Properties

Label 2-9065-1.1-c1-0-395
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.44·2-s − 2.96·3-s + 3.99·4-s − 5-s − 7.26·6-s + 4.87·8-s + 5.81·9-s − 2.44·10-s − 0.392·11-s − 11.8·12-s + 2.11·13-s + 2.96·15-s + 3.94·16-s − 3.76·17-s + 14.2·18-s − 0.490·19-s − 3.99·20-s − 0.960·22-s + 1.45·23-s − 14.4·24-s + 25-s + 5.17·26-s − 8.35·27-s − 1.63·29-s + 7.26·30-s + 3.12·31-s − 0.0823·32-s + ⋯
L(s)  = 1  + 1.73·2-s − 1.71·3-s + 1.99·4-s − 0.447·5-s − 2.96·6-s + 1.72·8-s + 1.93·9-s − 0.774·10-s − 0.118·11-s − 3.42·12-s + 0.585·13-s + 0.766·15-s + 0.987·16-s − 0.912·17-s + 3.35·18-s − 0.112·19-s − 0.892·20-s − 0.204·22-s + 0.302·23-s − 2.95·24-s + 0.200·25-s + 1.01·26-s − 1.60·27-s − 0.303·29-s + 1.32·30-s + 0.560·31-s − 0.0145·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 - 2.44T + 2T^{2} \)
3 \( 1 + 2.96T + 3T^{2} \)
11 \( 1 + 0.392T + 11T^{2} \)
13 \( 1 - 2.11T + 13T^{2} \)
17 \( 1 + 3.76T + 17T^{2} \)
19 \( 1 + 0.490T + 19T^{2} \)
23 \( 1 - 1.45T + 23T^{2} \)
29 \( 1 + 1.63T + 29T^{2} \)
31 \( 1 - 3.12T + 31T^{2} \)
41 \( 1 + 5.03T + 41T^{2} \)
43 \( 1 - 0.921T + 43T^{2} \)
47 \( 1 + 3.30T + 47T^{2} \)
53 \( 1 + 4.43T + 53T^{2} \)
59 \( 1 + 5.24T + 59T^{2} \)
61 \( 1 - 9.18T + 61T^{2} \)
67 \( 1 + 6.32T + 67T^{2} \)
71 \( 1 - 13.8T + 71T^{2} \)
73 \( 1 + 6.61T + 73T^{2} \)
79 \( 1 - 9.72T + 79T^{2} \)
83 \( 1 - 5.78T + 83T^{2} \)
89 \( 1 - 1.16T + 89T^{2} \)
97 \( 1 - 4.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.84768315708917921191152518924, −6.46343435634346314194229758163, −5.94624254389336037867338751252, −5.12590208251859276651932147614, −4.82637733999504246030462408486, −4.08225647984455714497593382498, −3.47024723929464219477186573403, −2.37644738203418625524331354293, −1.29943938781582045688383529792, 0, 1.29943938781582045688383529792, 2.37644738203418625524331354293, 3.47024723929464219477186573403, 4.08225647984455714497593382498, 4.82637733999504246030462408486, 5.12590208251859276651932147614, 5.94624254389336037867338751252, 6.46343435634346314194229758163, 6.84768315708917921191152518924

Graph of the $Z$-function along the critical line