Properties

Label 2-9065-1.1-c1-0-479
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.50·2-s + 1.03·3-s + 4.28·4-s − 5-s + 2.59·6-s + 5.73·8-s − 1.92·9-s − 2.50·10-s − 3.75·11-s + 4.43·12-s − 1.79·13-s − 1.03·15-s + 5.81·16-s − 0.478·17-s − 4.83·18-s − 5.10·19-s − 4.28·20-s − 9.42·22-s + 5.65·23-s + 5.94·24-s + 25-s − 4.49·26-s − 5.10·27-s + 2.86·29-s − 2.59·30-s − 3.89·31-s + 3.10·32-s + ⋯
L(s)  = 1  + 1.77·2-s + 0.597·3-s + 2.14·4-s − 0.447·5-s + 1.05·6-s + 2.02·8-s − 0.642·9-s − 0.793·10-s − 1.13·11-s + 1.28·12-s − 0.497·13-s − 0.267·15-s + 1.45·16-s − 0.116·17-s − 1.14·18-s − 1.17·19-s − 0.959·20-s − 2.00·22-s + 1.17·23-s + 1.21·24-s + 0.200·25-s − 0.881·26-s − 0.981·27-s + 0.531·29-s − 0.473·30-s − 0.700·31-s + 0.549·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 - 2.50T + 2T^{2} \)
3 \( 1 - 1.03T + 3T^{2} \)
11 \( 1 + 3.75T + 11T^{2} \)
13 \( 1 + 1.79T + 13T^{2} \)
17 \( 1 + 0.478T + 17T^{2} \)
19 \( 1 + 5.10T + 19T^{2} \)
23 \( 1 - 5.65T + 23T^{2} \)
29 \( 1 - 2.86T + 29T^{2} \)
31 \( 1 + 3.89T + 31T^{2} \)
41 \( 1 + 7.10T + 41T^{2} \)
43 \( 1 + 6.38T + 43T^{2} \)
47 \( 1 - 2.89T + 47T^{2} \)
53 \( 1 + 5.93T + 53T^{2} \)
59 \( 1 - 3.84T + 59T^{2} \)
61 \( 1 + 1.62T + 61T^{2} \)
67 \( 1 - 9.91T + 67T^{2} \)
71 \( 1 - 5.28T + 71T^{2} \)
73 \( 1 - 3.26T + 73T^{2} \)
79 \( 1 + 4.03T + 79T^{2} \)
83 \( 1 + 8.83T + 83T^{2} \)
89 \( 1 + 17.2T + 89T^{2} \)
97 \( 1 + 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.02623047793552053070038257371, −6.76897857770060229521263093654, −5.69703655918182281266123097909, −5.23553731401941890141810278713, −4.60253442226059266664982300975, −3.84939310892354261665027567595, −3.06863177767160306256372610889, −2.66676727104721738711218679477, −1.86180844359285234271755741735, 0, 1.86180844359285234271755741735, 2.66676727104721738711218679477, 3.06863177767160306256372610889, 3.84939310892354261665027567595, 4.60253442226059266664982300975, 5.23553731401941890141810278713, 5.69703655918182281266123097909, 6.76897857770060229521263093654, 7.02623047793552053070038257371

Graph of the $Z$-function along the critical line