Defining parameters
Level: | \( N \) | \(=\) | \( 9065 = 5 \cdot 7^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9065.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 31 \) | ||
Sturm bound: | \(2128\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9065))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1080 | 492 | 588 |
Cusp forms | 1049 | 492 | 557 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(7\) | \(37\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(126\) | \(59\) | \(67\) | \(123\) | \(59\) | \(64\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(142\) | \(63\) | \(79\) | \(138\) | \(63\) | \(75\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(140\) | \(66\) | \(74\) | \(136\) | \(66\) | \(70\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(132\) | \(57\) | \(75\) | \(128\) | \(57\) | \(71\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(142\) | \(65\) | \(77\) | \(138\) | \(65\) | \(73\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(126\) | \(53\) | \(73\) | \(122\) | \(53\) | \(69\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(132\) | \(57\) | \(75\) | \(128\) | \(57\) | \(71\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(140\) | \(72\) | \(68\) | \(136\) | \(72\) | \(64\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(516\) | \(226\) | \(290\) | \(501\) | \(226\) | \(275\) | \(15\) | \(0\) | \(15\) | |||||
Minus space | \(-\) | \(564\) | \(266\) | \(298\) | \(548\) | \(266\) | \(282\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9065))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9065))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9065)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(185))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(259))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1295))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1813))\)\(^{\oplus 2}\)