Properties

Label 2-9065-1.1-c1-0-296
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.333·2-s − 0.136·3-s − 1.88·4-s − 5-s + 0.0455·6-s + 1.29·8-s − 2.98·9-s + 0.333·10-s + 5.49·11-s + 0.257·12-s + 0.647·13-s + 0.136·15-s + 3.34·16-s − 0.0895·17-s + 0.995·18-s − 7.20·19-s + 1.88·20-s − 1.83·22-s + 3.01·23-s − 0.176·24-s + 25-s − 0.216·26-s + 0.815·27-s − 0.350·29-s − 0.0455·30-s − 3.40·31-s − 3.71·32-s + ⋯
L(s)  = 1  − 0.236·2-s − 0.0787·3-s − 0.944·4-s − 0.447·5-s + 0.0185·6-s + 0.458·8-s − 0.993·9-s + 0.105·10-s + 1.65·11-s + 0.0743·12-s + 0.179·13-s + 0.0351·15-s + 0.835·16-s − 0.0217·17-s + 0.234·18-s − 1.65·19-s + 0.422·20-s − 0.391·22-s + 0.627·23-s − 0.0361·24-s + 0.200·25-s − 0.0424·26-s + 0.156·27-s − 0.0650·29-s − 0.00830·30-s − 0.612·31-s − 0.656·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + 0.333T + 2T^{2} \)
3 \( 1 + 0.136T + 3T^{2} \)
11 \( 1 - 5.49T + 11T^{2} \)
13 \( 1 - 0.647T + 13T^{2} \)
17 \( 1 + 0.0895T + 17T^{2} \)
19 \( 1 + 7.20T + 19T^{2} \)
23 \( 1 - 3.01T + 23T^{2} \)
29 \( 1 + 0.350T + 29T^{2} \)
31 \( 1 + 3.40T + 31T^{2} \)
41 \( 1 + 6.31T + 41T^{2} \)
43 \( 1 - 4.74T + 43T^{2} \)
47 \( 1 - 5.52T + 47T^{2} \)
53 \( 1 + 8.40T + 53T^{2} \)
59 \( 1 - 2.44T + 59T^{2} \)
61 \( 1 + 9.27T + 61T^{2} \)
67 \( 1 - 15.4T + 67T^{2} \)
71 \( 1 - 4.13T + 71T^{2} \)
73 \( 1 + 3.23T + 73T^{2} \)
79 \( 1 + 5.21T + 79T^{2} \)
83 \( 1 - 17.0T + 83T^{2} \)
89 \( 1 + 4.16T + 89T^{2} \)
97 \( 1 - 3.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.50047104907840483787782699808, −6.60919652915764350495766626306, −6.13110127391480931967617507940, −5.24182092952055719864782700597, −4.51290695394516221460834289913, −3.86420856430919257040653350754, −3.31471113564647138124467101427, −2.06756616432204814802836846698, −1.00545671593733211299686916467, 0, 1.00545671593733211299686916467, 2.06756616432204814802836846698, 3.31471113564647138124467101427, 3.86420856430919257040653350754, 4.51290695394516221460834289913, 5.24182092952055719864782700597, 6.13110127391480931967617507940, 6.60919652915764350495766626306, 7.50047104907840483787782699808

Graph of the $Z$-function along the critical line