gp: [N,k,chi] = [9065,2,Mod(1,9065)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9065.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9065, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [38,-2,-6,42,-38,-8,0,-6,48,2,34]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(5\)
\( +1 \)
\(7\)
\( +1 \)
\(37\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9065))\):
\( T_{2}^{38} + 2 T_{2}^{37} - 57 T_{2}^{36} - 112 T_{2}^{35} + 1482 T_{2}^{34} + 2860 T_{2}^{33} + \cdots + 14 \)
T2^38 + 2*T2^37 - 57*T2^36 - 112*T2^35 + 1482*T2^34 + 2860*T2^33 - 23280*T2^32 - 44112*T2^31 + 246688*T2^30 + 458846*T2^29 - 1864616*T2^28 - 3403530*T2^27 + 10366512*T2^26 + 18561836*T2^25 - 43084766*T2^24 - 75626704*T2^23 + 134715662*T2^22 + 231538920*T2^21 - 316398379*T2^20 - 531314370*T2^19 + 553226041*T2^18 + 903926004*T2^17 - 708327116*T2^16 - 1116927792*T2^15 + 647731092*T2^14 + 969148208*T2^13 - 409120464*T2^12 - 559623248*T2^11 + 171746818*T2^10 + 196982968*T2^9 - 46340232*T2^8 - 36360372*T2^7 + 7621380*T2^6 + 2728420*T2^5 - 513670*T2^4 - 59500*T2^3 + 5970*T2^2 + 644*T2 + 14
\( T_{3}^{38} + 6 T_{3}^{37} - 63 T_{3}^{36} - 428 T_{3}^{35} + 1715 T_{3}^{34} + 13842 T_{3}^{33} + \cdots - 487424 \)
T3^38 + 6*T3^37 - 63*T3^36 - 428*T3^35 + 1715*T3^34 + 13842*T3^33 - 25693*T3^32 - 268632*T3^31 + 212303*T3^30 + 3489938*T3^29 - 549307*T3^28 - 32062052*T3^27 - 8360868*T3^26 + 214529312*T3^25 + 119893602*T3^24 - 1060964860*T3^23 - 833849188*T3^22 + 3894940264*T3^21 + 3785511236*T3^20 - 10563578136*T3^19 - 12036136191*T3^18 + 20854066230*T3^17 + 27359996923*T3^16 - 29096290012*T3^15 - 44419136207*T3^14 + 27058656114*T3^13 + 50665885029*T3^12 - 14488019576*T3^11 - 39258120232*T3^10 + 1876098240*T3^9 + 19434270158*T3^8 + 2599001544*T3^7 - 5446708049*T3^6 - 1527452130*T3^5 + 631843871*T3^4 + 273861504*T3^3 + 5771776*T3^2 - 6006784*T3 - 487424
\( T_{11}^{38} - 34 T_{11}^{37} + 371 T_{11}^{36} + 144 T_{11}^{35} - 33179 T_{11}^{34} + \cdots - 2651707928576 \)
T11^38 - 34*T11^37 + 371*T11^36 + 144*T11^35 - 33179*T11^34 + 193682*T11^33 + 735375*T11^32 - 10945976*T11^31 + 12874341*T11^30 + 268667922*T11^29 - 980686713*T11^28 - 3222924888*T11^27 + 22882105209*T11^26 + 8955791278*T11^25 - 302044826221*T11^24 + 294559837120*T11^23 + 2514552729359*T11^22 - 4979998436366*T11^21 - 13318944239103*T11^20 + 41447919852480*T11^19 + 40709569232027*T11^18 - 217099038045810*T11^17 - 32775192279075*T11^16 + 754088130477976*T11^15 - 273631212334989*T11^14 - 1729438641030594*T11^13 + 1283025254650197*T11^12 + 2490713171658472*T11^11 - 2734820056705849*T11^10 - 1956200688720878*T11^9 + 3200753324031537*T11^8 + 428711839385472*T11^7 - 1949623998820776*T11^6 + 387664752070144*T11^5 + 489911284576512*T11^4 - 204332674806784*T11^3 - 22209436715520*T11^2 + 21615164538880*T11 - 2651707928576