(398\) 2.63750 14.9580i 0.132206 0.749778i
\(399\) 28.5276 + 16.4704i 1.42817 + 0.824552i
\(400\) 0 0
\(401\) 13.5132i 0.674817i −0.941358 0.337409i \(-0.890450\pi\)
0.941358 0.337409i \(-0.109550\pi\)
\(402\) −8.89849 + 24.4484i −0.443816 + 1.21938i
\(403\) −1.83255 10.3929i −0.0912858 0.517708i
\(404\) 0.226695 0.190220i 0.0112785 0.00946378i
\(405\) 0 0
\(406\) 2.11029 0.104732
\(407\) 1.51157 14.2238i 0.0749257 0.705048i
\(408\) 33.1733 1.64232
\(409\) 10.5817 12.6108i 0.523234 0.623566i −0.438108 0.898922i \(-0.644351\pi\)
0.961342 + 0.275356i \(0.0887958\pi\)
\(410\) 0 0
\(411\) −3.78506 21.4662i −0.186703 1.05885i
\(412\) −0.572999 + 1.57430i −0.0282296 + 0.0775602i
\(413\) 1.78795i 0.0879794i
\(414\) −3.45422 1.25723i −0.169766 0.0617897i
\(415\) 0 0
\(416\) 0.844150 4.78741i 0.0413878 0.234722i
\(417\) 8.37265 + 14.5019i 0.410011 + 0.710159i
\(418\) 10.6924 18.5199i 0.522984 0.905836i
\(419\) −23.1506 19.4256i −1.13098 0.949005i −0.131874 0.991267i \(-0.542099\pi\)
−0.999107 + 0.0422615i \(0.986544\pi\)
\(420\) 0 0
\(421\) 0.289164 0.166949i 0.0140930 0.00813660i −0.492937 0.870065i \(-0.664077\pi\)
0.507030 + 0.861928i \(0.330743\pi\)
\(422\) 6.40860 + 17.6075i 0.311966 + 0.857119i
\(423\) 1.49452 0.543959i 0.0726658 0.0264482i
\(424\) 40.5217 + 7.14507i 1.96791 + 0.346996i
\(425\) 0 0
\(426\) −4.06903 4.84928i −0.197145 0.234948i
\(427\) 6.42776 + 1.13339i 0.311061 + 0.0548485i
\(428\) 2.39018 0.869954i 0.115534 0.0420508i
\(429\) −3.41244 9.37560i −0.164754 0.452658i
\(430\) 0 0
\(431\) 36.9030 6.50699i 1.77755 0.313431i 0.813984 0.580887i \(-0.197294\pi\)
0.963570 + 0.267456i \(0.0861831\pi\)
\(432\) 13.3897 + 11.2353i 0.644211 + 0.540557i
\(433\) 18.9049 32.7443i 0.908512 1.57359i 0.0923806 0.995724i \(-0.470552\pi\)
0.816132 0.577866i \(-0.196114\pi\)
\(434\) −7.49853 12.9878i −0.359941 0.623436i
\(435\) 0 0
\(436\) 1.22057 + 0.704694i 0.0584545 + 0.0337487i
\(437\) −59.2955 21.5818i −2.83649 1.03240i
\(438\) 25.8493i 1.23513i
\(439\) −4.40358 + 12.0987i −0.210171 + 0.577441i −0.999324 0.0367557i \(-0.988298\pi\)
0.789153 + 0.614197i \(0.210520\pi\)
\(440\) 0 0
\(441\) −0.278942 + 0.234060i −0.0132829 + 0.0111457i
\(442\) 14.4454 17.2154i 0.687099 0.818853i
\(443\) −1.16412 −0.0553089 −0.0276545 0.999618i \(-0.508804\pi\)
−0.0276545 + 0.999618i \(0.508804\pi\)
\(444\) 3.21086 + 0.924709i 0.152381 + 0.0438848i
\(445\) 0 0
\(446\) 6.97950 8.31784i 0.330489 0.393861i
\(447\) 14.8659 12.4740i 0.703133 0.589999i
\(448\) −4.38762 24.8834i −0.207296 1.17563i
\(449\) 7.22003 19.8369i 0.340734 0.936160i −0.644448 0.764649i \(-0.722913\pi\)
0.985182 0.171512i \(-0.0548652\pi\)
\(450\) 0 0
\(451\) −19.6316 7.14534i −0.924418 0.336461i
\(452\) 4.00378 + 2.31158i 0.188322 + 0.108728i
\(453\) −3.71685 + 21.0793i −0.174633 + 0.990393i
\(454\) −8.54760 14.8049i −0.401159 0.694827i
\(455\) 0 0
\(456\) 26.6431 + 22.3562i 1.24768 + 1.04693i
\(457\) 24.5449 4.32794i 1.14816 0.202452i 0.432990 0.901399i \(-0.357459\pi\)
0.715174 + 0.698946i \(0.246347\pi\)
\(458\) 0.825718 0.476729i 0.0385833 0.0222761i
\(459\) −12.4949 34.3294i −0.583211 1.60236i
\(460\) 0 0
\(461\) −16.2811 2.87080i −0.758288 0.133707i −0.218881 0.975752i \(-0.570241\pi\)
−0.539407 + 0.842045i \(0.681352\pi\)
\(462\) −9.11384 10.8615i −0.424014 0.505320i
\(463\) −22.0040 26.2233i −1.02261 1.21870i −0.975543 0.219810i \(-0.929456\pi\)
−0.0470695 0.998892i \(-0.514988\pi\)
\(464\) 1.81559 + 0.320138i 0.0842868 + 0.0148620i
\(465\) 0 0
\(466\) −6.03471 16.5802i −0.279553 0.768065i
\(467\) 23.4156 13.5190i 1.08355 0.625586i 0.151695 0.988427i \(-0.451527\pi\)
0.931851 + 0.362842i \(0.118193\pi\)
\(468\) −0.272396 + 0.0480308i −0.0125915 + 0.00222022i
\(469\) −26.9205 22.5890i −1.24307 1.04306i
\(470\) 0 0
\(471\) 1.05190 + 1.82195i 0.0484692 + 0.0839511i
\(472\) −0.327810 + 1.85910i −0.0150887 + 0.0855722i
\(473\) 3.77076 + 2.17705i 0.173380 + 0.100101i
\(474\) 1.09552 + 0.398738i 0.0503191 + 0.0183146i
\(475\) 0 0
\(476\) −2.20116 + 6.04763i −0.100890 + 0.277193i
\(477\) −0.754695 4.28009i −0.0345551 0.195972i
\(478\) −21.3429 + 17.9088i −0.976200 + 0.819129i
\(479\) −0.187936 + 0.223973i −0.00858700 + 0.0102336i −0.770321 0.637656i \(-0.779904\pi\)
0.761734 + 0.647890i \(0.224348\pi\)
\(480\) 0 0
\(481\) 13.0757 8.79773i 0.596199 0.401142i
\(482\) −23.5970 −1.07481
\(483\) −26.8924 + 32.0492i −1.22365 + 1.45829i
\(484\) −1.40564 + 1.17947i −0.0638928 + 0.0536124i
\(485\) 0 0
\(486\) 1.45308 3.99231i 0.0659131 0.181095i
\(487\) 19.2312i 0.871447i −0.900081 0.435723i \(-0.856493\pi\)
0.900081 0.435723i \(-0.143507\pi\)
\(488\) 6.47575 + 2.35698i 0.293143 + 0.106695i
\(489\) 18.6272 + 10.7544i 0.842352 + 0.486332i
\(490\) 0 0
\(491\) 14.6005 + 25.2888i 0.658912 + 1.14127i 0.980898 + 0.194524i \(0.0623162\pi\)
−0.321986 + 0.946744i \(0.604350\pi\)
\(492\) 2.44012 4.22641i 0.110009 0.190541i
\(493\) −2.95179 2.47685i −0.132942 0.111552i
\(494\) 23.2037 4.09143i 1.04398 0.184082i
\(495\) 0 0
\(496\) −4.48108 12.3117i −0.201207 0.552810i
\(497\) 8.03477 2.92442i 0.360409 0.131178i
\(498\) 3.63235 + 0.640481i 0.162769 + 0.0287006i
\(499\) 9.17239 + 10.9312i 0.410613 + 0.489349i 0.931225 0.364444i \(-0.118741\pi\)
−0.520613 + 0.853793i \(0.674296\pi\)
\(500\) 0 0
\(501\) 8.54809 + 1.50726i 0.381900 + 0.0673393i
\(502\) 23.8740 8.68941i 1.06555 0.387827i
\(503\) 7.60895 + 20.9054i 0.339267 + 0.932127i 0.985603 + 0.169075i \(0.0540779\pi\)
−0.646337 + 0.763052i \(0.723700\pi\)
\(504\) −2.37003 + 1.36834i −0.105570 + 0.0609507i
\(505\) 0 0
\(506\) 20.8060 + 17.4583i 0.924940 + 0.776117i
\(507\) −5.14798 + 8.91656i −0.228630 + 0.395998i
\(508\) −1.31763 2.28221i −0.0584605 0.101257i
\(509\) 1.69233 9.59770i 0.0750114 0.425411i −0.924057 0.382255i \(-0.875148\pi\)
0.999068 0.0431559i \(-0.0137412\pi\)
\(510\) 0 0
\(511\) 32.8095 + 11.9417i 1.45141 + 0.528269i
\(512\) 25.4193i 1.12339i
\(513\) 13.1001 35.9922i 0.578383 1.58909i
\(514\) 0.779829 + 4.42263i 0.0343968 + 0.195074i
\(515\) 0 0
\(516\) −0.653786 + 0.779152i −0.0287813 + 0.0343003i
\(517\) −11.7513 −0.516821
\(518\) 13.1850 18.1037i 0.579316 0.795429i
\(519\) −17.9893 −0.789642
\(520\) 0 0
\(521\) −4.73873 + 3.97627i −0.207608 + 0.174203i −0.740663 0.671877i \(-0.765488\pi\)
0.533055 + 0.846081i \(0.321044\pi\)
\(522\) −0.0408670 0.231768i −0.00178870 0.0101442i
\(523\) 1.60941 4.42181i 0.0703744 0.193352i −0.899519 0.436881i \(-0.856083\pi\)
0.969894 + 0.243529i \(0.0783052\pi\)
\(524\) 0.0652620i 0.00285098i
\(525\) 0 0
\(526\) 23.1491 + 13.3652i 1.00935 + 0.582748i
\(527\) −4.75517 + 26.9679i −0.207139 + 1.17474i
\(528\) −6.19339 10.7273i −0.269533 0.466845i
\(529\) 28.5713 49.4870i 1.24223 2.15161i
\(530\) 0 0
\(531\) 0.196367 0.0346248i 0.00852159 0.00150259i
\(532\) −5.84348 + 3.37374i −0.253347 + 0.146270i
\(533\) −7.87264 21.6299i −0.341002 0.936895i
\(534\) 12.6790 4.61476i 0.548672 0.199700i
\(535\) 0 0
\(536\) −23.8502 28.4236i −1.03017 1.22771i
\(537\) 24.8787 + 29.6493i 1.07360 + 1.27946i
\(538\) 8.64276 + 1.52395i 0.372616 + 0.0657023i
\(539\) 2.52823 0.920199i 0.108898 0.0396358i
\(540\) 0 0
\(541\) −5.57730 + 3.22006i −0.239787 + 0.138441i −0.615079 0.788466i \(-0.710876\pi\)
0.375292 + 0.926907i \(0.377542\pi\)
\(542\) −25.5629 + 4.50742i −1.09802 + 0.193610i
\(543\) 8.94421 + 7.50508i 0.383833 + 0.322074i
\(544\) −6.30710 + 10.9242i −0.270415 + 0.468372i
\(545\) 0 0
\(546\) 2.71270 15.3845i 0.116093 0.658396i
\(547\) 8.34206 + 4.81629i 0.356681 + 0.205930i 0.667624 0.744499i \(-0.267312\pi\)
−0.310943 + 0.950429i \(0.600645\pi\)
\(548\) 4.19561 + 1.52708i 0.179228 + 0.0652336i
\(549\) 0.727895i 0.0310658i
\(550\) 0 0
\(551\) −0.701526 3.97855i −0.0298860 0.169492i
\(552\) −33.8386 + 28.3940i −1.44027 + 1.20853i
\(553\) −1.01220 + 1.20630i −0.0430433 + 0.0512970i
\(554\) 14.5319 0.617401
\(555\) 0 0
\(556\) −3.43004 −0.145466
\(557\) 3.95310 4.71112i 0.167498 0.199616i −0.675766 0.737117i \(-0.736187\pi\)
0.843264 + 0.537500i \(0.180631\pi\)
\(558\) −1.28121 + 1.07506i −0.0542380 + 0.0455111i
\(559\) 0.833042 + 4.72441i 0.0352339 + 0.199821i
\(560\) 0 0
\(561\) 25.8895i 1.09306i
\(562\) −20.8668 7.59488i −0.880211 0.320371i
\(563\) 20.9781 + 12.1117i 0.884121 + 0.510448i 0.872015 0.489479i \(-0.162813\pi\)
0.0121061 + 0.999927i \(0.496146\pi\)
\(564\) 0.476678 2.70338i 0.0200718 0.113833i
\(565\) 0 0
\(566\) −14.1492 + 24.5071i −0.594734 + 1.03011i
\(567\) −17.3665 14.5722i −0.729323 0.611975i
\(568\) 8.89068 1.56767i 0.373045 0.0657778i
\(569\) 8.71366 5.03083i 0.365296 0.210904i −0.306106 0.951998i \(-0.599026\pi\)
0.671401 + 0.741094i \(0.265693\pi\)
\(570\) 0 0
\(571\) −12.1848 + 4.43491i −0.509918 + 0.185595i −0.584150 0.811646i \(-0.698572\pi\)
0.0742313 + 0.997241i \(0.476350\pi\)
\(572\) 2.01266 + 0.354887i 0.0841537 + 0.0148386i
\(573\) −23.1724 27.6158i −0.968040 1.15367i
\(574\) −21.0260 25.0578i −0.877609 1.04589i
\(575\) 0 0
\(576\) −2.64792 + 0.963765i −0.110330 + 0.0401569i
\(577\) −13.2466 36.3948i −0.551464 1.51513i −0.831712 0.555207i \(-0.812639\pi\)
0.280249 0.959927i \(-0.409583\pi\)
\(578\) −31.5069 + 18.1905i −1.31052 + 0.756627i
\(579\) 16.5401 2.91646i 0.687382 0.121204i
\(580\) 0 0
\(581\) −2.49098 + 4.31450i −0.103343 + 0.178996i
\(582\) 3.54098 + 6.13315i 0.146778 + 0.254227i
\(583\) −5.57624 + 31.6244i −0.230944 + 1.30975i
\(584\) 31.9257 + 18.4323i 1.32109 + 0.762734i
\(585\) 0 0
\(586\) 30.2342i 1.24897i
\(587\) 2.81090 7.72288i 0.116018 0.318757i −0.868069 0.496443i \(-0.834639\pi\)
0.984087 + 0.177686i \(0.0568612\pi\)
\(588\) 0.109137 + 0.618944i 0.00450072 + 0.0255248i
\(589\) −21.9934 + 18.4546i −0.906221 + 0.760410i
\(590\) 0 0
\(591\) −32.9270 −1.35443
\(592\) 14.0901 13.5753i 0.579101 0.557942i
\(593\) 36.7123 1.50759 0.753797 0.657107i \(-0.228220\pi\)
0.753797 + 0.657107i \(0.228220\pi\)
\(594\) −10.5972 + 12.6292i −0.434807 + 0.518182i
\(595\) 0 0
\(596\) 0.690262 + 3.91467i 0.0282743 + 0.160351i
\(597\) −6.59376 + 18.1162i −0.269865 + 0.741447i
\(598\) 29.9249i 1.22372i
\(599\) 2.30119 + 0.837565i 0.0940241 + 0.0342220i 0.388604 0.921405i \(-0.372957\pi\)
−0.294580 + 0.955627i \(0.595180\pi\)
\(600\) 0 0
\(601\) 2.87747 16.3190i 0.117375 0.665664i −0.868172 0.496263i \(-0.834705\pi\)
0.985547 0.169402i \(-0.0541836\pi\)
\(602\) 3.40869 + 5.90402i 0.138928 + 0.240630i
\(603\) −1.95956 + 3.39407i −0.0797996 + 0.138217i
\(604\) −3.35866 2.81825i −0.136662 0.114673i
\(605\) 0 0
\(606\) 1.61422 0.931968i 0.0655730 0.0378586i
\(607\) −3.64095 10.0034i −0.147781 0.406026i 0.843610 0.536956i \(-0.180426\pi\)
−0.991392 + 0.130930i \(0.958204\pi\)
\(608\) −12.4276 + 4.52328i −0.504006 + 0.183443i
\(609\) −2.63786 0.465126i −0.106892 0.0188479i
\(610\) 0 0
\(611\) −8.32244 9.91830i −0.336690 0.401251i
\(612\) 0.706824 + 0.124632i 0.0285717 + 0.00503796i
\(613\) 34.6433 12.6091i 1.39923 0.509278i 0.471280 0.881983i \(-0.343792\pi\)
0.927950 + 0.372705i \(0.121570\pi\)
\(614\) 5.17158 + 14.2088i 0.208708 + 0.573420i
\(615\) 0 0
\(616\) 19.9134 3.51127i 0.802334 0.141473i
\(617\) 3.00892 + 2.52478i 0.121135 + 0.101644i 0.701343 0.712824i \(-0.252584\pi\)
−0.580208 + 0.814468i \(0.697029\pi\)
\(618\) −5.27612 + 9.13852i −0.212237 + 0.367605i
\(619\) 10.9070 + 18.8915i 0.438390 + 0.759315i 0.997566 0.0697351i \(-0.0222154\pi\)
−0.559175 + 0.829050i \(0.688882\pi\)
\(620\) 0 0
\(621\) 42.1290 + 24.3232i 1.69058 + 0.976056i
\(622\) 15.2912 + 5.56555i 0.613123 + 0.223158i
\(623\) 18.2248i 0.730160i
\(624\) 4.66776 12.8246i 0.186860 0.513393i
\(625\) 0 0
\(626\) −28.7787 + 24.1482i −1.15023 + 0.965158i
\(627\) −17.4475 + 20.7931i −0.696786 + 0.830397i
\(628\) −0.430936 −0.0171962
\(629\) −39.6910 + 9.84746i −1.58258 + 0.392644i
\(630\) 0 0
\(631\) −1.76384 + 2.10206i −0.0702172 + 0.0836816i −0.800010 0.599987i \(-0.795172\pi\)
0.729792 + 0.683669i \(0.239617\pi\)
\(632\) −1.27365 + 1.06872i −0.0506631 + 0.0425114i
\(633\) −4.12991 23.4219i −0.164149 0.930936i
\(634\) −0.0536034 + 0.147274i −0.00212886 + 0.00584901i
\(635\) 0 0
\(636\) −7.04899 2.56562i −0.279511 0.101734i
\(637\) 2.56719 + 1.48217i 0.101716 + 0.0587257i
\(638\) −0.301956 + 1.71248i −0.0119545 + 0.0677976i
\(639\) −0.476780 0.825807i −0.0188611 0.0326684i
\(640\) 0 0
\(641\) 1.69847 + 1.42518i 0.0670855 + 0.0562914i 0.675714 0.737164i \(-0.263836\pi\)
−0.608628 + 0.793455i \(0.708280\pi\)
\(642\) 15.7775 2.78201i 0.622690 0.109797i
\(643\) −15.2356 + 8.79630i −0.600835 + 0.346892i −0.769370 0.638804i \(-0.779430\pi\)
0.168535 + 0.985696i \(0.446096\pi\)
\(644\) −2.93103 8.05295i −0.115499 0.317331i
\(645\) 0 0
\(646\) −60.2098 10.6166i −2.36892 0.417705i
\(647\) −13.0529 15.5558i −0.513162 0.611563i 0.445788 0.895139i \(-0.352924\pi\)
−0.958950 + 0.283576i \(0.908479\pi\)
\(648\) −15.3858 18.3361i −0.604413 0.720311i
\(649\) −1.45090 0.255833i −0.0569529 0.0100423i
\(650\) 0 0
\(651\) 6.51053 + 17.8875i 0.255168 + 0.701068i
\(652\) −3.81553 + 2.20289i −0.149428 + 0.0862720i
\(653\) 26.0839 4.59929i 1.02074 0.179984i 0.361860 0.932232i \(-0.382142\pi\)
0.658880 + 0.752248i \(0.271031\pi\)
\(654\) 6.80029 + 5.70612i 0.265912 + 0.223127i
\(655\) 0 0
\(656\) −14.2884 24.7483i −0.557870 0.966258i
\(657\) 0.676152 3.83465i 0.0263792 0.149604i
\(658\) −15.9344 9.19970i −0.621186 0.358642i
\(659\) 17.8919 + 6.51211i 0.696969 + 0.253676i 0.666116 0.745848i \(-0.267955\pi\)
0.0308527 + 0.999524i \(0.490178\pi\)
\(660\) 0 0
\(661\) −8.20350 + 22.5389i −0.319079 + 0.876663i 0.671657 + 0.740862i \(0.265583\pi\)
−0.990736 + 0.135801i \(0.956639\pi\)
\(662\) 5.91994 + 33.5736i 0.230085 + 1.30488i
\(663\) −21.8512 + 18.3353i −0.848631 + 0.712086i
\(664\) −3.38114 + 4.02949i −0.131214 + 0.156375i
\(665\) 0 0
\(666\) −2.24362 1.09749i −0.0869385 0.0425269i
\(667\) 5.13100 0.198673
\(668\) −1.14286 + 1.36200i −0.0442184 + 0.0526975i
\(669\) −10.5577 + 8.85896i −0.408184 + 0.342507i
\(670\) 0 0
\(671\) −1.83946 + 5.05388i −0.0710116 + 0.195103i
\(672\) 8.76857i 0.338255i
\(673\) 13.1220 + 4.77601i 0.505815 + 0.184102i 0.582308 0.812969i \(-0.302150\pi\)
−0.0764927 + 0.997070i \(0.524372\pi\)
\(674\) −34.8899 20.1437i −1.34391 0.775905i
\(675\) 0 0
\(676\) −1.05449 1.82643i −0.0405574 0.0702474i
\(677\) 13.1651 22.8026i 0.505976 0.876375i −0.494001 0.869462i \(-0.664466\pi\)
0.999976 0.00691375i \(-0.00220073\pi\)
\(678\) 22.3067 + 18.7176i 0.856685 + 0.718844i
\(679\) −9.42039 + 1.66107i −0.361521 + 0.0637460i
\(680\) 0 0
\(681\) 7.42138 + 20.3901i 0.284388 + 0.781349i
\(682\) 11.6124 4.22658i 0.444663 0.161844i
\(683\) −24.7217 4.35911i −0.945951 0.166797i −0.320665 0.947193i \(-0.603906\pi\)
−0.625286 + 0.780396i \(0.715018\pi\)
\(684\) 0.483692 + 0.576442i 0.0184944 + 0.0220408i
\(685\) 0 0
\(686\) −21.2332 3.74398i −0.810686 0.142946i
\(687\) −1.13722 + 0.413915i −0.0433878 + 0.0157919i
\(688\) 2.03701 + 5.59665i 0.0776604 + 0.213370i
\(689\) −30.6408 + 17.6905i −1.16732 + 0.673953i
\(690\) 0 0
\(691\) 18.1417 + 15.2227i 0.690143 + 0.579099i 0.918950 0.394373i \(-0.129038\pi\)
−0.228808 + 0.973472i \(0.573483\pi\)
\(692\) 1.84243 3.19118i 0.0700386 0.121310i
\(693\) −1.06790 1.84965i −0.0405660 0.0702624i
\(694\) −0.621715 + 3.52592i −0.0236000 + 0.133842i
\(695\) 0 0
\(696\) −2.65756 0.967272i −0.100734 0.0366643i
\(697\) 59.7282i 2.26237i
\(698\) 8.55805 23.5131i 0.323927 0.889982i
\(699\) 3.88896 + 22.0554i 0.147094 + 0.834212i
\(700\) 0 0
\(701\) 20.2331 24.1129i 0.764194 0.910730i −0.233912 0.972258i \(-0.575153\pi\)
0.998105 + 0.0615274i \(0.0195972\pi\)
\(702\) −18.1644 −0.685569
\(703\) −38.5141 18.8396i −1.45259 0.710550i
\(704\) 20.8204 0.784700
\(705\) 0 0
\(706\) 32.6801 27.4218i 1.22993 1.03203i
\(707\) 0.437185 + 2.47940i 0.0164420 + 0.0932475i
\(708\) 0.117709 0.323402i 0.00442376 0.0121542i
\(709\) 28.7726i 1.08058i −0.841480 0.540289i \(-0.818315\pi\)
0.841480 0.540289i \(-0.181685\pi\)
\(710\) 0 0
\(711\) 0.152087 + 0.0878073i 0.00570370 + 0.00329303i
\(712\) −3.34140 + 18.9500i −0.125224 + 0.710182i
\(713\) −18.2321 31.5789i −0.682797 1.18264i
\(714\) −20.2681 + 35.1053i −0.758513 + 1.31378i
\(715\) 0 0
\(716\) −7.80761 + 1.37669i −0.291784 + 0.0514494i
\(717\) 30.6258 17.6818i 1.14374 0.660340i
\(718\) 2.41347 + 6.63096i 0.0900700 + 0.247465i
\(719\) −15.1471 + 5.51309i −0.564891 + 0.205603i −0.608650 0.793439i \(-0.708289\pi\)
0.0437595 + 0.999042i \(0.486066\pi\)
\(720\) 0 0
\(721\) −9.16172 10.9185i −0.341200 0.406627i
\(722\) −25.4457 30.3250i −0.946991 1.12858i
\(723\) 29.4962 + 5.20098i 1.09698 + 0.193427i
\(724\) −2.24740 + 0.817986i −0.0835239 + 0.0304002i
\(725\) 0 0
\(726\) −10.0091 + 5.77875i −0.371472 + 0.214470i
\(727\) −31.1480 + 5.49224i −1.15522 + 0.203696i −0.718252 0.695783i \(-0.755058\pi\)
−0.436964 + 0.899479i \(0.643946\pi\)
\(728\) 17.0666 + 14.3206i 0.632529 + 0.530755i
\(729\) −14.6122 + 25.3090i −0.541192 + 0.937372i
\(730\) 0 0
\(731\) 2.16161 12.2591i 0.0799500 0.453419i
\(732\) −1.08803 0.628172i −0.0402146 0.0232179i
\(733\) 10.2220 + 3.72052i 0.377560 + 0.137420i 0.523827 0.851825i \(-0.324504\pi\)
−0.146268 + 0.989245i \(0.546726\pi\)
\(734\) 3.36444i 0.124184i
\(735\) 0 0
\(736\) −2.91675 16.5417i −0.107513 0.609736i
\(737\) 22.1827 18.6135i 0.817109 0.685636i
\(738\) −2.34486 + 2.79450i −0.0863156 + 0.102867i
\(739\) −3.13742 −0.115412 −0.0577059 0.998334i \(-0.518379\pi\)
−0.0577059 + 0.998334i \(0.518379\pi\)
\(740\) 0 0
\(741\) −29.9064 −1.09864
\(742\) −32.3190 + 38.5163i −1.18647 + 1.41398i
\(743\) 35.3953 29.7002i 1.29853 1.08959i 0.308130 0.951344i \(-0.400297\pi\)
0.990397 0.138250i \(-0.0441476\pi\)
\(744\) 3.49005 + 19.7930i 0.127951 + 0.725648i
\(745\) 0 0
\(746\) 16.6530i 0.609711i
\(747\) 0.522091 + 0.190026i 0.0191023 + 0.00695268i
\(748\) −4.59262 2.65155i −0.167923 0.0969504i
\(749\) −3.75770 + 21.3110i −0.137303 + 0.778687i
\(750\) 0 0
\(751\) 10.3282 17.8890i 0.376882 0.652779i −0.613724 0.789520i \(-0.710329\pi\)
0.990607 + 0.136741i \(0.0436628\pi\)
\(752\) −12.3135 10.3323i −0.449028 0.376780i
\(753\) −31.7577 + 5.59973i −1.15731 + 0.204066i
\(754\) −1.65921 + 0.957946i −0.0604249 + 0.0348863i
\(755\) 0 0
\(756\) 4.88812 1.77913i 0.177779 0.0647064i
\(757\) −17.6572 3.11344i −0.641761 0.113160i −0.156709 0.987645i \(-0.550088\pi\)
−0.485053 + 0.874485i \(0.661200\pi\)
\(758\) 0.821038 + 0.978475i 0.0298215 + 0.0355398i
\(759\) −22.1596 26.4087i −0.804341 0.958576i
\(760\) 0 0
\(761\) 45.7740 16.6604i 1.65931 0.603938i 0.669053 0.743215i \(-0.266700\pi\)
0.990254 + 0.139277i \(0.0444777\pi\)
\(762\) −5.67700 15.5974i −0.205656 0.565035i
\(763\) −10.3841 + 5.99526i −0.375929 + 0.217043i
\(764\) 7.27212 1.28227i 0.263096 0.0463910i
\(765\) 0 0
\(766\) 0.823547 1.42642i 0.0297559 0.0515388i
\(767\) −0.811624 1.40577i −0.0293061 0.0507596i
\(768\) −2.22131 + 12.5977i −0.0801547 + 0.454580i
\(769\) −38.8454 22.4274i −1.40080 0.808754i −0.406327 0.913728i \(-0.633191\pi\)
−0.994475 + 0.104974i \(0.966524\pi\)
\(770\) 0 0
\(771\) 5.70017i 0.205287i
\(772\) −1.17664 + 3.23280i −0.0423483 + 0.116351i
\(773\) 3.01536 + 17.1010i 0.108455 + 0.615079i 0.989784 + 0.142576i \(0.0455384\pi\)
−0.881329 + 0.472503i \(0.843350\pi\)
\(774\) 0.582414 0.488703i 0.0209344 0.0175661i
\(775\) 0 0
\(776\) −10.0998 −0.362562
\(777\) −20.4715 + 19.7235i −0.734410 + 0.707576i
\(778\) −23.5037 −0.842650
\(779\) −40.2521 + 47.9706i −1.44218 + 1.71873i
\(780\) 0 0
\(781\) 1.22346 + 6.93857i 0.0437787 + 0.248281i
\(782\) 26.5580 72.9675i 0.949712 2.60931i
\(783\) 3.11450i 0.111303i
\(784\) 3.45828 + 1.25871i 0.123510 + 0.0449539i
\(785\) 0 0
\(786\) −0.0713795 + 0.404813i −0.00254602 + 0.0144392i
\(787\) 11.1567 + 19.3240i 0.397694 + 0.688826i 0.993441 0.114346i \(-0.0364773\pi\)
−0.595747 + 0.803172i \(0.703144\pi\)
\(788\) 3.37232 5.84102i 0.120134 0.208078i
\(789\) −25.9906 21.8087i −0.925290 0.776411i
\(790\) 0 0
\(791\) −34.0626 + 19.6660i −1.21113 + 0.699244i
\(792\) −0.771270 2.11905i −0.0274059 0.0752971i
\(793\) −5.56830 + 2.02670i −0.197736 + 0.0719701i
\(794\) −7.95590 1.40284i −0.282344 0.0497849i
\(795\) 0 0
\(796\) −2.53837 3.02512i −0.0899703 0.107222i
\(797\) −5.86595 1.03433i −0.207783 0.0366377i 0.0687879 0.997631i \(-0.478087\pi\)
−0.276571 + 0.960994i \(0.589198\pi\)
\(798\) −39.9365 + 14.5357i −1.41374 + 0.514558i
\(799\) 11.4907 + 31.5704i 0.406511 + 1.11688i
\(800\) 0 0
\(801\) 2.00159 0.352934i 0.0707226 0.0124703i
\(802\) 13.3556 + 11.2066i 0.471601 + 0.395720i
\(803\) −14.3852 + 24.9158i −0.507641 + 0.879260i
\(804\) 3.38220 + 5.85815i 0.119281 + 0.206601i
\(805\) 0 0
\(806\) 11.7914 + 6.80778i 0.415335 + 0.239794i
\(807\) −10.4676 3.80988i −0.368476 0.134114i
\(808\) 2.65822i 0.0935159i
\(809\) 15.2385 41.8675i 0.535758 1.47198i −0.316363 0.948638i \(-0.602462\pi\)
0.852121 0.523345i \(-0.175316\pi\)
\(810\) 0 0
\(811\) 23.8129 19.9814i 0.836185 0.701643i −0.120517 0.992711i \(-0.538455\pi\)
0.956702 + 0.291069i \(0.0940108\pi\)
\(812\) 0.352675 0.420302i 0.0123765 0.0147497i
\(813\) 32.9471 1.15550
\(814\) 12.8043 + 13.2899i 0.448791 + 0.465810i
\(815\) 0 0
\(816\) −22.7633 + 27.1282i −0.796874 + 0.949678i
\(817\) 9.99776 8.38912i 0.349777 0.293498i
\(818\) 3.68816 + 20.9166i 0.128954 + 0.731332i
\(819\) 0.804838 2.21127i 0.0281233 0.0772682i
\(820\) 0 0
\(821\) −33.3141 12.1253i −1.16267 0.423177i −0.312619 0.949879i \(-0.601206\pi\)
−0.850050 + 0.526702i \(0.823428\pi\)
\(822\) 24.3547 + 14.0612i 0.849469 + 0.490441i
\(823\) −7.22852 + 40.9950i −0.251970 + 1.42899i 0.551761 + 0.834002i \(0.313956\pi\)
−0.803731 + 0.594992i \(0.797155\pi\)
\(824\) −7.52446 13.0328i −0.262127 0.454017i
\(825\) 0 0
\(826\) −1.76709 1.48277i −0.0614851 0.0515921i
\(827\) −20.9601 + 3.69582i −0.728853 + 0.128516i −0.525748 0.850641i \(-0.676214\pi\)
−0.203105 + 0.979157i \(0.565103\pi\)
\(828\) −0.827676 + 0.477859i −0.0287637 + 0.0166067i
\(829\) −9.13523 25.0988i −0.317280 0.871719i −0.991135 0.132856i \(-0.957585\pi\)
0.673856 0.738863i \(-0.264637\pi\)
\(830\) 0 0
\(831\) −18.1649 3.20296i −0.630132 0.111109i
\(832\) 14.7454 + 17.5728i 0.511203 + 0.609228i
\(833\) −4.94432 5.89241i −0.171310 0.204160i
\(834\) −21.2762 3.75157i −0.736735 0.129906i
\(835\) 0 0
\(836\) −1.90162 5.22466i −0.0657689 0.180699i
\(837\) 19.1683 11.0668i 0.662553 0.382525i
\(838\) 38.3981 6.77061i 1.32644 0.233887i
\(839\) 33.9082 + 28.4524i 1.17064 + 0.982285i 0.999995 0.00304679i \(-0.000969825\pi\)
0.170647 + 0.985332i \(0.445414\pi\)
\(840\) 0 0
\(841\) −14.3357 24.8302i −0.494336 0.856215i
\(842\) −0.0748055 + 0.424243i −0.00257797 + 0.0146204i
\(843\) 24.4095 + 14.0928i 0.840707 + 0.485382i
\(844\) 4.57786 + 1.66620i 0.157576 + 0.0573531i
\(845\) 0 0
\(846\) −0.701804 + 1.92819i −0.0241285 + 0.0662926i
\(847\) −2.71081 15.3737i −0.0931444 0.528248i
\(848\) −33.6488 + 28.2347i −1.15550 + 0.969582i
\(849\) 23.0880 27.5152i 0.792379 0.944321i
\(850\) 0 0
\(851\) 32.0583 44.0176i 1.09894 1.50890i
\(852\) −1.64584 −0.0563856
\(853\) −5.03899 + 6.00524i −0.172532 + 0.205615i −0.845380 0.534165i \(-0.820626\pi\)
0.672848 + 0.739780i \(0.265071\pi\)
\(854\) −6.45077 + 5.41284i −0.220741 + 0.185224i
\(855\) 0 0
\(856\) −7.81448 + 21.4701i −0.267093 + 0.733833i
\(857\) 1.42847i 0.0487957i −0.999702 0.0243979i \(-0.992233\pi\)
0.999702 0.0243979i \(-0.00776685\pi\)
\(858\) 12.0962 + 4.40265i 0.412957 + 0.150304i
\(859\) 21.2866 + 12.2898i 0.726289 + 0.419323i 0.817063 0.576548i \(-0.195601\pi\)
−0.0907740 + 0.995872i \(0.528934\pi\)
\(860\) 0 0
\(861\) 20.7596 + 35.9566i 0.707484 + 1.22540i
\(862\) −24.1730 + 41.8688i −0.823334 + 1.42606i
\(863\) 31.1265 + 26.1182i 1.05956 + 0.889074i 0.994066 0.108779i \(-0.0346942\pi\)
0.0654909 + 0.997853i \(0.479139\pi\)
\(864\) 10.0408 1.77046i 0.341595 0.0602324i
\(865\) 0 0
\(866\) 16.6842 + 45.8395i 0.566953 + 1.55769i
\(867\) 43.3930 15.7938i 1.47370 0.536384i
\(868\) −3.83993 0.677083i −0.130336 0.0229817i
\(869\) −0.834063 0.993997i −0.0282936 0.0337190i
\(870\) 0 0
\(871\) 31.4202 + 5.54024i 1.06463 + 0.187724i
\(872\) −11.8965 + 4.32998i −0.402867 + 0.146632i
\(873\) 0.364863 + 1.00245i 0.0123487 + 0.0339279i
\(874\) 70.5044 40.7057i 2.38485 1.37689i
\(875\) 0 0
\(876\) −5.14835 4.31998i −0.173947 0.145959i
\(877\) −9.99404 + 17.3102i −0.337475 + 0.584524i −0.983957 0.178406i \(-0.942906\pi\)
0.646482 + 0.762929i \(0.276239\pi\)
\(878\) −8.30565 14.3858i −0.280302 0.485498i
\(879\) −6.66389 + 37.7928i −0.224767 + 1.27472i
\(880\) 0 0
\(881\) −1.61215 0.586774i −0.0543146 0.0197689i 0.314720 0.949185i \(-0.398089\pi\)
−0.369035 + 0.929416i \(0.620312\pi\)
\(882\) 0.469796i 0.0158189i
\(883\) 18.5099 50.8554i 0.622906 1.71142i −0.0768530 0.997042i \(-0.524487\pi\)
0.699759 0.714379i \(-0.253291\pi\)
\(884\) −1.01461 5.75413i −0.0341250 0.193532i
\(885\) 0 0
\(886\) 0.965415 1.15054i 0.0324338 0.0386530i
\(887\) −23.2394 −0.780304 −0.390152 0.920750i \(-0.627578\pi\)
−0.390152 + 0.920750i \(0.627578\pi\)
\(888\) −24.9023 + 16.7550i −0.835666 + 0.562263i
\(889\) 22.4198 0.751936
\(890\) 0 0
\(891\) 14.3101 12.0076i 0.479406 0.402270i
\(892\) −0.490221 2.78018i −0.0164138 0.0930874i
\(893\) −12.0472 + 33.0995i −0.403145 + 1.10763i
\(894\) 25.0373i 0.837372i
\(895\) 0 0
\(896\) 18.9575 + 10.9451i 0.633327 + 0.365652i
\(897\) 6.59571 37.4061i 0.220224 1.24895i
\(898\) 13.6178 + 23.5867i 0.454432 + 0.787100i
\(899\) 1.16728 2.02178i 0.0389309 0.0674303i
\(900\) 0 0
\(901\) 90.4131 15.9423i 3.01210 0.531114i
\(902\) 23.3427 13.4769i 0.777227 0.448732i
\(903\) −2.95956 8.13133i −0.0984881 0.270594i
\(904\) −39.0237 + 14.2035i −1.29791 + 0.472400i
\(905\) 0 0
\(906\) −17.7510 21.1548i −0.589737 0.702821i
\(907\) 21.7171 + 25.8815i 0.721105 + 0.859380i 0.994738 0.102455i \(-0.0326697\pi\)
−0.273633 + 0.961834i \(0.588225\pi\)
\(908\) −4.37714 0.771809i −0.145261 0.0256134i
\(909\) 0.263841 0.0960301i 0.00875104 0.00318512i
\(910\) 0 0
\(911\) 18.3374 10.5871i 0.607544 0.350766i −0.164459 0.986384i \(-0.552588\pi\)
0.772004 + 0.635618i \(0.219255\pi\)
\(912\) −36.5646 + 6.44732i −1.21077 + 0.213492i
\(913\) −3.14474 2.63875i −0.104076 0.0873300i
\(914\) −16.0779 + 27.8478i −0.531811 + 0.921123i
\(915\) 0 0
\(916\) 0.0430464 0.244128i 0.00142229 0.00806622i
\(917\) −0.480838 0.277612i −0.0158787 0.00916755i
\(918\) 44.2911 + 16.1206i 1.46182 + 0.532060i
\(919\) 9.79121i 0.322982i −0.986874 0.161491i \(-0.948370\pi\)
0.986874 0.161491i \(-0.0516303\pi\)
\(920\) 0 0
\(921\) −3.33273 18.9009i −0.109817 0.622805i
\(922\) 16.3394 13.7104i 0.538111 0.451528i
\(923\) −4.98981 + 5.94662i −0.164242 + 0.195735i
\(924\) −3.68637 −0.121273
\(925\) 0 0
\(926\) 44.1656 1.45137
\(927\) −1.02173 + 1.21765i −0.0335581 + 0.0399930i
\(928\) 0.823800 0.691250i 0.0270426 0.0226914i
\(929\) 6.20734 + 35.2036i 0.203656 + 1.15499i 0.899540 + 0.436837i \(0.143901\pi\)
−0.695884 + 0.718154i \(0.744987\pi\)
\(930\) 0 0
\(931\) 8.06456i 0.264305i
\(932\) −4.31078 1.56900i −0.141204 0.0513942i
\(933\) −17.8873 10.3273i −0.585605 0.338099i
\(934\) −6.05752 + 34.3539i −0.198208 + 1.12409i
\(935\) 0 0
\(936\) 1.24229 2.15171i 0.0406055 0.0703308i
\(937\) −15.2603 12.8049i −0.498532 0.418318i 0.358540 0.933514i \(-0.383275\pi\)
−0.857072 + 0.515196i \(0.827719\pi\)
\(938\) 44.6509 7.87316i 1.45790 0.257068i
\(939\) 41.2959 23.8422i 1.34764 0.778061i
\(940\) 0 0
\(941\) −25.6606 + 9.33970i −0.836512 + 0.304465i −0.724529 0.689245i \(-0.757943\pi\)
−0.111983 + 0.993710i \(0.535720\pi\)
\(942\) −2.67305 0.471331i −0.0870928 0.0153568i
\(943\) −51.1231 60.9261i −1.66480 1.98403i
\(944\) −1.29538 1.54378i −0.0421611 0.0502457i
\(945\) 0 0
\(946\) −5.27879 + 1.92132i −0.171628 + 0.0624675i
\(947\) 18.8900 + 51.8998i 0.613843 + 1.68652i 0.721573 + 0.692338i \(0.243419\pi\)
−0.107731 + 0.994180i \(0.534358\pi\)
\(948\) 0.262501 0.151555i 0.00852565 0.00492229i
\(949\) −31.2172 + 5.50443i −1.01335 + 0.178681i
\(950\) 0 0
\(951\) 0.0994648 0.172278i 0.00322537 0.00558650i
\(952\) −28.9050 50.0649i −0.936816 1.62261i
\(953\) −3.93740 + 22.3301i −0.127545 + 0.723343i 0.852219 + 0.523186i \(0.175257\pi\)
−0.979764 + 0.200158i \(0.935855\pi\)
\(954\) 4.85603 + 2.80363i 0.157220 + 0.0907709i
\(955\) 0 0
\(956\) 7.24376i 0.234280i
\(957\) 0.754890 2.07404i 0.0244021 0.0670443i
\(958\) −0.0655030 0.371486i −0.00211631 0.0120022i
\(959\) −29.0985 + 24.4166i −0.939641 + 0.788452i
\(960\) 0 0
\(961\) 14.4092 0.464812
\(962\) −2.14870 + 20.2192i −0.0692769 + 0.651892i
\(963\) 2.41331 0.0777678
\(964\) −3.94357 + 4.69976i −0.127014 + 0.151369i
\(965\) 0 0
\(966\) −9.37308 53.1574i −0.301574 1.71031i
\(967\) 10.8176 29.7211i 0.347870 0.955766i −0.635169 0.772373i \(-0.719070\pi\)
0.983040 0.183393i \(-0.0587081\pi\)
\(968\) 16.4825i 0.529769i
\(969\) 72.9222 + 26.5415i 2.34260 + 0.852636i
\(970\) 0 0
\(971\) 1.30092 7.37787i 0.0417484 0.236767i −0.956792 0.290772i \(-0.906088\pi\)
0.998541 + 0.0540055i \(0.0171988\pi\)
\(972\) −0.552298 0.956609i −0.0177150 0.0306832i
\(973\) 14.5907 25.2719i 0.467758 0.810180i
\(974\) 19.0068 + 15.9486i 0.609017 + 0.511026i
\(975\) 0 0
\(976\) −6.37108 + 3.67835i −0.203933 + 0.117741i
\(977\) 1.04609 + 2.87410i 0.0334672 + 0.0919505i 0.955301 0.295635i \(-0.0955313\pi\)
−0.921834 + 0.387586i \(0.873309\pi\)
\(978\) −26.0767 + 9.49114i −0.833841 + 0.303493i
\(979\) −14.7892 2.60773i −0.472665 0.0833436i
\(980\) 0 0
\(981\) 0.859540 + 1.02436i 0.0274430 + 0.0327053i
\(982\) −37.1021 6.54211i −1.18398 0.208767i
\(983\) −44.6429 + 16.2487i −1.42389 + 0.518252i −0.935173 0.354192i \(-0.884756\pi\)
−0.488713 + 0.872444i \(0.662534\pi\)
\(984\) 14.9933 + 41.1936i 0.477968 + 1.31320i
\(985\) 0 0
\(986\) 4.89591 0.863281i 0.155917 0.0274925i
\(987\) 17.8903 + 15.0117i 0.569453 + 0.477828i
\(988\) 3.06295 5.30519i 0.0974455 0.168780i
\(989\) 8.28795 + 14.3551i 0.263541 + 0.456467i
\(990\) 0 0
\(991\) −39.9180 23.0467i −1.26804 0.732102i −0.293421 0.955983i \(-0.594794\pi\)
−0.974616 + 0.223882i \(0.928127\pi\)
\(992\) −7.18154 2.61387i −0.228014 0.0829904i
\(993\) 43.2719i 1.37319i
\(994\) −3.77302 + 10.3663i −0.119673 + 0.328798i
\(995\) 0 0
\(996\) 0.734607 0.616408i 0.0232769 0.0195316i
\(997\) −11.7761 + 14.0343i −0.372954 + 0.444469i −0.919577 0.392909i \(-0.871469\pi\)
0.546623 + 0.837379i \(0.315913\pi\)
\(998\) −18.4105 −0.582773
\(999\) 26.7186 + 19.4593i 0.845338 + 0.615665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.bb.b.151.3 72
5.2 odd 4 925.2.ba.b.299.3 72
5.3 odd 4 925.2.ba.c.299.10 72
5.4 even 2 185.2.w.a.151.10 yes 72
37.25 even 18 inner 925.2.bb.b.876.3 72
185.62 odd 36 925.2.ba.c.99.10 72
185.69 odd 36 6845.2.a.t.1.27 36
185.79 odd 36 6845.2.a.u.1.10 36
185.99 even 18 185.2.w.a.136.10 72
185.173 odd 36 925.2.ba.b.99.3 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.w.a.136.10 72 185.99 even 18
185.2.w.a.151.10 yes 72 5.4 even 2
925.2.ba.b.99.3 72 185.173 odd 36
925.2.ba.b.299.3 72 5.2 odd 4
925.2.ba.c.99.10 72 185.62 odd 36
925.2.ba.c.299.10 72 5.3 odd 4
925.2.bb.b.151.3 72 1.1 even 1 trivial
925.2.bb.b.876.3 72 37.25 even 18 inner
6845.2.a.t.1.27 36 185.69 odd 36
6845.2.a.u.1.10 36 185.79 odd 36