Properties

Label 2-9065-1.1-c1-0-377
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.326·2-s + 1.56·3-s − 1.89·4-s − 5-s + 0.511·6-s − 1.26·8-s − 0.539·9-s − 0.326·10-s + 4.81·11-s − 2.97·12-s − 4.41·13-s − 1.56·15-s + 3.37·16-s − 1.70·17-s − 0.175·18-s − 2.34·19-s + 1.89·20-s + 1.57·22-s + 5.27·23-s − 1.99·24-s + 25-s − 1.44·26-s − 5.55·27-s + 9.43·29-s − 0.511·30-s − 1.79·31-s + 3.63·32-s + ⋯
L(s)  = 1  + 0.230·2-s + 0.905·3-s − 0.946·4-s − 0.447·5-s + 0.208·6-s − 0.448·8-s − 0.179·9-s − 0.103·10-s + 1.45·11-s − 0.857·12-s − 1.22·13-s − 0.404·15-s + 0.843·16-s − 0.413·17-s − 0.0414·18-s − 0.537·19-s + 0.423·20-s + 0.334·22-s + 1.10·23-s − 0.406·24-s + 0.200·25-s − 0.282·26-s − 1.06·27-s + 1.75·29-s − 0.0933·30-s − 0.322·31-s + 0.643·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 - 0.326T + 2T^{2} \)
3 \( 1 - 1.56T + 3T^{2} \)
11 \( 1 - 4.81T + 11T^{2} \)
13 \( 1 + 4.41T + 13T^{2} \)
17 \( 1 + 1.70T + 17T^{2} \)
19 \( 1 + 2.34T + 19T^{2} \)
23 \( 1 - 5.27T + 23T^{2} \)
29 \( 1 - 9.43T + 29T^{2} \)
31 \( 1 + 1.79T + 31T^{2} \)
41 \( 1 + 11.8T + 41T^{2} \)
43 \( 1 - 2.31T + 43T^{2} \)
47 \( 1 - 9.24T + 47T^{2} \)
53 \( 1 - 1.00T + 53T^{2} \)
59 \( 1 + 8.29T + 59T^{2} \)
61 \( 1 - 12.9T + 61T^{2} \)
67 \( 1 + 8.00T + 67T^{2} \)
71 \( 1 - 5.31T + 71T^{2} \)
73 \( 1 + 3.64T + 73T^{2} \)
79 \( 1 + 6.03T + 79T^{2} \)
83 \( 1 + 14.8T + 83T^{2} \)
89 \( 1 + 16.4T + 89T^{2} \)
97 \( 1 - 17.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38363786520565606837315513888, −6.86101061375580945459724965826, −6.01128324869858009710180672884, −5.06186457519030085683821539990, −4.49260015108917864008254506383, −3.85765097956370951956410843597, −3.15347565770778813211757484580, −2.44370830178230666774074693214, −1.21310855965747987237397694087, 0, 1.21310855965747987237397694087, 2.44370830178230666774074693214, 3.15347565770778813211757484580, 3.85765097956370951956410843597, 4.49260015108917864008254506383, 5.06186457519030085683821539990, 6.01128324869858009710180672884, 6.86101061375580945459724965826, 7.38363786520565606837315513888

Graph of the $Z$-function along the critical line