Properties

Label 925.2.ba.b.99.3
Level $925$
Weight $2$
Character 925.99
Analytic conductor $7.386$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(99,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.ba (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,0,0,6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(12\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 99.3
Character \(\chi\) \(=\) 925.99
Dual form 925.2.ba.b.299.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.988334 + 0.829311i) q^{2} +(-1.05263 + 1.25448i) q^{3} +(-0.0582485 + 0.330344i) q^{4} -2.11280i q^{6} +(0.976055 + 2.68169i) q^{7} +(-1.50657 - 2.60945i) q^{8} +(0.0552654 + 0.313426i) q^{9} +(1.17577 + 2.03650i) q^{11} +(-0.353094 - 0.420801i) q^{12} +(-0.449906 + 2.55154i) q^{13} +(-3.18862 - 1.84095i) q^{14} +(3.02262 + 1.10014i) q^{16} +(1.16743 + 6.62084i) q^{17} +(-0.314548 - 0.263937i) q^{18} +(4.53076 - 5.39955i) q^{19} +(-4.39154 - 1.59839i) q^{21} +(-2.85095 - 1.03766i) q^{22} +(-4.47612 + 7.75287i) q^{23} +(4.85935 + 0.856835i) q^{24} +(-1.67136 - 2.89489i) q^{26} +(-4.70597 - 2.71699i) q^{27} +(-0.942733 + 0.166229i) q^{28} +(-0.496364 + 0.286576i) q^{29} +4.07319i q^{31} +(1.76313 - 0.641726i) q^{32} +(-3.79239 - 0.668701i) q^{33} +(-6.64455 - 5.57544i) q^{34} -0.106757 q^{36} +(2.46767 - 5.55973i) q^{37} +9.09397i q^{38} +(-2.72726 - 3.25023i) q^{39} +(-1.54272 + 8.74921i) q^{41} +(5.66587 - 2.06221i) q^{42} +1.85159 q^{43} +(-0.741232 + 0.269786i) q^{44} +(-2.00563 - 11.3745i) q^{46} +(4.32775 + 2.49863i) q^{47} +(-4.56180 + 2.63375i) q^{48} +(-0.876457 + 0.735435i) q^{49} +(-9.53456 - 5.50478i) q^{51} +(-0.816680 - 0.297247i) q^{52} +(4.67057 - 12.8323i) q^{53} +(6.90430 - 1.21742i) q^{54} +(5.52724 - 6.58711i) q^{56} +(2.00439 + 11.3675i) q^{57} +(0.252913 - 0.694873i) q^{58} +(0.214282 - 0.588735i) q^{59} +(-2.25236 - 0.397151i) q^{61} +(-3.37794 - 4.02567i) q^{62} +(-0.786568 + 0.454125i) q^{63} +(-4.42697 + 7.66773i) q^{64} +(4.30271 - 2.48417i) q^{66} +(-4.21171 - 11.5716i) q^{67} -2.25516 q^{68} +(-5.01409 - 13.7761i) q^{69} +(-2.29519 - 1.92589i) q^{71} +(0.734608 - 0.616409i) q^{72} -12.2346i q^{73} +(2.17186 + 7.54134i) q^{74} +(1.51980 + 1.81123i) q^{76} +(-4.31363 + 5.14079i) q^{77} +(5.39090 + 0.950560i) q^{78} +(-0.188725 - 0.518518i) q^{79} +(7.46485 - 2.71698i) q^{81} +(-5.73109 - 9.92654i) q^{82} +(-1.71921 + 0.303143i) q^{83} +(0.783819 - 1.35761i) q^{84} +(-1.82999 + 1.53554i) q^{86} +(0.162985 - 0.924336i) q^{87} +(3.54276 - 6.13624i) q^{88} +(2.18420 - 6.00103i) q^{89} +(-7.28157 + 1.28394i) q^{91} +(-2.30039 - 1.93025i) q^{92} +(-5.10971 - 4.28756i) q^{93} +(-6.34940 + 1.11957i) q^{94} +(-1.05089 + 2.88730i) q^{96} +(1.67596 - 2.90286i) q^{97} +(0.256328 - 1.45371i) q^{98} +(-0.573311 + 0.481065i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 6 q^{4} - 6 q^{7} - 18 q^{8} - 42 q^{12} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 12 q^{17} + 24 q^{18} + 18 q^{19} + 24 q^{22} - 24 q^{23} + 30 q^{24} - 48 q^{28} - 18 q^{29} + 24 q^{33} - 66 q^{34}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.988334 + 0.829311i −0.698858 + 0.586411i −0.921448 0.388501i \(-0.872993\pi\)
0.222591 + 0.974912i \(0.428549\pi\)
\(3\) −1.05263 + 1.25448i −0.607736 + 0.724272i −0.978910 0.204292i \(-0.934511\pi\)
0.371174 + 0.928563i \(0.378955\pi\)
\(4\) −0.0582485 + 0.330344i −0.0291243 + 0.165172i
\(5\) 0 0
\(6\) 2.11280i 0.862546i
\(7\) 0.976055 + 2.68169i 0.368914 + 1.01358i 0.975775 + 0.218775i \(0.0702061\pi\)
−0.606861 + 0.794808i \(0.707572\pi\)
\(8\) −1.50657 2.60945i −0.532652 0.922580i
\(9\) 0.0552654 + 0.313426i 0.0184218 + 0.104475i
\(10\) 0 0
\(11\) 1.17577 + 2.03650i 0.354509 + 0.614027i 0.987034 0.160513i \(-0.0513148\pi\)
−0.632525 + 0.774540i \(0.717981\pi\)
\(12\) −0.353094 0.420801i −0.101930 0.121475i
\(13\) −0.449906 + 2.55154i −0.124781 + 0.707671i 0.856656 + 0.515888i \(0.172538\pi\)
−0.981437 + 0.191783i \(0.938573\pi\)
\(14\) −3.18862 1.84095i −0.852195 0.492015i
\(15\) 0 0
\(16\) 3.02262 + 1.10014i 0.755654 + 0.275035i
\(17\) 1.16743 + 6.62084i 0.283144 + 1.60579i 0.711840 + 0.702342i \(0.247862\pi\)
−0.428696 + 0.903449i \(0.641027\pi\)
\(18\) −0.314548 0.263937i −0.0741396 0.0622105i
\(19\) 4.53076 5.39955i 1.03943 1.23874i 0.0689331 0.997621i \(-0.478040\pi\)
0.970495 0.241121i \(-0.0775151\pi\)
\(20\) 0 0
\(21\) −4.39154 1.59839i −0.958312 0.348797i
\(22\) −2.85095 1.03766i −0.607824 0.221230i
\(23\) −4.47612 + 7.75287i −0.933336 + 1.61659i −0.155761 + 0.987795i \(0.549783\pi\)
−0.777575 + 0.628790i \(0.783550\pi\)
\(24\) 4.85935 + 0.856835i 0.991911 + 0.174901i
\(25\) 0 0
\(26\) −1.67136 2.89489i −0.327782 0.567734i
\(27\) −4.70597 2.71699i −0.905665 0.522886i
\(28\) −0.942733 + 0.166229i −0.178160 + 0.0314144i
\(29\) −0.496364 + 0.286576i −0.0921726 + 0.0532159i −0.545378 0.838190i \(-0.683614\pi\)
0.453205 + 0.891406i \(0.350280\pi\)
\(30\) 0 0
\(31\) 4.07319i 0.731566i 0.930700 + 0.365783i \(0.119199\pi\)
−0.930700 + 0.365783i \(0.880801\pi\)
\(32\) 1.76313 0.641726i 0.311680 0.113442i
\(33\) −3.79239 0.668701i −0.660171 0.116406i
\(34\) −6.64455 5.57544i −1.13953 0.956180i
\(35\) 0 0
\(36\) −0.106757 −0.0177929
\(37\) 2.46767 5.55973i 0.405683 0.914014i
\(38\) 9.09397i 1.47524i
\(39\) −2.72726 3.25023i −0.436712 0.520453i
\(40\) 0 0
\(41\) −1.54272 + 8.74921i −0.240933 + 1.36640i 0.588819 + 0.808265i \(0.299593\pi\)
−0.829752 + 0.558133i \(0.811518\pi\)
\(42\) 5.66587 2.06221i 0.874262 0.318205i
\(43\) 1.85159 0.282365 0.141182 0.989984i \(-0.454910\pi\)
0.141182 + 0.989984i \(0.454910\pi\)
\(44\) −0.741232 + 0.269786i −0.111745 + 0.0406718i
\(45\) 0 0
\(46\) −2.00563 11.3745i −0.295715 1.67708i
\(47\) 4.32775 + 2.49863i 0.631267 + 0.364462i 0.781243 0.624227i \(-0.214586\pi\)
−0.149975 + 0.988690i \(0.547919\pi\)
\(48\) −4.56180 + 2.63375i −0.658439 + 0.380150i
\(49\) −0.876457 + 0.735435i −0.125208 + 0.105062i
\(50\) 0 0
\(51\) −9.53456 5.50478i −1.33511 0.770824i
\(52\) −0.816680 0.297247i −0.113253 0.0412208i
\(53\) 4.67057 12.8323i 0.641552 1.76265i −0.00524360 0.999986i \(-0.501669\pi\)
0.646796 0.762663i \(-0.276109\pi\)
\(54\) 6.90430 1.21742i 0.939557 0.165669i
\(55\) 0 0
\(56\) 5.52724 6.58711i 0.738609 0.880239i
\(57\) 2.00439 + 11.3675i 0.265488 + 1.50566i
\(58\) 0.252913 0.694873i 0.0332091 0.0912413i
\(59\) 0.214282 0.588735i 0.0278971 0.0766467i −0.924962 0.380059i \(-0.875904\pi\)
0.952859 + 0.303412i \(0.0981259\pi\)
\(60\) 0 0
\(61\) −2.25236 0.397151i −0.288385 0.0508500i 0.0275844 0.999619i \(-0.491218\pi\)
−0.315969 + 0.948769i \(0.602330\pi\)
\(62\) −3.37794 4.02567i −0.428998 0.511260i
\(63\) −0.786568 + 0.454125i −0.0990982 + 0.0572144i
\(64\) −4.42697 + 7.66773i −0.553371 + 0.958467i
\(65\) 0 0
\(66\) 4.30271 2.48417i 0.529627 0.305780i
\(67\) −4.21171 11.5716i −0.514542 1.41369i −0.876456 0.481481i \(-0.840099\pi\)
0.361914 0.932211i \(-0.382123\pi\)
\(68\) −2.25516 −0.273478
\(69\) −5.01409 13.7761i −0.603625 1.65845i
\(70\) 0 0
\(71\) −2.29519 1.92589i −0.272389 0.228562i 0.496353 0.868121i \(-0.334672\pi\)
−0.768742 + 0.639559i \(0.779117\pi\)
\(72\) 0.734608 0.616409i 0.0865743 0.0726445i
\(73\) 12.2346i 1.43196i −0.698123 0.715978i \(-0.745981\pi\)
0.698123 0.715978i \(-0.254019\pi\)
\(74\) 2.17186 + 7.54134i 0.252474 + 0.876662i
\(75\) 0 0
\(76\) 1.51980 + 1.81123i 0.174333 + 0.207762i
\(77\) −4.31363 + 5.14079i −0.491584 + 0.585847i
\(78\) 5.39090 + 0.950560i 0.610399 + 0.107630i
\(79\) −0.188725 0.518518i −0.0212332 0.0583378i 0.928623 0.371024i \(-0.120993\pi\)
−0.949856 + 0.312686i \(0.898771\pi\)
\(80\) 0 0
\(81\) 7.46485 2.71698i 0.829428 0.301887i
\(82\) −5.73109 9.92654i −0.632893 1.09620i
\(83\) −1.71921 + 0.303143i −0.188708 + 0.0332743i −0.267203 0.963640i \(-0.586100\pi\)
0.0784954 + 0.996914i \(0.474988\pi\)
\(84\) 0.783819 1.35761i 0.0855216 0.148128i
\(85\) 0 0
\(86\) −1.82999 + 1.53554i −0.197333 + 0.165582i
\(87\) 0.162985 0.924336i 0.0174739 0.0990992i
\(88\) 3.54276 6.13624i 0.377660 0.654126i
\(89\) 2.18420 6.00103i 0.231524 0.636108i −0.768469 0.639887i \(-0.778981\pi\)
0.999993 + 0.00377986i \(0.00120317\pi\)
\(90\) 0 0
\(91\) −7.28157 + 1.28394i −0.763316 + 0.134593i
\(92\) −2.30039 1.93025i −0.239832 0.201243i
\(93\) −5.10971 4.28756i −0.529852 0.444599i
\(94\) −6.34940 + 1.11957i −0.654891 + 0.115475i
\(95\) 0 0
\(96\) −1.05089 + 2.88730i −0.107256 + 0.294684i
\(97\) 1.67596 2.90286i 0.170168 0.294740i −0.768310 0.640078i \(-0.778902\pi\)
0.938479 + 0.345337i \(0.112235\pi\)
\(98\) 0.256328 1.45371i 0.0258931 0.146847i
\(99\) −0.573311 + 0.481065i −0.0576199 + 0.0483489i
\(100\) 0 0
\(101\) −0.441106 + 0.764018i −0.0438917 + 0.0760226i −0.887137 0.461507i \(-0.847309\pi\)
0.843245 + 0.537529i \(0.180642\pi\)
\(102\) 13.9885 2.46655i 1.38507 0.244225i
\(103\) 2.49722 + 4.32531i 0.246059 + 0.426186i 0.962429 0.271535i \(-0.0875311\pi\)
−0.716370 + 0.697720i \(0.754198\pi\)
\(104\) 7.33594 2.67006i 0.719348 0.261821i
\(105\) 0 0
\(106\) 6.02587 + 16.5559i 0.585284 + 1.60805i
\(107\) 7.46760 + 1.31674i 0.721920 + 0.127294i 0.522524 0.852625i \(-0.324991\pi\)
0.199397 + 0.979919i \(0.436102\pi\)
\(108\) 1.17166 1.39633i 0.112743 0.134362i
\(109\) −2.70074 3.21862i −0.258684 0.308288i 0.621034 0.783784i \(-0.286713\pi\)
−0.879718 + 0.475496i \(0.842269\pi\)
\(110\) 0 0
\(111\) 4.37700 + 8.94797i 0.415446 + 0.849304i
\(112\) 9.17951i 0.867382i
\(113\) −10.5579 + 8.85914i −0.993205 + 0.833398i −0.986029 0.166576i \(-0.946729\pi\)
−0.00717669 + 0.999974i \(0.502284\pi\)
\(114\) −11.4082 9.57259i −1.06847 0.896555i
\(115\) 0 0
\(116\) −0.0657562 0.180664i −0.00610531 0.0167742i
\(117\) −0.824583 −0.0762327
\(118\) 0.276462 + 0.759573i 0.0254504 + 0.0699243i
\(119\) −16.6156 + 9.59300i −1.52315 + 0.879389i
\(120\) 0 0
\(121\) 2.73512 4.73736i 0.248647 0.430669i
\(122\) 2.55544 1.47539i 0.231359 0.133575i
\(123\) −9.35176 11.1450i −0.843220 1.00491i
\(124\) −1.34555 0.237257i −0.120834 0.0213063i
\(125\) 0 0
\(126\) 0.400781 1.10114i 0.0357044 0.0980970i
\(127\) −2.68696 + 7.38236i −0.238429 + 0.655078i 0.761547 + 0.648110i \(0.224440\pi\)
−0.999976 + 0.00696839i \(0.997782\pi\)
\(128\) −1.33198 7.55406i −0.117732 0.667691i
\(129\) −1.94904 + 2.32278i −0.171603 + 0.204509i
\(130\) 0 0
\(131\) 0.191601 0.0337844i 0.0167402 0.00295175i −0.165272 0.986248i \(-0.552850\pi\)
0.182012 + 0.983296i \(0.441739\pi\)
\(132\) 0.441803 1.21384i 0.0384540 0.105651i
\(133\) 18.9022 + 6.87983i 1.63903 + 0.596557i
\(134\) 13.7590 + 7.94376i 1.18860 + 0.686237i
\(135\) 0 0
\(136\) 15.5180 13.0211i 1.33065 1.11655i
\(137\) 11.5272 6.65526i 0.984839 0.568597i 0.0811112 0.996705i \(-0.474153\pi\)
0.903727 + 0.428108i \(0.140820\pi\)
\(138\) 16.3802 + 9.45714i 1.39438 + 0.805045i
\(139\) 1.77564 + 10.0702i 0.150608 + 0.854140i 0.962692 + 0.270599i \(0.0872219\pi\)
−0.812084 + 0.583540i \(0.801667\pi\)
\(140\) 0 0
\(141\) −7.68999 + 2.79893i −0.647614 + 0.235712i
\(142\) 3.86558 0.324392
\(143\) −5.72520 + 2.08380i −0.478765 + 0.174256i
\(144\) −0.177767 + 1.00816i −0.0148139 + 0.0840137i
\(145\) 0 0
\(146\) 10.1463 + 12.0919i 0.839715 + 1.00073i
\(147\) 1.87364i 0.154535i
\(148\) 1.69288 + 1.13903i 0.139154 + 0.0936274i
\(149\) −11.8503 −0.970814 −0.485407 0.874288i \(-0.661329\pi\)
−0.485407 + 0.874288i \(0.661329\pi\)
\(150\) 0 0
\(151\) −10.0127 8.40164i −0.814821 0.683716i 0.136932 0.990580i \(-0.456276\pi\)
−0.951753 + 0.306864i \(0.900720\pi\)
\(152\) −20.9158 3.68801i −1.69649 0.299137i
\(153\) −2.01062 + 0.731807i −0.162549 + 0.0591631i
\(154\) 8.65816i 0.697694i
\(155\) 0 0
\(156\) 1.23255 0.711614i 0.0986831 0.0569747i
\(157\) −1.26517 + 0.223084i −0.100972 + 0.0178040i −0.223906 0.974611i \(-0.571881\pi\)
0.122934 + 0.992415i \(0.460770\pi\)
\(158\) 0.616536 + 0.355957i 0.0490489 + 0.0283184i
\(159\) 11.1814 + 19.3668i 0.886743 + 1.53588i
\(160\) 0 0
\(161\) −25.1597 4.43634i −1.98286 0.349632i
\(162\) −5.12454 + 8.87597i −0.402622 + 0.697362i
\(163\) 12.3423 + 4.49222i 0.966720 + 0.351857i 0.776664 0.629916i \(-0.216911\pi\)
0.190057 + 0.981773i \(0.439133\pi\)
\(164\) −2.80039 1.01926i −0.218674 0.0795907i
\(165\) 0 0
\(166\) 1.44775 1.72537i 0.112368 0.133914i
\(167\) −4.06035 3.40703i −0.314199 0.263644i 0.472026 0.881585i \(-0.343523\pi\)
−0.786225 + 0.617940i \(0.787967\pi\)
\(168\) 2.44523 + 13.8676i 0.188653 + 1.06991i
\(169\) 5.90805 + 2.15035i 0.454465 + 0.165412i
\(170\) 0 0
\(171\) 1.94275 + 1.12165i 0.148566 + 0.0857746i
\(172\) −0.107852 + 0.611662i −0.00822368 + 0.0466388i
\(173\) −7.06111 8.41510i −0.536846 0.639788i 0.427631 0.903953i \(-0.359348\pi\)
−0.964478 + 0.264165i \(0.914904\pi\)
\(174\) 0.605478 + 1.04872i 0.0459011 + 0.0795031i
\(175\) 0 0
\(176\) 1.31347 + 7.44907i 0.0990066 + 0.561495i
\(177\) 0.512994 + 0.888531i 0.0385590 + 0.0667861i
\(178\) 2.81800 + 7.74240i 0.211218 + 0.580317i
\(179\) 23.6348i 1.76655i 0.468857 + 0.883274i \(0.344666\pi\)
−0.468857 + 0.883274i \(0.655334\pi\)
\(180\) 0 0
\(181\) 1.23808 7.02152i 0.0920260 0.521905i −0.903592 0.428394i \(-0.859080\pi\)
0.995618 0.0935116i \(-0.0298092\pi\)
\(182\) 6.13184 7.30765i 0.454522 0.541679i
\(183\) 2.86912 2.40747i 0.212091 0.177966i
\(184\) 26.9743 1.98857
\(185\) 0 0
\(186\) 8.60582 0.631009
\(187\) −12.1107 + 10.1621i −0.885622 + 0.743125i
\(188\) −1.07749 + 1.28411i −0.0785842 + 0.0936530i
\(189\) 2.69285 15.2719i 0.195876 1.11087i
\(190\) 0 0
\(191\) 22.0138i 1.59286i 0.604729 + 0.796431i \(0.293281\pi\)
−0.604729 + 0.796431i \(0.706719\pi\)
\(192\) −4.95903 13.6248i −0.357887 0.983286i
\(193\) 5.12800 + 8.88195i 0.369121 + 0.639337i 0.989428 0.145022i \(-0.0463253\pi\)
−0.620307 + 0.784359i \(0.712992\pi\)
\(194\) 0.750957 + 4.25889i 0.0539155 + 0.305770i
\(195\) 0 0
\(196\) −0.191894 0.332370i −0.0137067 0.0237407i
\(197\) 12.9244 + 15.4027i 0.920826 + 1.09740i 0.994972 + 0.100151i \(0.0319325\pi\)
−0.0741458 + 0.997247i \(0.523623\pi\)
\(198\) 0.167670 0.950906i 0.0119158 0.0675779i
\(199\) 10.1954 + 5.88631i 0.722732 + 0.417270i 0.815757 0.578394i \(-0.196320\pi\)
−0.0930253 + 0.995664i \(0.529654\pi\)
\(200\) 0 0
\(201\) 18.9496 + 6.89710i 1.33660 + 0.486484i
\(202\) −0.197648 1.12092i −0.0139065 0.0788676i
\(203\) −1.25299 1.05138i −0.0879424 0.0737925i
\(204\) 2.37385 2.82904i 0.166202 0.198072i
\(205\) 0 0
\(206\) −6.05512 2.20388i −0.421880 0.153552i
\(207\) −2.67732 0.974466i −0.186087 0.0677300i
\(208\) −4.16695 + 7.21737i −0.288926 + 0.500435i
\(209\) 16.3233 + 2.87824i 1.12911 + 0.199092i
\(210\) 0 0
\(211\) 7.26159 + 12.5774i 0.499909 + 0.865867i 1.00000 0.000105566i \(-3.36028e-5\pi\)
−0.500091 + 0.865973i \(0.666700\pi\)
\(212\) 3.96701 + 2.29036i 0.272456 + 0.157302i
\(213\) 4.83198 0.852008i 0.331081 0.0583786i
\(214\) −8.47247 + 4.89158i −0.579166 + 0.334382i
\(215\) 0 0
\(216\) 16.3733i 1.11406i
\(217\) −10.9230 + 3.97565i −0.741502 + 0.269885i
\(218\) 5.33847 + 0.941316i 0.361567 + 0.0637540i
\(219\) 15.3481 + 12.8785i 1.03713 + 0.870251i
\(220\) 0 0
\(221\) −17.4186 −1.17170
\(222\) −11.7466 5.21369i −0.788379 0.349920i
\(223\) 8.41603i 0.563579i −0.959476 0.281789i \(-0.909072\pi\)
0.959476 0.281789i \(-0.0909280\pi\)
\(224\) 3.44182 + 4.10180i 0.229966 + 0.274063i
\(225\) 0 0
\(226\) 3.08776 17.5116i 0.205395 1.16485i
\(227\) −12.4512 + 4.53186i −0.826413 + 0.300790i −0.720386 0.693573i \(-0.756035\pi\)
−0.106027 + 0.994363i \(0.533813\pi\)
\(228\) −3.87193 −0.256425
\(229\) 0.694444 0.252757i 0.0458902 0.0167026i −0.318973 0.947764i \(-0.603338\pi\)
0.364863 + 0.931061i \(0.381116\pi\)
\(230\) 0 0
\(231\) −1.90833 10.8227i −0.125559 0.712081i
\(232\) 1.49561 + 0.863492i 0.0981918 + 0.0566911i
\(233\) 11.8437 6.83794i 0.775904 0.447968i −0.0590727 0.998254i \(-0.518814\pi\)
0.834977 + 0.550285i \(0.185481\pi\)
\(234\) 0.814963 0.683835i 0.0532758 0.0447037i
\(235\) 0 0
\(236\) 0.182003 + 0.105080i 0.0118474 + 0.00684010i
\(237\) 0.849126 + 0.309056i 0.0551566 + 0.0200754i
\(238\) 8.46615 23.2605i 0.548779 1.50776i
\(239\) −21.2667 + 3.74990i −1.37563 + 0.242561i −0.812092 0.583530i \(-0.801671\pi\)
−0.563538 + 0.826090i \(0.690560\pi\)
\(240\) 0 0
\(241\) 11.7564 14.0107i 0.757296 0.902510i −0.240378 0.970679i \(-0.577271\pi\)
0.997674 + 0.0681692i \(0.0217158\pi\)
\(242\) 1.22554 + 6.95036i 0.0787804 + 0.446786i
\(243\) 1.12626 3.09439i 0.0722499 0.198505i
\(244\) 0.262393 0.720919i 0.0167980 0.0461521i
\(245\) 0 0
\(246\) 18.4853 + 3.25946i 1.17858 + 0.207816i
\(247\) 11.7388 + 13.9897i 0.746920 + 0.890145i
\(248\) 10.6288 6.13653i 0.674928 0.389670i
\(249\) 1.42941 2.47581i 0.0905850 0.156898i
\(250\) 0 0
\(251\) −17.0537 + 9.84598i −1.07642 + 0.621473i −0.929929 0.367739i \(-0.880132\pi\)
−0.146493 + 0.989212i \(0.546799\pi\)
\(252\) −0.104201 0.286290i −0.00656405 0.0180346i
\(253\) −21.0516 −1.32350
\(254\) −3.46666 9.52456i −0.217517 0.597624i
\(255\) 0 0
\(256\) −5.98391 5.02110i −0.373994 0.313818i
\(257\) 2.66645 2.23742i 0.166329 0.139566i −0.555824 0.831300i \(-0.687597\pi\)
0.722153 + 0.691734i \(0.243153\pi\)
\(258\) 3.91204i 0.243553i
\(259\) 17.3180 + 1.19093i 1.07609 + 0.0740005i
\(260\) 0 0
\(261\) −0.117252 0.139736i −0.00725772 0.00864941i
\(262\) −0.161348 + 0.192287i −0.00996809 + 0.0118795i
\(263\) −20.4036 3.59770i −1.25814 0.221843i −0.495464 0.868628i \(-0.665002\pi\)
−0.762673 + 0.646785i \(0.776113\pi\)
\(264\) 3.96855 + 10.9035i 0.244247 + 0.671064i
\(265\) 0 0
\(266\) −24.3872 + 8.87621i −1.49527 + 0.544235i
\(267\) 5.22899 + 9.05688i 0.320009 + 0.554272i
\(268\) 4.06793 0.717285i 0.248488 0.0438152i
\(269\) 3.40112 5.89091i 0.207370 0.359175i −0.743515 0.668719i \(-0.766843\pi\)
0.950885 + 0.309544i \(0.100176\pi\)
\(270\) 0 0
\(271\) 15.4121 12.9323i 0.936219 0.785581i −0.0407041 0.999171i \(-0.512960\pi\)
0.976923 + 0.213590i \(0.0685156\pi\)
\(272\) −3.75517 + 21.2966i −0.227690 + 1.29130i
\(273\) 6.05414 10.4861i 0.366413 0.634646i
\(274\) −5.87349 + 16.1373i −0.354830 + 0.974889i
\(275\) 0 0
\(276\) 4.84291 0.853936i 0.291509 0.0514009i
\(277\) 8.62832 + 7.24002i 0.518426 + 0.435011i 0.864082 0.503350i \(-0.167899\pi\)
−0.345657 + 0.938361i \(0.612344\pi\)
\(278\) −10.1062 8.48012i −0.606131 0.508604i
\(279\) −1.27664 + 0.225106i −0.0764305 + 0.0134768i
\(280\) 0 0
\(281\) 5.88669 16.1735i 0.351170 0.964833i −0.630825 0.775925i \(-0.717283\pi\)
0.981995 0.188907i \(-0.0604945\pi\)
\(282\) 5.27910 9.14367i 0.314366 0.544497i
\(283\) −3.80874 + 21.6004i −0.226406 + 1.28401i 0.633573 + 0.773683i \(0.281588\pi\)
−0.859979 + 0.510330i \(0.829523\pi\)
\(284\) 0.769899 0.646022i 0.0456851 0.0383344i
\(285\) 0 0
\(286\) 3.93029 6.80746i 0.232403 0.402534i
\(287\) −24.9684 + 4.40261i −1.47384 + 0.259878i
\(288\) 0.298573 + 0.517144i 0.0175936 + 0.0304730i
\(289\) −26.4979 + 9.64445i −1.55870 + 0.567321i
\(290\) 0 0
\(291\) 1.87739 + 5.15809i 0.110055 + 0.302373i
\(292\) 4.04164 + 0.712650i 0.236519 + 0.0417047i
\(293\) 15.0632 17.9516i 0.880001 1.04874i −0.118442 0.992961i \(-0.537790\pi\)
0.998443 0.0557832i \(-0.0177656\pi\)
\(294\) 1.55383 + 1.85178i 0.0906210 + 0.107998i
\(295\) 0 0
\(296\) −18.2256 + 1.93684i −1.05934 + 0.112576i
\(297\) 12.7783i 0.741471i
\(298\) 11.7120 9.82757i 0.678461 0.569296i
\(299\) −17.7679 14.9091i −1.02755 0.862214i
\(300\) 0 0
\(301\) 1.80725 + 4.96539i 0.104168 + 0.286200i
\(302\) 16.8635 0.970383
\(303\) −0.494120 1.35758i −0.0283865 0.0779912i
\(304\) 19.6350 11.3363i 1.12615 0.650181i
\(305\) 0 0
\(306\) 1.38027 2.39070i 0.0789049 0.136667i
\(307\) 10.1497 5.85992i 0.579273 0.334443i −0.181571 0.983378i \(-0.558118\pi\)
0.760844 + 0.648934i \(0.224785\pi\)
\(308\) −1.44697 1.72443i −0.0824485 0.0982583i
\(309\) −8.05465 1.42025i −0.458213 0.0807953i
\(310\) 0 0
\(311\) −4.31379 + 11.8520i −0.244612 + 0.672067i 0.755249 + 0.655438i \(0.227516\pi\)
−0.999862 + 0.0166295i \(0.994706\pi\)
\(312\) −4.37250 + 12.0133i −0.247544 + 0.680122i
\(313\) 5.05637 + 28.6761i 0.285803 + 1.62087i 0.702404 + 0.711778i \(0.252110\pi\)
−0.416602 + 0.909089i \(0.636779\pi\)
\(314\) 1.06541 1.26970i 0.0601244 0.0716534i
\(315\) 0 0
\(316\) 0.182282 0.0321413i 0.0102542 0.00180809i
\(317\) 0.0415473 0.114150i 0.00233353 0.00641132i −0.938520 0.345224i \(-0.887803\pi\)
0.940854 + 0.338812i \(0.110025\pi\)
\(318\) −27.1120 9.86797i −1.52037 0.553368i
\(319\) −1.16722 0.673897i −0.0653520 0.0377310i
\(320\) 0 0
\(321\) −9.51244 + 7.98189i −0.530933 + 0.445505i
\(322\) 28.5453 16.4806i 1.59077 0.918430i
\(323\) 41.0390 + 23.6939i 2.28347 + 1.31836i
\(324\) 0.462722 + 2.62423i 0.0257068 + 0.145790i
\(325\) 0 0
\(326\) −15.9237 + 5.79576i −0.881933 + 0.320997i
\(327\) 6.88056 0.380496
\(328\) 25.1549 9.15562i 1.38894 0.505534i
\(329\) −2.47642 + 14.0445i −0.136529 + 0.774297i
\(330\) 0 0
\(331\) 16.9850 + 20.2419i 0.933579 + 1.11260i 0.993436 + 0.114389i \(0.0364909\pi\)
−0.0598575 + 0.998207i \(0.519065\pi\)
\(332\) 0.585589i 0.0321384i
\(333\) 1.87894 + 0.466171i 0.102965 + 0.0255460i
\(334\) 6.83847 0.374184
\(335\) 0 0
\(336\) −11.5155 9.66263i −0.628221 0.527140i
\(337\) −30.7518 5.42237i −1.67516 0.295375i −0.746244 0.665673i \(-0.768145\pi\)
−0.928913 + 0.370298i \(0.879256\pi\)
\(338\) −7.62244 + 2.77434i −0.414606 + 0.150904i
\(339\) 22.5701i 1.22584i
\(340\) 0 0
\(341\) −8.29504 + 4.78914i −0.449201 + 0.259347i
\(342\) −2.85028 + 0.502582i −0.154126 + 0.0271765i
\(343\) 14.4725 + 8.35571i 0.781443 + 0.451166i
\(344\) −2.78955 4.83164i −0.150402 0.260504i
\(345\) 0 0
\(346\) 13.9575 + 2.46108i 0.750358 + 0.132308i
\(347\) 1.38753 2.40327i 0.0744863 0.129014i −0.826376 0.563118i \(-0.809602\pi\)
0.900863 + 0.434104i \(0.142935\pi\)
\(348\) 0.295855 + 0.107682i 0.0158595 + 0.00577238i
\(349\) 18.2247 + 6.63323i 0.975544 + 0.355069i 0.780106 0.625647i \(-0.215165\pi\)
0.195438 + 0.980716i \(0.437387\pi\)
\(350\) 0 0
\(351\) 9.04977 10.7851i 0.483041 0.575666i
\(352\) 3.37991 + 2.83608i 0.180150 + 0.151164i
\(353\) −5.74182 32.5635i −0.305606 1.73318i −0.620637 0.784098i \(-0.713126\pi\)
0.315030 0.949082i \(-0.397985\pi\)
\(354\) −1.24388 0.452734i −0.0661113 0.0240626i
\(355\) 0 0
\(356\) 1.85518 + 1.07109i 0.0983242 + 0.0567675i
\(357\) 5.45586 30.9417i 0.288755 1.63761i
\(358\) −19.6006 23.3591i −1.03592 1.23457i
\(359\) −2.73471 4.73666i −0.144332 0.249991i 0.784791 0.619760i \(-0.212770\pi\)
−0.929124 + 0.369769i \(0.879437\pi\)
\(360\) 0 0
\(361\) −5.32804 30.2168i −0.280423 1.59036i
\(362\) 4.59938 + 7.96636i 0.241738 + 0.418703i
\(363\) 3.06384 + 8.41783i 0.160810 + 0.441821i
\(364\) 2.48021i 0.129998i
\(365\) 0 0
\(366\) −0.839100 + 4.75878i −0.0438605 + 0.248745i
\(367\) −1.67622 + 1.99764i −0.0874978 + 0.104276i −0.808017 0.589159i \(-0.799459\pi\)
0.720519 + 0.693435i \(0.243904\pi\)
\(368\) −22.0588 + 18.5096i −1.14990 + 0.964878i
\(369\) −2.82749 −0.147193
\(370\) 0 0
\(371\) 38.9709 2.02327
\(372\) 1.71400 1.43822i 0.0888669 0.0745682i
\(373\) −8.29681 + 9.88776i −0.429593 + 0.511969i −0.936805 0.349853i \(-0.886232\pi\)
0.507212 + 0.861821i \(0.330676\pi\)
\(374\) 3.54189 20.0871i 0.183147 1.03868i
\(375\) 0 0
\(376\) 15.0574i 0.776526i
\(377\) −0.507894 1.39543i −0.0261579 0.0718682i
\(378\) 10.0037 + 17.3269i 0.514535 + 0.891201i
\(379\) −0.171916 0.974984i −0.00883073 0.0500816i 0.980074 0.198633i \(-0.0636501\pi\)
−0.988905 + 0.148551i \(0.952539\pi\)
\(380\) 0 0
\(381\) −6.43262 11.1416i −0.329553 0.570802i
\(382\) −18.2563 21.7570i −0.934072 1.11318i
\(383\) 0.221686 1.25724i 0.0113276 0.0642422i −0.978620 0.205677i \(-0.934060\pi\)
0.989948 + 0.141435i \(0.0451715\pi\)
\(384\) 10.8785 + 6.28069i 0.555140 + 0.320510i
\(385\) 0 0
\(386\) −12.4341 4.52563i −0.632878 0.230349i
\(387\) 0.102329 + 0.580336i 0.00520167 + 0.0295001i
\(388\) 0.861318 + 0.722732i 0.0437268 + 0.0366912i
\(389\) −11.7099 + 13.9554i −0.593718 + 0.707565i −0.976316 0.216350i \(-0.930585\pi\)
0.382598 + 0.923915i \(0.375029\pi\)
\(390\) 0 0
\(391\) −56.5561 20.5847i −2.86017 1.04102i
\(392\) 3.23952 + 1.17909i 0.163621 + 0.0595530i
\(393\) −0.159303 + 0.275921i −0.00803577 + 0.0139184i
\(394\) −25.5473 4.50467i −1.28705 0.226942i
\(395\) 0 0
\(396\) −0.125522 0.217411i −0.00630774 0.0109253i
\(397\) −5.42274 3.13082i −0.272160 0.157131i 0.357709 0.933833i \(-0.383558\pi\)
−0.629869 + 0.776702i \(0.716891\pi\)
\(398\) −14.9580 + 2.63750i −0.749778 + 0.132206i
\(399\) −28.5276 + 16.4704i −1.42817 + 0.824552i
\(400\) 0 0
\(401\) 13.5132i 0.674817i 0.941358 + 0.337409i \(0.109550\pi\)
−0.941358 + 0.337409i \(0.890450\pi\)
\(402\) −24.4484 + 8.89849i −1.21938 + 0.443816i
\(403\) −10.3929 1.83255i −0.517708 0.0912858i
\(404\) −0.226695 0.190220i −0.0112785 0.00946378i
\(405\) 0 0
\(406\) 2.11029 0.104732
\(407\) 14.2238 1.51157i 0.705048 0.0749257i
\(408\) 33.1733i 1.64232i
\(409\) −10.5817 12.6108i −0.523234 0.623566i 0.438108 0.898922i \(-0.355649\pi\)
−0.961342 + 0.275356i \(0.911204\pi\)
\(410\) 0 0
\(411\) −3.78506 + 21.4662i −0.186703 + 1.05885i
\(412\) −1.57430 + 0.572999i −0.0775602 + 0.0282296i
\(413\) 1.78795 0.0879794
\(414\) 3.45422 1.25723i 0.169766 0.0617897i
\(415\) 0 0
\(416\) 0.844150 + 4.78741i 0.0413878 + 0.234722i
\(417\) −14.5019 8.37265i −0.710159 0.410011i
\(418\) −18.5199 + 10.6924i −0.905836 + 0.522984i
\(419\) 23.1506 19.4256i 1.13098 0.949005i 0.131874 0.991267i \(-0.457901\pi\)
0.999107 + 0.0422615i \(0.0134563\pi\)
\(420\) 0 0
\(421\) 0.289164 + 0.166949i 0.0140930 + 0.00813660i 0.507030 0.861928i \(-0.330743\pi\)
−0.492937 + 0.870065i \(0.664077\pi\)
\(422\) −17.6075 6.40860i −0.857119 0.311966i
\(423\) −0.543959 + 1.49452i −0.0264482 + 0.0726658i
\(424\) −40.5217 + 7.14507i −1.96791 + 0.346996i
\(425\) 0 0
\(426\) −4.06903 + 4.84928i −0.197145 + 0.234948i
\(427\) −1.13339 6.42776i −0.0548485 0.311061i
\(428\) −0.869954 + 2.39018i −0.0420508 + 0.115534i
\(429\) 3.41244 9.37560i 0.164754 0.452658i
\(430\) 0 0
\(431\) 36.9030 + 6.50699i 1.77755 + 0.313431i 0.963570 0.267456i \(-0.0861831\pi\)
0.813984 + 0.580887i \(0.197294\pi\)
\(432\) −11.2353 13.3897i −0.540557 0.644211i
\(433\) −32.7443 + 18.9049i −1.57359 + 0.908512i −0.577866 + 0.816132i \(0.696114\pi\)
−0.995724 + 0.0923806i \(0.970552\pi\)
\(434\) 7.49853 12.9878i 0.359941 0.623436i
\(435\) 0 0
\(436\) 1.22057 0.704694i 0.0584545 0.0337487i
\(437\) 21.5818 + 59.2955i 1.03240 + 2.83649i
\(438\) −25.8493 −1.23513
\(439\) 4.40358 + 12.0987i 0.210171 + 0.577441i 0.999324 0.0367557i \(-0.0117023\pi\)
−0.789153 + 0.614197i \(0.789480\pi\)
\(440\) 0 0
\(441\) −0.278942 0.234060i −0.0132829 0.0111457i
\(442\) 17.2154 14.4454i 0.818853 0.687099i
\(443\) 1.16412i 0.0553089i −0.999618 0.0276545i \(-0.991196\pi\)
0.999618 0.0276545i \(-0.00880381\pi\)
\(444\) −3.21086 + 0.924709i −0.152381 + 0.0438848i
\(445\) 0 0
\(446\) 6.97950 + 8.31784i 0.330489 + 0.393861i
\(447\) 12.4740 14.8659i 0.589999 0.703133i
\(448\) −24.8834 4.38762i −1.17563 0.207296i
\(449\) −7.22003 19.8369i −0.340734 0.936160i −0.985182 0.171512i \(-0.945135\pi\)
0.644448 0.764649i \(-0.277087\pi\)
\(450\) 0 0
\(451\) −19.6316 + 7.14534i −0.924418 + 0.336461i
\(452\) −2.31158 4.00378i −0.108728 0.188322i
\(453\) 21.0793 3.71685i 0.990393 0.174633i
\(454\) 8.54760 14.8049i 0.401159 0.694827i
\(455\) 0 0
\(456\) 26.6431 22.3562i 1.24768 1.04693i
\(457\) 4.32794 24.5449i 0.202452 1.14816i −0.698946 0.715174i \(-0.746347\pi\)
0.901399 0.432990i \(-0.142541\pi\)
\(458\) −0.476729 + 0.825718i −0.0222761 + 0.0385833i
\(459\) 12.4949 34.3294i 0.583211 1.60236i
\(460\) 0 0
\(461\) −16.2811 + 2.87080i −0.758288 + 0.133707i −0.539407 0.842045i \(-0.681352\pi\)
−0.218881 + 0.975752i \(0.570241\pi\)
\(462\) 10.8615 + 9.11384i 0.505320 + 0.424014i
\(463\) −26.2233 22.0040i −1.21870 1.02261i −0.998892 0.0470695i \(-0.985012\pi\)
−0.219810 0.975543i \(-0.570544\pi\)
\(464\) −1.81559 + 0.320138i −0.0842868 + 0.0148620i
\(465\) 0 0
\(466\) −6.03471 + 16.5802i −0.279553 + 0.768065i
\(467\) 13.5190 23.4156i 0.625586 1.08355i −0.362842 0.931851i \(-0.618193\pi\)
0.988427 0.151695i \(-0.0484733\pi\)
\(468\) 0.0480308 0.272396i 0.00222022 0.0125915i
\(469\) 26.9205 22.5890i 1.24307 1.04306i
\(470\) 0 0
\(471\) 1.05190 1.82195i 0.0484692 0.0839511i
\(472\) −1.85910 + 0.327810i −0.0855722 + 0.0150887i
\(473\) 2.17705 + 3.77076i 0.100101 + 0.173380i
\(474\) −1.09552 + 0.398738i −0.0503191 + 0.0183146i
\(475\) 0 0
\(476\) −2.20116 6.04763i −0.100890 0.277193i
\(477\) 4.28009 + 0.754695i 0.195972 + 0.0345551i
\(478\) 17.9088 21.3429i 0.819129 0.976200i
\(479\) 0.187936 + 0.223973i 0.00858700 + 0.0102336i 0.770321 0.637656i \(-0.220096\pi\)
−0.761734 + 0.647890i \(0.775652\pi\)
\(480\) 0 0
\(481\) 13.0757 + 8.79773i 0.596199 + 0.401142i
\(482\) 23.5970i 1.07481i
\(483\) 32.0492 26.8924i 1.45829 1.22365i
\(484\) 1.40564 + 1.17947i 0.0638928 + 0.0536124i
\(485\) 0 0
\(486\) 1.45308 + 3.99231i 0.0659131 + 0.181095i
\(487\) 19.2312 0.871447 0.435723 0.900081i \(-0.356493\pi\)
0.435723 + 0.900081i \(0.356493\pi\)
\(488\) 2.35698 + 6.47575i 0.106695 + 0.293143i
\(489\) −18.6272 + 10.7544i −0.842352 + 0.486332i
\(490\) 0 0
\(491\) 14.6005 25.2888i 0.658912 1.14127i −0.321986 0.946744i \(-0.604350\pi\)
0.980898 0.194524i \(-0.0623162\pi\)
\(492\) 4.22641 2.44012i 0.190541 0.110009i
\(493\) −2.47685 2.95179i −0.111552 0.132942i
\(494\) −23.2037 4.09143i −1.04398 0.184082i
\(495\) 0 0
\(496\) −4.48108 + 12.3117i −0.201207 + 0.552810i
\(497\) 2.92442 8.03477i 0.131178 0.360409i
\(498\) 0.640481 + 3.63235i 0.0287006 + 0.162769i
\(499\) −9.17239 + 10.9312i −0.410613 + 0.489349i −0.931225 0.364444i \(-0.881259\pi\)
0.520613 + 0.853793i \(0.325704\pi\)
\(500\) 0 0
\(501\) 8.54809 1.50726i 0.381900 0.0673393i
\(502\) 8.68941 23.8740i 0.387827 1.06555i
\(503\) 20.9054 + 7.60895i 0.932127 + 0.339267i 0.763052 0.646337i \(-0.223700\pi\)
0.169075 + 0.985603i \(0.445922\pi\)
\(504\) 2.37003 + 1.36834i 0.105570 + 0.0609507i
\(505\) 0 0
\(506\) 20.8060 17.4583i 0.924940 0.776117i
\(507\) −8.91656 + 5.14798i −0.395998 + 0.228630i
\(508\) −2.28221 1.31763i −0.101257 0.0584605i
\(509\) −1.69233 9.59770i −0.0750114 0.425411i −0.999068 0.0431559i \(-0.986259\pi\)
0.924057 0.382255i \(-0.124852\pi\)
\(510\) 0 0
\(511\) 32.8095 11.9417i 1.45141 0.528269i
\(512\) 25.4193 1.12339
\(513\) −35.9922 + 13.1001i −1.58909 + 0.578383i
\(514\) −0.779829 + 4.42263i −0.0343968 + 0.195074i
\(515\) 0 0
\(516\) −0.653786 0.779152i −0.0287813 0.0343003i
\(517\) 11.7513i 0.516821i
\(518\) −18.1037 + 13.1850i −0.795429 + 0.579316i
\(519\) 17.9893 0.789642
\(520\) 0 0
\(521\) −4.73873 3.97627i −0.207608 0.174203i 0.533055 0.846081i \(-0.321044\pi\)
−0.740663 + 0.671877i \(0.765488\pi\)
\(522\) 0.231768 + 0.0408670i 0.0101442 + 0.00178870i
\(523\) −4.42181 + 1.60941i −0.193352 + 0.0703744i −0.436881 0.899519i \(-0.643917\pi\)
0.243529 + 0.969894i \(0.421695\pi\)
\(524\) 0.0652620i 0.00285098i
\(525\) 0 0
\(526\) 23.1491 13.3652i 1.00935 0.582748i
\(527\) −26.9679 + 4.75517i −1.17474 + 0.207139i
\(528\) −10.7273 6.19339i −0.466845 0.269533i
\(529\) −28.5713 49.4870i −1.24223 2.15161i
\(530\) 0 0
\(531\) 0.196367 + 0.0346248i 0.00852159 + 0.00150259i
\(532\) −3.37374 + 5.84348i −0.146270 + 0.253347i
\(533\) −21.6299 7.87264i −0.936895 0.341002i
\(534\) −12.6790 4.61476i −0.548672 0.199700i
\(535\) 0 0
\(536\) −23.8502 + 28.4236i −1.03017 + 1.22771i
\(537\) −29.6493 24.8787i −1.27946 1.07360i
\(538\) 1.52395 + 8.64276i 0.0657023 + 0.372616i
\(539\) −2.52823 0.920199i −0.108898 0.0396358i
\(540\) 0 0
\(541\) −5.57730 3.22006i −0.239787 0.138441i 0.375292 0.926907i \(-0.377542\pi\)
−0.615079 + 0.788466i \(0.710876\pi\)
\(542\) −4.50742 + 25.5629i −0.193610 + 1.09802i
\(543\) 7.50508 + 8.94421i 0.322074 + 0.383833i
\(544\) 6.30710 + 10.9242i 0.270415 + 0.468372i
\(545\) 0 0
\(546\) 2.71270 + 15.3845i 0.116093 + 0.658396i
\(547\) −4.81629 8.34206i −0.205930 0.356681i 0.744499 0.667624i \(-0.232688\pi\)
−0.950429 + 0.310943i \(0.899355\pi\)
\(548\) 1.52708 + 4.19561i 0.0652336 + 0.179228i
\(549\) 0.727895i 0.0310658i
\(550\) 0 0
\(551\) −0.701526 + 3.97855i −0.0298860 + 0.169492i
\(552\) −28.3940 + 33.8386i −1.20853 + 1.44027i
\(553\) 1.20630 1.01220i 0.0512970 0.0430433i
\(554\) −14.5319 −0.617401
\(555\) 0 0
\(556\) −3.43004 −0.145466
\(557\) 4.71112 3.95310i 0.199616 0.167498i −0.537500 0.843264i \(-0.680631\pi\)
0.737117 + 0.675766i \(0.236187\pi\)
\(558\) 1.07506 1.28121i 0.0455111 0.0542380i
\(559\) −0.833042 + 4.72441i −0.0352339 + 0.199821i
\(560\) 0 0
\(561\) 25.8895i 1.09306i
\(562\) 7.59488 + 20.8668i 0.320371 + 0.880211i
\(563\) 12.1117 + 20.9781i 0.510448 + 0.884121i 0.999927 + 0.0121061i \(0.00385357\pi\)
−0.489479 + 0.872015i \(0.662813\pi\)
\(564\) −0.476678 2.70338i −0.0200718 0.113833i
\(565\) 0 0
\(566\) −14.1492 24.5071i −0.594734 1.03011i
\(567\) 14.5722 + 17.3665i 0.611975 + 0.729323i
\(568\) −1.56767 + 8.89068i −0.0657778 + 0.373045i
\(569\) −8.71366 5.03083i −0.365296 0.210904i 0.306106 0.951998i \(-0.400974\pi\)
−0.671401 + 0.741094i \(0.734307\pi\)
\(570\) 0 0
\(571\) −12.1848 4.43491i −0.509918 0.185595i 0.0742313 0.997241i \(-0.476350\pi\)
−0.584150 + 0.811646i \(0.698572\pi\)
\(572\) −0.354887 2.01266i −0.0148386 0.0841537i
\(573\) −27.6158 23.1724i −1.15367 0.968040i
\(574\) 21.0260 25.0578i 0.877609 1.04589i
\(575\) 0 0
\(576\) −2.64792 0.963765i −0.110330 0.0401569i
\(577\) 36.3948 + 13.2466i 1.51513 + 0.551464i 0.959927 0.280249i \(-0.0904169\pi\)
0.555207 + 0.831712i \(0.312639\pi\)
\(578\) 18.1905 31.5069i 0.756627 1.31052i
\(579\) −16.5401 2.91646i −0.687382 0.121204i
\(580\) 0 0
\(581\) −2.49098 4.31450i −0.103343 0.178996i
\(582\) −6.13315 3.54098i −0.254227 0.146778i
\(583\) 31.6244 5.57624i 1.30975 0.230944i
\(584\) −31.9257 + 18.4323i −1.32109 + 0.762734i
\(585\) 0 0
\(586\) 30.2342i 1.24897i
\(587\) 7.72288 2.81090i 0.318757 0.116018i −0.177686 0.984087i \(-0.556861\pi\)
0.496443 + 0.868069i \(0.334639\pi\)
\(588\) 0.618944 + 0.109137i 0.0255248 + 0.00450072i
\(589\) 21.9934 + 18.4546i 0.906221 + 0.760410i
\(590\) 0 0
\(591\) −32.9270 −1.35443
\(592\) 13.5753 14.0901i 0.557942 0.579101i
\(593\) 36.7123i 1.50759i 0.657107 + 0.753797i \(0.271780\pi\)
−0.657107 + 0.753797i \(0.728220\pi\)
\(594\) 10.5972 + 12.6292i 0.434807 + 0.518182i
\(595\) 0 0
\(596\) 0.690262 3.91467i 0.0282743 0.160351i
\(597\) −18.1162 + 6.59376i −0.741447 + 0.269865i
\(598\) 29.9249 1.22372
\(599\) −2.30119 + 0.837565i −0.0940241 + 0.0342220i −0.388604 0.921405i \(-0.627043\pi\)
0.294580 + 0.955627i \(0.404820\pi\)
\(600\) 0 0
\(601\) 2.87747 + 16.3190i 0.117375 + 0.665664i 0.985547 + 0.169402i \(0.0541836\pi\)
−0.868172 + 0.496263i \(0.834705\pi\)
\(602\) −5.90402 3.40869i −0.240630 0.138928i
\(603\) 3.39407 1.95956i 0.138217 0.0797996i
\(604\) 3.35866 2.81825i 0.136662 0.114673i
\(605\) 0 0
\(606\) 1.61422 + 0.931968i 0.0655730 + 0.0378586i
\(607\) 10.0034 + 3.64095i 0.406026 + 0.147781i 0.536956 0.843610i \(-0.319574\pi\)
−0.130930 + 0.991392i \(0.541796\pi\)
\(608\) 4.52328 12.4276i 0.183443 0.504006i
\(609\) 2.63786 0.465126i 0.106892 0.0188479i
\(610\) 0 0
\(611\) −8.32244 + 9.91830i −0.336690 + 0.401251i
\(612\) −0.124632 0.706824i −0.00503796 0.0285717i
\(613\) −12.6091 + 34.6433i −0.509278 + 1.39923i 0.372705 + 0.927950i \(0.378430\pi\)
−0.881983 + 0.471280i \(0.843792\pi\)
\(614\) −5.17158 + 14.2088i −0.208708 + 0.573420i
\(615\) 0 0
\(616\) 19.9134 + 3.51127i 0.802334 + 0.141473i
\(617\) −2.52478 3.00892i −0.101644 0.121135i 0.712824 0.701343i \(-0.247416\pi\)
−0.814468 + 0.580208i \(0.802971\pi\)
\(618\) 9.13852 5.27612i 0.367605 0.212237i
\(619\) −10.9070 + 18.8915i −0.438390 + 0.759315i −0.997566 0.0697351i \(-0.977785\pi\)
0.559175 + 0.829050i \(0.311118\pi\)
\(620\) 0 0
\(621\) 42.1290 24.3232i 1.69058 0.976056i
\(622\) −5.56555 15.2912i −0.223158 0.613123i
\(623\) 18.2248 0.730160
\(624\) −4.66776 12.8246i −0.186860 0.513393i
\(625\) 0 0
\(626\) −28.7787 24.1482i −1.15023 0.965158i
\(627\) −20.7931 + 17.4475i −0.830397 + 0.696786i
\(628\) 0.430936i 0.0171962i
\(629\) 39.6910 + 9.84746i 1.58258 + 0.392644i
\(630\) 0 0
\(631\) −1.76384 2.10206i −0.0702172 0.0836816i 0.729792 0.683669i \(-0.239617\pi\)
−0.800010 + 0.599987i \(0.795172\pi\)
\(632\) −1.06872 + 1.27365i −0.0425114 + 0.0506631i
\(633\) −23.4219 4.12991i −0.930936 0.164149i
\(634\) 0.0536034 + 0.147274i 0.00212886 + 0.00584901i
\(635\) 0 0
\(636\) −7.04899 + 2.56562i −0.279511 + 0.101734i
\(637\) −1.48217 2.56719i −0.0587257 0.101716i
\(638\) 1.71248 0.301956i 0.0677976 0.0119545i
\(639\) 0.476780 0.825807i 0.0188611 0.0326684i
\(640\) 0 0
\(641\) 1.69847 1.42518i 0.0670855 0.0562914i −0.608628 0.793455i \(-0.708280\pi\)
0.675714 + 0.737164i \(0.263836\pi\)
\(642\) 2.78201 15.7775i 0.109797 0.622690i
\(643\) 8.79630 15.2356i 0.346892 0.600835i −0.638804 0.769370i \(-0.720570\pi\)
0.985696 + 0.168535i \(0.0539037\pi\)
\(644\) 2.93103 8.05295i 0.115499 0.317331i
\(645\) 0 0
\(646\) −60.2098 + 10.6166i −2.36892 + 0.417705i
\(647\) 15.5558 + 13.0529i 0.611563 + 0.513162i 0.895139 0.445788i \(-0.147076\pi\)
−0.283576 + 0.958950i \(0.591521\pi\)
\(648\) −18.3361 15.3858i −0.720311 0.604413i
\(649\) 1.45090 0.255833i 0.0569529 0.0100423i
\(650\) 0 0
\(651\) 6.51053 17.8875i 0.255168 0.701068i
\(652\) −2.20289 + 3.81553i −0.0862720 + 0.149428i
\(653\) −4.59929 + 26.0839i −0.179984 + 1.02074i 0.752248 + 0.658880i \(0.228969\pi\)
−0.932232 + 0.361860i \(0.882142\pi\)
\(654\) −6.80029 + 5.70612i −0.265912 + 0.223127i
\(655\) 0 0
\(656\) −14.2884 + 24.7483i −0.557870 + 0.966258i
\(657\) 3.83465 0.676152i 0.149604 0.0263792i
\(658\) −9.19970 15.9344i −0.358642 0.621186i
\(659\) −17.8919 + 6.51211i −0.696969 + 0.253676i −0.666116 0.745848i \(-0.732045\pi\)
−0.0308527 + 0.999524i \(0.509822\pi\)
\(660\) 0 0
\(661\) −8.20350 22.5389i −0.319079 0.876663i −0.990736 0.135801i \(-0.956639\pi\)
0.671657 0.740862i \(-0.265583\pi\)
\(662\) −33.5736 5.91994i −1.30488 0.230085i
\(663\) 18.3353 21.8512i 0.712086 0.848631i
\(664\) 3.38114 + 4.02949i 0.131214 + 0.156375i
\(665\) 0 0
\(666\) −2.24362 + 1.09749i −0.0869385 + 0.0425269i
\(667\) 5.13100i 0.198673i
\(668\) 1.36200 1.14286i 0.0526975 0.0442184i
\(669\) 10.5577 + 8.85896i 0.408184 + 0.342507i
\(670\) 0 0
\(671\) −1.83946 5.05388i −0.0710116 0.195103i
\(672\) −8.76857 −0.338255
\(673\) 4.77601 + 13.1220i 0.184102 + 0.505815i 0.997070 0.0764927i \(-0.0243722\pi\)
−0.812969 + 0.582308i \(0.802150\pi\)
\(674\) 34.8899 20.1437i 1.34391 0.775905i
\(675\) 0 0
\(676\) −1.05449 + 1.82643i −0.0405574 + 0.0702474i
\(677\) 22.8026 13.1651i 0.876375 0.505976i 0.00691375 0.999976i \(-0.497799\pi\)
0.869462 + 0.494001i \(0.164466\pi\)
\(678\) 18.7176 + 22.3067i 0.718844 + 0.856685i
\(679\) 9.42039 + 1.66107i 0.361521 + 0.0637460i
\(680\) 0 0
\(681\) 7.42138 20.3901i 0.284388 0.781349i
\(682\) 4.22658 11.6124i 0.161844 0.444663i
\(683\) −4.35911 24.7217i −0.166797 0.945951i −0.947193 0.320665i \(-0.896094\pi\)
0.780396 0.625286i \(-0.215018\pi\)
\(684\) −0.483692 + 0.576442i −0.0184944 + 0.0220408i
\(685\) 0 0
\(686\) −21.2332 + 3.74398i −0.810686 + 0.142946i
\(687\) −0.413915 + 1.13722i −0.0157919 + 0.0433878i
\(688\) 5.59665 + 2.03701i 0.213370 + 0.0776604i
\(689\) 30.6408 + 17.6905i 1.16732 + 0.673953i
\(690\) 0 0
\(691\) 18.1417 15.2227i 0.690143 0.579099i −0.228808 0.973472i \(-0.573483\pi\)
0.918950 + 0.394373i \(0.129038\pi\)
\(692\) 3.19118 1.84243i 0.121310 0.0700386i
\(693\) −1.84965 1.06790i −0.0702624 0.0405660i
\(694\) 0.621715 + 3.52592i 0.0236000 + 0.133842i
\(695\) 0 0
\(696\) −2.65756 + 0.967272i −0.100734 + 0.0366643i
\(697\) −59.7282 −2.26237
\(698\) −23.5131 + 8.55805i −0.889982 + 0.323927i
\(699\) −3.88896 + 22.0554i −0.147094 + 0.834212i
\(700\) 0 0
\(701\) 20.2331 + 24.1129i 0.764194 + 0.910730i 0.998105 0.0615274i \(-0.0195972\pi\)
−0.233912 + 0.972258i \(0.575153\pi\)
\(702\) 18.1644i 0.685569i
\(703\) −18.8396 38.5141i −0.710550 1.45259i
\(704\) −20.8204 −0.784700
\(705\) 0 0
\(706\) 32.6801 + 27.4218i 1.22993 + 1.03203i
\(707\) −2.47940 0.437185i −0.0932475 0.0164420i
\(708\) −0.323402 + 0.117709i −0.0121542 + 0.00442376i
\(709\) 28.7726i 1.08058i −0.841480 0.540289i \(-0.818315\pi\)
0.841480 0.540289i \(-0.181685\pi\)
\(710\) 0 0
\(711\) 0.152087 0.0878073i 0.00570370 0.00329303i
\(712\) −18.9500 + 3.34140i −0.710182 + 0.125224i
\(713\) −31.5789 18.2321i −1.18264 0.682797i
\(714\) 20.2681 + 35.1053i 0.758513 + 1.31378i
\(715\) 0 0
\(716\) −7.80761 1.37669i −0.291784 0.0514494i
\(717\) 17.6818 30.6258i 0.660340 1.14374i
\(718\) 6.63096 + 2.41347i 0.247465 + 0.0900700i
\(719\) 15.1471 + 5.51309i 0.564891 + 0.205603i 0.608650 0.793439i \(-0.291711\pi\)
−0.0437595 + 0.999042i \(0.513934\pi\)
\(720\) 0 0
\(721\) −9.16172 + 10.9185i −0.341200 + 0.406627i
\(722\) 30.3250 + 25.4457i 1.12858 + 0.946991i
\(723\) 5.20098 + 29.4962i 0.193427 + 1.09698i
\(724\) 2.24740 + 0.817986i 0.0835239 + 0.0304002i
\(725\) 0 0
\(726\) −10.0091 5.77875i −0.371472 0.214470i
\(727\) −5.49224 + 31.1480i −0.203696 + 1.15522i 0.695783 + 0.718252i \(0.255058\pi\)
−0.899479 + 0.436964i \(0.856054\pi\)
\(728\) 14.3206 + 17.0666i 0.530755 + 0.632529i
\(729\) 14.6122 + 25.3090i 0.541192 + 0.937372i
\(730\) 0 0
\(731\) 2.16161 + 12.2591i 0.0799500 + 0.453419i
\(732\) 0.628172 + 1.08803i 0.0232179 + 0.0402146i
\(733\) 3.72052 + 10.2220i 0.137420 + 0.377560i 0.989245 0.146268i \(-0.0467260\pi\)
−0.851825 + 0.523827i \(0.824504\pi\)
\(734\) 3.36444i 0.124184i
\(735\) 0 0
\(736\) −2.91675 + 16.5417i −0.107513 + 0.609736i
\(737\) 18.6135 22.1827i 0.685636 0.817109i
\(738\) 2.79450 2.34486i 0.102867 0.0863156i
\(739\) 3.13742 0.115412 0.0577059 0.998334i \(-0.481621\pi\)
0.0577059 + 0.998334i \(0.481621\pi\)
\(740\) 0 0
\(741\) −29.9064 −1.09864
\(742\) −38.5163 + 32.3190i −1.41398 + 1.18647i
\(743\) −29.7002 + 35.3953i −1.08959 + 1.29853i −0.138250 + 0.990397i \(0.544148\pi\)
−0.951344 + 0.308130i \(0.900297\pi\)
\(744\) −3.49005 + 19.7930i −0.127951 + 0.725648i
\(745\) 0 0
\(746\) 16.6530i 0.609711i
\(747\) −0.190026 0.522091i −0.00695268 0.0191023i
\(748\) −2.65155 4.59262i −0.0969504 0.167923i
\(749\) 3.75770 + 21.3110i 0.137303 + 0.778687i
\(750\) 0 0
\(751\) 10.3282 + 17.8890i 0.376882 + 0.652779i 0.990607 0.136741i \(-0.0436628\pi\)
−0.613724 + 0.789520i \(0.710329\pi\)
\(752\) 10.3323 + 12.3135i 0.376780 + 0.449028i
\(753\) 5.59973 31.7577i 0.204066 1.15731i
\(754\) 1.65921 + 0.957946i 0.0604249 + 0.0348863i
\(755\) 0 0
\(756\) 4.88812 + 1.77913i 0.177779 + 0.0647064i
\(757\) 3.11344 + 17.6572i 0.113160 + 0.641761i 0.987645 + 0.156709i \(0.0500884\pi\)
−0.874485 + 0.485053i \(0.838800\pi\)
\(758\) 0.978475 + 0.821038i 0.0355398 + 0.0298215i
\(759\) 22.1596 26.4087i 0.804341 0.958576i
\(760\) 0 0
\(761\) 45.7740 + 16.6604i 1.65931 + 0.603938i 0.990254 0.139277i \(-0.0444777\pi\)
0.669053 + 0.743215i \(0.266700\pi\)
\(762\) 15.5974 + 5.67700i 0.565035 + 0.205656i
\(763\) 5.99526 10.3841i 0.217043 0.375929i
\(764\) −7.27212 1.28227i −0.263096 0.0463910i
\(765\) 0 0
\(766\) 0.823547 + 1.42642i 0.0297559 + 0.0515388i
\(767\) 1.40577 + 0.811624i 0.0507596 + 0.0293061i
\(768\) 12.5977 2.22131i 0.454580 0.0801547i
\(769\) 38.8454 22.4274i 1.40080 0.808754i 0.406327 0.913728i \(-0.366809\pi\)
0.994475 + 0.104974i \(0.0334760\pi\)
\(770\) 0 0
\(771\) 5.70017i 0.205287i
\(772\) −3.23280 + 1.17664i −0.116351 + 0.0423483i
\(773\) 17.1010 + 3.01536i 0.615079 + 0.108455i 0.472503 0.881329i \(-0.343350\pi\)
0.142576 + 0.989784i \(0.454462\pi\)
\(774\) −0.582414 0.488703i −0.0209344 0.0175661i
\(775\) 0 0
\(776\) −10.0998 −0.362562
\(777\) −19.7235 + 20.4715i −0.707576 + 0.734410i
\(778\) 23.5037i 0.842650i
\(779\) 40.2521 + 47.9706i 1.44218 + 1.71873i
\(780\) 0 0
\(781\) 1.22346 6.93857i 0.0437787 0.248281i
\(782\) 72.9675 26.5580i 2.60931 0.949712i
\(783\) 3.11450 0.111303
\(784\) −3.45828 + 1.25871i −0.123510 + 0.0449539i
\(785\) 0 0
\(786\) −0.0713795 0.404813i −0.00254602 0.0144392i
\(787\) −19.3240 11.1567i −0.688826 0.397694i 0.114346 0.993441i \(-0.463523\pi\)
−0.803172 + 0.595747i \(0.796856\pi\)
\(788\) −5.84102 + 3.37232i −0.208078 + 0.120134i
\(789\) 25.9906 21.8087i 0.925290 0.776411i
\(790\) 0 0
\(791\) −34.0626 19.6660i −1.21113 0.699244i
\(792\) 2.11905 + 0.771270i 0.0752971 + 0.0274059i
\(793\) 2.02670 5.56830i 0.0719701 0.197736i
\(794\) 7.95590 1.40284i 0.282344 0.0497849i
\(795\) 0 0
\(796\) −2.53837 + 3.02512i −0.0899703 + 0.107222i
\(797\) 1.03433 + 5.86595i 0.0366377 + 0.207783i 0.997631 0.0687879i \(-0.0219132\pi\)
−0.960994 + 0.276571i \(0.910802\pi\)
\(798\) 14.5357 39.9365i 0.514558 1.41374i
\(799\) −11.4907 + 31.5704i −0.406511 + 1.11688i
\(800\) 0 0
\(801\) 2.00159 + 0.352934i 0.0707226 + 0.0124703i
\(802\) −11.2066 13.3556i −0.395720 0.471601i
\(803\) 24.9158 14.3852i 0.879260 0.507641i
\(804\) −3.38220 + 5.85815i −0.119281 + 0.206601i
\(805\) 0 0
\(806\) 11.7914 6.80778i 0.415335 0.239794i
\(807\) 3.80988 + 10.4676i 0.134114 + 0.368476i
\(808\) 2.65822 0.0935159
\(809\) −15.2385 41.8675i −0.535758 1.47198i −0.852121 0.523345i \(-0.824684\pi\)
0.316363 0.948638i \(-0.397538\pi\)
\(810\) 0 0
\(811\) 23.8129 + 19.9814i 0.836185 + 0.701643i 0.956702 0.291069i \(-0.0940108\pi\)
−0.120517 + 0.992711i \(0.538455\pi\)
\(812\) 0.420302 0.352675i 0.0147497 0.0123765i
\(813\) 32.9471i 1.15550i
\(814\) −12.8043 + 13.2899i −0.448791 + 0.465810i
\(815\) 0 0
\(816\) −22.7633 27.1282i −0.796874 0.949678i
\(817\) 8.38912 9.99776i 0.293498 0.349777i
\(818\) 20.9166 + 3.68816i 0.731332 + 0.128954i
\(819\) −0.804838 2.21127i −0.0281233 0.0772682i
\(820\) 0 0
\(821\) −33.3141 + 12.1253i −1.16267 + 0.423177i −0.850050 0.526702i \(-0.823428\pi\)
−0.312619 + 0.949879i \(0.601206\pi\)
\(822\) −14.0612 24.3547i −0.490441 0.849469i
\(823\) 40.9950 7.22852i 1.42899 0.251970i 0.594992 0.803731i \(-0.297155\pi\)
0.834002 + 0.551761i \(0.186044\pi\)
\(824\) 7.52446 13.0328i 0.262127 0.454017i
\(825\) 0 0
\(826\) −1.76709 + 1.48277i −0.0614851 + 0.0515921i
\(827\) −3.69582 + 20.9601i −0.128516 + 0.728853i 0.850641 + 0.525748i \(0.176214\pi\)
−0.979157 + 0.203105i \(0.934897\pi\)
\(828\) 0.477859 0.827676i 0.0166067 0.0287637i
\(829\) 9.13523 25.0988i 0.317280 0.871719i −0.673856 0.738863i \(-0.735363\pi\)
0.991135 0.132856i \(-0.0424147\pi\)
\(830\) 0 0
\(831\) −18.1649 + 3.20296i −0.630132 + 0.111109i
\(832\) −17.5728 14.7454i −0.609228 0.511203i
\(833\) −5.89241 4.94432i −0.204160 0.171310i
\(834\) 21.2762 3.75157i 0.736735 0.129906i
\(835\) 0 0
\(836\) −1.90162 + 5.22466i −0.0657689 + 0.180699i
\(837\) 11.0668 19.1683i 0.382525 0.662553i
\(838\) −6.77061 + 38.3981i −0.233887 + 1.32644i
\(839\) −33.9082 + 28.4524i −1.17064 + 0.982285i −0.999995 0.00304679i \(-0.999030\pi\)
−0.170647 + 0.985332i \(0.554586\pi\)
\(840\) 0 0
\(841\) −14.3357 + 24.8302i −0.494336 + 0.856215i
\(842\) −0.424243 + 0.0748055i −0.0146204 + 0.00257797i
\(843\) 14.0928 + 24.4095i 0.485382 + 0.840707i
\(844\) −4.57786 + 1.66620i −0.157576 + 0.0573531i
\(845\) 0 0
\(846\) −0.701804 1.92819i −0.0241285 0.0662926i
\(847\) 15.3737 + 2.71081i 0.528248 + 0.0931444i
\(848\) 28.2347 33.6488i 0.969582 1.15550i
\(849\) −23.0880 27.5152i −0.792379 0.944321i
\(850\) 0 0
\(851\) 32.0583 + 44.0176i 1.09894 + 1.50890i
\(852\) 1.64584i 0.0563856i
\(853\) 6.00524 5.03899i 0.205615 0.172532i −0.534165 0.845380i \(-0.679374\pi\)
0.739780 + 0.672848i \(0.234929\pi\)
\(854\) 6.45077 + 5.41284i 0.220741 + 0.185224i
\(855\) 0 0
\(856\) −7.81448 21.4701i −0.267093 0.733833i
\(857\) 1.42847 0.0487957 0.0243979 0.999702i \(-0.492233\pi\)
0.0243979 + 0.999702i \(0.492233\pi\)
\(858\) 4.40265 + 12.0962i 0.150304 + 0.412957i
\(859\) −21.2866 + 12.2898i −0.726289 + 0.419323i −0.817063 0.576548i \(-0.804399\pi\)
0.0907740 + 0.995872i \(0.471066\pi\)
\(860\) 0 0
\(861\) 20.7596 35.9566i 0.707484 1.22540i
\(862\) −41.8688 + 24.1730i −1.42606 + 0.823334i
\(863\) 26.1182 + 31.1265i 0.889074 + 1.05956i 0.997853 + 0.0654909i \(0.0208613\pi\)
−0.108779 + 0.994066i \(0.534694\pi\)
\(864\) −10.0408 1.77046i −0.341595 0.0602324i
\(865\) 0 0
\(866\) 16.6842 45.8395i 0.566953 1.55769i
\(867\) 15.7938 43.3930i 0.536384 1.47370i
\(868\) −0.677083 3.83993i −0.0229817 0.130336i
\(869\) 0.834063 0.993997i 0.0282936 0.0337190i
\(870\) 0 0
\(871\) 31.4202 5.54024i 1.06463 0.187724i
\(872\) −4.32998 + 11.8965i −0.146632 + 0.402867i
\(873\) 1.00245 + 0.364863i 0.0339279 + 0.0123487i
\(874\) −70.5044 40.7057i −2.38485 1.37689i
\(875\) 0 0
\(876\) −5.14835 + 4.31998i −0.173947 + 0.145959i
\(877\) −17.3102 + 9.99404i −0.584524 + 0.337475i −0.762929 0.646482i \(-0.776239\pi\)
0.178406 + 0.983957i \(0.442906\pi\)
\(878\) −14.3858 8.30565i −0.485498 0.280302i
\(879\) 6.66389 + 37.7928i 0.224767 + 1.27472i
\(880\) 0 0
\(881\) −1.61215 + 0.586774i −0.0543146 + 0.0197689i −0.369035 0.929416i \(-0.620312\pi\)
0.314720 + 0.949185i \(0.398089\pi\)
\(882\) 0.469796 0.0158189
\(883\) −50.8554 + 18.5099i −1.71142 + 0.622906i −0.997042 0.0768530i \(-0.975513\pi\)
−0.714379 + 0.699759i \(0.753291\pi\)
\(884\) 1.01461 5.75413i 0.0341250 0.193532i
\(885\) 0 0
\(886\) 0.965415 + 1.15054i 0.0324338 + 0.0386530i
\(887\) 23.2394i 0.780304i 0.920750 + 0.390152i \(0.127578\pi\)
−0.920750 + 0.390152i \(0.872422\pi\)
\(888\) 16.7550 24.9023i 0.562263 0.835666i
\(889\) −22.4198 −0.751936
\(890\) 0 0
\(891\) 14.3101 + 12.0076i 0.479406 + 0.402270i
\(892\) 2.78018 + 0.490221i 0.0930874 + 0.0164138i
\(893\) 33.0995 12.0472i 1.10763 0.403145i
\(894\) 25.0373i 0.837372i
\(895\) 0 0
\(896\) 18.9575 10.9451i 0.633327 0.365652i
\(897\) 37.4061 6.59571i 1.24895 0.220224i
\(898\) 23.5867 + 13.6178i 0.787100 + 0.454432i
\(899\) −1.16728 2.02178i −0.0389309 0.0674303i
\(900\) 0 0
\(901\) 90.4131 + 15.9423i 3.01210 + 0.531114i
\(902\) 13.4769 23.3427i 0.448732 0.777227i
\(903\) −8.13133 2.95956i −0.270594 0.0984881i
\(904\) 39.0237 + 14.2035i 1.29791 + 0.472400i
\(905\) 0 0
\(906\) −17.7510 + 21.1548i −0.589737 + 0.702821i
\(907\) −25.8815 21.7171i −0.859380 0.721105i 0.102455 0.994738i \(-0.467330\pi\)
−0.961834 + 0.273633i \(0.911775\pi\)
\(908\) −0.771809 4.37714i −0.0256134 0.145261i
\(909\) −0.263841 0.0960301i −0.00875104 0.00318512i
\(910\) 0 0
\(911\) 18.3374 + 10.5871i 0.607544 + 0.350766i 0.772004 0.635618i \(-0.219255\pi\)
−0.164459 + 0.986384i \(0.552588\pi\)
\(912\) −6.44732 + 36.5646i −0.213492 + 1.21077i
\(913\) −2.63875 3.14474i −0.0873300 0.104076i
\(914\) 16.0779 + 27.8478i 0.531811 + 0.921123i
\(915\) 0 0
\(916\) 0.0430464 + 0.244128i 0.00142229 + 0.00806622i
\(917\) 0.277612 + 0.480838i 0.00916755 + 0.0158787i
\(918\) 16.1206 + 44.2911i 0.532060 + 1.46182i
\(919\) 9.79121i 0.322982i −0.986874 0.161491i \(-0.948370\pi\)
0.986874 0.161491i \(-0.0516303\pi\)
\(920\) 0 0
\(921\) −3.33273 + 18.9009i −0.109817 + 0.622805i
\(922\) 13.7104 16.3394i 0.451528 0.538111i
\(923\) 5.94662 4.98981i 0.195735 0.164242i
\(924\) 3.68637 0.121273
\(925\) 0 0
\(926\) 44.1656 1.45137
\(927\) −1.21765 + 1.02173i −0.0399930 + 0.0335581i
\(928\) −0.691250 + 0.823800i −0.0226914 + 0.0270426i
\(929\) −6.20734 + 35.2036i −0.203656 + 1.15499i 0.695884 + 0.718154i \(0.255013\pi\)
−0.899540 + 0.436837i \(0.856099\pi\)
\(930\) 0 0
\(931\) 8.06456i 0.264305i
\(932\) 1.56900 + 4.31078i 0.0513942 + 0.141204i
\(933\) −10.3273 17.8873i −0.338099 0.585605i
\(934\) 6.05752 + 34.3539i 0.198208 + 1.12409i
\(935\) 0 0
\(936\) 1.24229 + 2.15171i 0.0406055 + 0.0703308i
\(937\) 12.8049 + 15.2603i 0.418318 + 0.498532i 0.933514 0.358540i \(-0.116725\pi\)
−0.515196 + 0.857072i \(0.672281\pi\)
\(938\) −7.87316 + 44.6509i −0.257068 + 1.45790i
\(939\) −41.2959 23.8422i −1.34764 0.778061i
\(940\) 0 0
\(941\) −25.6606 9.33970i −0.836512 0.304465i −0.111983 0.993710i \(-0.535720\pi\)
−0.724529 + 0.689245i \(0.757943\pi\)
\(942\) 0.471331 + 2.67305i 0.0153568 + 0.0870928i
\(943\) −60.9261 51.1231i −1.98403 1.66480i
\(944\) 1.29538 1.54378i 0.0421611 0.0502457i
\(945\) 0 0
\(946\) −5.27879 1.92132i −0.171628 0.0624675i
\(947\) −51.8998 18.8900i −1.68652 0.613843i −0.692338 0.721573i \(-0.743419\pi\)
−0.994180 + 0.107731i \(0.965642\pi\)
\(948\) −0.151555 + 0.262501i −0.00492229 + 0.00852565i
\(949\) 31.2172 + 5.50443i 1.01335 + 0.178681i
\(950\) 0 0
\(951\) 0.0994648 + 0.172278i 0.00322537 + 0.00558650i
\(952\) 50.0649 + 28.9050i 1.62261 + 0.936816i
\(953\) 22.3301 3.93740i 0.723343 0.127545i 0.200158 0.979764i \(-0.435855\pi\)
0.523186 + 0.852219i \(0.324743\pi\)
\(954\) −4.85603 + 2.80363i −0.157220 + 0.0907709i
\(955\) 0 0
\(956\) 7.24376i 0.234280i
\(957\) 2.07404 0.754890i 0.0670443 0.0244021i
\(958\) −0.371486 0.0655030i −0.0120022 0.00211631i
\(959\) 29.0985 + 24.4166i 0.939641 + 0.788452i
\(960\) 0 0
\(961\) 14.4092 0.464812
\(962\) −20.2192 + 2.14870i −0.651892 + 0.0692769i
\(963\) 2.41331i 0.0777678i
\(964\) 3.94357 + 4.69976i 0.127014 + 0.151369i
\(965\) 0 0
\(966\) −9.37308 + 53.1574i −0.301574 + 1.71031i
\(967\) 29.7211 10.8176i 0.955766 0.347870i 0.183393 0.983040i \(-0.441292\pi\)
0.772373 + 0.635169i \(0.219070\pi\)
\(968\) −16.4825 −0.529769
\(969\) −72.9222 + 26.5415i −2.34260 + 0.852636i
\(970\) 0 0
\(971\) 1.30092 + 7.37787i 0.0417484 + 0.236767i 0.998541 0.0540055i \(-0.0171988\pi\)
−0.956792 + 0.290772i \(0.906088\pi\)
\(972\) 0.956609 + 0.552298i 0.0306832 + 0.0177150i
\(973\) −25.2719 + 14.5907i −0.810180 + 0.467758i
\(974\) −19.0068 + 15.9486i −0.609017 + 0.511026i
\(975\) 0 0
\(976\) −6.37108 3.67835i −0.203933 0.117741i
\(977\) −2.87410 1.04609i −0.0919505 0.0334672i 0.295635 0.955301i \(-0.404469\pi\)
−0.387586 + 0.921834i \(0.626691\pi\)
\(978\) 9.49114 26.0767i 0.303493 0.833841i
\(979\) 14.7892 2.60773i 0.472665 0.0833436i
\(980\) 0 0
\(981\) 0.859540 1.02436i 0.0274430 0.0327053i
\(982\) 6.54211 + 37.1021i 0.208767 + 1.18398i
\(983\) 16.2487 44.6429i 0.518252 1.42389i −0.354192 0.935173i \(-0.615244\pi\)
0.872444 0.488713i \(-0.162534\pi\)
\(984\) −14.9933 + 41.1936i −0.477968 + 1.31320i
\(985\) 0 0
\(986\) 4.89591 + 0.863281i 0.155917 + 0.0274925i
\(987\) −15.0117 17.8903i −0.477828 0.569453i
\(988\) −5.30519 + 3.06295i −0.168780 + 0.0974455i
\(989\) −8.28795 + 14.3551i −0.263541 + 0.456467i
\(990\) 0 0
\(991\) −39.9180 + 23.0467i −1.26804 + 0.732102i −0.974616 0.223882i \(-0.928127\pi\)
−0.293421 + 0.955983i \(0.594794\pi\)
\(992\) 2.61387 + 7.18154i 0.0829904 + 0.228014i
\(993\) −43.2719 −1.37319
\(994\) 3.77302 + 10.3663i 0.119673 + 0.328798i
\(995\) 0 0
\(996\) 0.734607 + 0.616408i 0.0232769 + 0.0195316i
\(997\) −14.0343 + 11.7761i −0.444469 + 0.372954i −0.837379 0.546623i \(-0.815913\pi\)
0.392909 + 0.919577i \(0.371469\pi\)
\(998\) 18.4105i 0.582773i
\(999\) −26.7186 + 19.4593i −0.845338 + 0.615665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.ba.b.99.3 72
5.2 odd 4 925.2.bb.b.876.3 72
5.3 odd 4 185.2.w.a.136.10 72
5.4 even 2 925.2.ba.c.99.10 72
37.3 even 18 925.2.ba.c.299.10 72
185.3 odd 36 185.2.w.a.151.10 yes 72
185.77 odd 36 925.2.bb.b.151.3 72
185.114 even 18 inner 925.2.ba.b.299.3 72
185.133 even 36 6845.2.a.t.1.27 36
185.163 even 36 6845.2.a.u.1.10 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.w.a.136.10 72 5.3 odd 4
185.2.w.a.151.10 yes 72 185.3 odd 36
925.2.ba.b.99.3 72 1.1 even 1 trivial
925.2.ba.b.299.3 72 185.114 even 18 inner
925.2.ba.c.99.10 72 5.4 even 2
925.2.ba.c.299.10 72 37.3 even 18
925.2.bb.b.151.3 72 185.77 odd 36
925.2.bb.b.876.3 72 5.2 odd 4
6845.2.a.t.1.27 36 185.133 even 36
6845.2.a.u.1.10 36 185.163 even 36