gp: [N,k,chi] = [925,2,Mod(151,925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("925.151");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 13]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [72,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{72} + 6 T_{2}^{71} + 21 T_{2}^{70} + 48 T_{2}^{69} + 72 T_{2}^{68} + 126 T_{2}^{67} + \cdots + 11449 \)
T2^72 + 6*T2^71 + 21*T2^70 + 48*T2^69 + 72*T2^68 + 126*T2^67 - 63*T2^66 - 1482*T2^65 - 5814*T2^64 - 12366*T2^63 - 15012*T2^62 - 38400*T2^61 - 41559*T2^60 + 260028*T2^59 + 1416792*T2^58 + 3254310*T2^57 + 2798511*T2^56 + 4529322*T2^55 + 15734726*T2^54 + 8181282*T2^53 - 90473628*T2^52 - 308656446*T2^51 - 301448307*T2^50 - 143393214*T2^49 - 733414981*T2^48 - 747516906*T2^47 + 4791464253*T2^46 + 18350405988*T2^45 + 15074348787*T2^44 - 13664544690*T2^43 + 6061372341*T2^42 + 75856787688*T2^41 - 21840997557*T2^40 - 627781103760*T2^39 - 1016505231717*T2^38 + 410800994832*T2^37 + 2357873546736*T2^36 + 1886481453504*T2^35 - 1045258931259*T2^34 - 918707917668*T2^33 + 4419444408744*T2^32 + 1635813692160*T2^31 - 9687890902195*T2^30 - 10555006746636*T2^29 + 1448035717905*T2^28 + 145333704816*T2^27 - 13460713782393*T2^26 + 5655438707556*T2^25 + 27515903346115*T2^24 + 13802891712534*T2^23 + 7483701521199*T2^22 + 20323396380102*T2^21 + 23385643888317*T2^20 + 4332664915770*T2^19 + 942908731754*T2^18 + 6570953647512*T2^17 + 1211449276311*T2^16 - 3607510646700*T2^15 - 1851195159057*T2^14 + 950638030944*T2^13 + 124825139621*T2^12 - 367652442528*T2^11 + 165278622804*T2^10 - 13310700678*T2^9 + 20812777641*T2^8 + 3591834636*T2^7 + 2042151693*T2^6 + 503328492*T2^5 + 95152008*T2^4 + 15269166*T2^3 + 2223738*T2^2 + 242676*T2 + 11449
acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\).