Properties

Label 9065.2.a
Level $9065$
Weight $2$
Character orbit 9065.a
Rep. character $\chi_{9065}(1,\cdot)$
Character field $\Q$
Dimension $492$
Newform subspaces $31$
Sturm bound $2128$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 31 \)
Sturm bound: \(2128\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(3\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9065))\).

Total New Old
Modular forms 1080 492 588
Cusp forms 1049 492 557
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)\(37\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(126\)\(59\)\(67\)\(123\)\(59\)\(64\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(142\)\(63\)\(79\)\(138\)\(63\)\(75\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(140\)\(66\)\(74\)\(136\)\(66\)\(70\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(132\)\(57\)\(75\)\(128\)\(57\)\(71\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(142\)\(65\)\(77\)\(138\)\(65\)\(73\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(126\)\(53\)\(73\)\(122\)\(53\)\(69\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(132\)\(57\)\(75\)\(128\)\(57\)\(71\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(140\)\(72\)\(68\)\(136\)\(72\)\(64\)\(4\)\(0\)\(4\)
Plus space\(+\)\(516\)\(226\)\(290\)\(501\)\(226\)\(275\)\(15\)\(0\)\(15\)
Minus space\(-\)\(564\)\(266\)\(298\)\(548\)\(266\)\(282\)\(16\)\(0\)\(16\)

Trace form

\( 492 q - 2 q^{2} - 4 q^{3} + 488 q^{4} + 2 q^{5} - 16 q^{6} - 18 q^{8} + 488 q^{9} - 4 q^{10} - 4 q^{11} - 24 q^{12} + 488 q^{16} - 6 q^{18} - 20 q^{19} + 14 q^{20} + 16 q^{22} - 24 q^{23} - 12 q^{24} + 492 q^{25}+ \cdots - 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9065))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7 37
9065.2.a.a 9065.a 1.a $1$ $72.384$ \(\Q\) None 1295.2.a.a \(-2\) \(-1\) \(-1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}-q^{5}+2q^{6}-2q^{9}+\cdots\)
9065.2.a.b 9065.a 1.a $1$ $72.384$ \(\Q\) None 185.2.a.a \(-2\) \(-1\) \(1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}+q^{5}+2q^{6}-2q^{9}+\cdots\)
9065.2.a.c 9065.a 1.a $1$ $72.384$ \(\Q\) None 185.2.a.b \(0\) \(1\) \(-1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}-q^{5}-2q^{9}-5q^{11}+\cdots\)
9065.2.a.d 9065.a 1.a $1$ $72.384$ \(\Q\) None 1295.2.a.b \(0\) \(1\) \(-1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}-q^{5}-2q^{9}+5q^{11}+\cdots\)
9065.2.a.e 9065.a 1.a $1$ $72.384$ \(\Q\) None 185.2.a.c \(1\) \(2\) \(1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}-q^{4}+q^{5}+2q^{6}-3q^{8}+\cdots\)
9065.2.a.f 9065.a 1.a $2$ $72.384$ \(\Q(\sqrt{2}) \) None 1295.2.a.c \(0\) \(2\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1-\beta )q^{3}-q^{5}+(-2+\beta )q^{6}+\cdots\)
9065.2.a.g 9065.a 1.a $4$ $72.384$ \(\Q(\zeta_{16})^+\) None 1295.2.a.d \(0\) \(4\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{3})q^{3}+\beta _{2}q^{4}+q^{5}+\cdots\)
9065.2.a.h 9065.a 1.a $5$ $72.384$ 5.5.153424.1 None 1295.2.a.e \(-2\) \(3\) \(-5\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{3})q^{3}+(1+\beta _{3}-\beta _{4})q^{4}+\cdots\)
9065.2.a.i 9065.a 1.a $5$ $72.384$ 5.5.126032.1 None 1295.2.a.f \(0\) \(-1\) \(5\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+\beta _{2}q^{4}+q^{5}+\beta _{3}q^{6}+\cdots\)
9065.2.a.j 9065.a 1.a $5$ $72.384$ 5.5.368464.1 None 185.2.a.d \(0\) \(1\) \(-5\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+\beta _{3}q^{3}+(2-\beta _{1}-\beta _{4})q^{4}+\cdots\)
9065.2.a.k 9065.a 1.a $5$ $72.384$ 5.5.973904.1 None 185.2.a.e \(2\) \(-3\) \(5\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{4}q^{2}+(-1+\beta _{1})q^{3}+(2+\beta _{3})q^{4}+\cdots\)
9065.2.a.l 9065.a 1.a $12$ $72.384$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1295.2.a.g \(-1\) \(-2\) \(12\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{10}q^{3}+(1+\beta _{2})q^{4}+q^{5}+\cdots\)
9065.2.a.m 9065.a 1.a $12$ $72.384$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1295.2.a.h \(5\) \(-4\) \(-12\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(1+\beta _{1}+\beta _{2})q^{4}+\cdots\)
9065.2.a.n 9065.a 1.a $14$ $72.384$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 1295.2.a.i \(2\) \(-7\) \(-14\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(1+\beta _{2})q^{4}-q^{5}+\cdots\)
9065.2.a.o 9065.a 1.a $15$ $72.384$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 1295.2.a.j \(-1\) \(1\) \(15\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{7}q^{3}+(2+\beta _{2})q^{4}+q^{5}+\cdots\)
9065.2.a.p 9065.a 1.a $17$ $72.384$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 9065.2.a.p \(1\) \(-1\) \(17\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{13}q^{3}+(1+\beta _{2})q^{4}+q^{5}+\cdots\)
9065.2.a.q 9065.a 1.a $17$ $72.384$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 9065.2.a.p \(1\) \(1\) \(-17\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{13}q^{3}+(1+\beta _{2})q^{4}-q^{5}+\cdots\)
9065.2.a.r 9065.a 1.a $19$ $72.384$ \(\mathbb{Q}[x]/(x^{19} - \cdots)\) None 1295.2.j.a \(-3\) \(-1\) \(19\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{6}q^{3}+(1+\beta _{2})q^{4}+q^{5}+\cdots\)
9065.2.a.s 9065.a 1.a $19$ $72.384$ \(\mathbb{Q}[x]/(x^{19} - \cdots)\) None 1295.2.j.a \(-3\) \(1\) \(-19\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{6}q^{3}+(1+\beta _{2})q^{4}-q^{5}+\cdots\)
9065.2.a.t 9065.a 1.a $19$ $72.384$ \(\mathbb{Q}[x]/(x^{19} - \cdots)\) None 9065.2.a.t \(1\) \(-7\) \(-19\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{9}q^{3}+(1+\beta _{2})q^{4}-q^{5}+\cdots\)
9065.2.a.u 9065.a 1.a $19$ $72.384$ \(\mathbb{Q}[x]/(x^{19} - \cdots)\) None 9065.2.a.t \(1\) \(7\) \(19\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{9}q^{3}+(1+\beta _{2})q^{4}+q^{5}+\cdots\)
9065.2.a.v 9065.a 1.a $21$ $72.384$ None 1295.2.j.b \(-3\) \(-1\) \(21\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
9065.2.a.w 9065.a 1.a $21$ $72.384$ None 1295.2.j.b \(-3\) \(1\) \(-21\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
9065.2.a.x 9065.a 1.a $27$ $72.384$ None 1295.2.j.c \(3\) \(-1\) \(27\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
9065.2.a.y 9065.a 1.a $27$ $72.384$ None 1295.2.j.c \(3\) \(1\) \(-27\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
9065.2.a.z 9065.a 1.a $29$ $72.384$ None 1295.2.j.d \(3\) \(-1\) \(29\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
9065.2.a.ba 9065.a 1.a $29$ $72.384$ None 1295.2.j.d \(3\) \(1\) \(-29\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
9065.2.a.bb 9065.a 1.a $34$ $72.384$ None 9065.2.a.bb \(-2\) \(-10\) \(34\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
9065.2.a.bc 9065.a 1.a $34$ $72.384$ None 9065.2.a.bb \(-2\) \(10\) \(-34\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
9065.2.a.bd 9065.a 1.a $38$ $72.384$ None 9065.2.a.bd \(-2\) \(-6\) \(-38\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
9065.2.a.be 9065.a 1.a $38$ $72.384$ None 9065.2.a.bd \(-2\) \(6\) \(38\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9065))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(9065)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(185))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(259))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1295))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1813))\)\(^{\oplus 2}\)