Properties

Label 900.2.r.f.851.17
Level $900$
Weight $2$
Character 900.851
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,6,0,0,4,0,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 851.17
Character \(\chi\) \(=\) 900.851
Dual form 900.2.r.f.551.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.896034 - 1.09413i) q^{2} +(-1.60382 + 0.654027i) q^{3} +(-0.394247 - 1.96076i) q^{4} +(-0.721488 + 2.34082i) q^{6} +(-1.04714 + 0.604565i) q^{7} +(-2.49858 - 1.32555i) q^{8} +(2.14450 - 2.09789i) q^{9} +(1.52161 + 2.63550i) q^{11} +(1.91469 + 2.88686i) q^{12} +(-2.53958 + 4.39869i) q^{13} +(-0.276797 + 1.68742i) q^{14} +(-3.68914 + 1.54605i) q^{16} +2.23944i q^{17} +(-0.373823 - 4.22614i) q^{18} +2.53835i q^{19} +(1.28402 - 1.65447i) q^{21} +(4.24700 + 0.696660i) q^{22} +(3.48067 - 6.02870i) q^{23} +(4.87423 + 0.491800i) q^{24} +(2.53719 + 6.72001i) q^{26} +(-2.06732 + 4.76720i) q^{27} +(1.59824 + 1.81484i) q^{28} +(-4.84407 + 2.79673i) q^{29} +(2.83759 + 1.63828i) q^{31} +(-1.61401 + 5.42171i) q^{32} +(-4.16408 - 3.23171i) q^{33} +(2.45024 + 2.00661i) q^{34} +(-4.95891 - 3.37775i) q^{36} +10.3514 q^{37} +(2.77729 + 2.27445i) q^{38} +(1.19618 - 8.71567i) q^{39} +(3.70208 + 2.13740i) q^{41} +(-0.659684 - 2.88735i) q^{42} +(3.74108 - 2.15991i) q^{43} +(4.56769 - 4.02254i) q^{44} +(-3.47739 - 9.21023i) q^{46} +(5.15071 + 8.92129i) q^{47} +(4.90557 - 4.89238i) q^{48} +(-2.76900 + 4.79605i) q^{49} +(-1.46465 - 3.59166i) q^{51} +(9.62598 + 3.24534i) q^{52} +9.42683i q^{53} +(3.36356 + 6.53349i) q^{54} +(3.41774 - 0.122528i) q^{56} +(-1.66015 - 4.07106i) q^{57} +(-1.28047 + 7.80601i) q^{58} +(-4.46335 + 7.73074i) q^{59} +(1.32896 + 2.30183i) q^{61} +(4.33508 - 1.63674i) q^{62} +(-0.977274 + 3.49327i) q^{63} +(4.48585 + 6.62398i) q^{64} +(-7.26707 + 1.66033i) q^{66} +(-12.4858 - 7.20867i) q^{67} +(4.39099 - 0.882891i) q^{68} +(-1.63945 + 11.9454i) q^{69} +3.49303 q^{71} +(-8.13906 + 2.39912i) q^{72} -5.10052 q^{73} +(9.27523 - 11.3258i) q^{74} +(4.97709 - 1.00074i) q^{76} +(-3.18667 - 1.83982i) q^{77} +(-8.46427 - 9.11832i) q^{78} +(-3.26472 + 1.88488i) q^{79} +(0.197735 - 8.99783i) q^{81} +(5.65579 - 2.13538i) q^{82} +(0.286172 + 0.495665i) q^{83} +(-3.75024 - 1.86538i) q^{84} +(0.988904 - 6.02859i) q^{86} +(5.93990 - 7.65361i) q^{87} +(-0.308386 - 8.60199i) q^{88} -2.40129i q^{89} -6.14138i q^{91} +(-13.1931 - 4.44795i) q^{92} +(-5.62248 - 0.771656i) q^{93} +(14.3763 + 2.35822i) q^{94} +(-0.957353 - 9.75108i) q^{96} +(-5.82556 - 10.0902i) q^{97} +(2.76639 + 7.32708i) q^{98} +(8.79207 + 2.45966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{6} + 4 q^{9} + 22 q^{12} - 30 q^{14} + 16 q^{18} - 4 q^{21} - 28 q^{24} - 12 q^{29} + 44 q^{33} - 6 q^{34} + 42 q^{36} - 60 q^{38} - 60 q^{41} + 18 q^{42} - 12 q^{46} + 12 q^{48} + 24 q^{49}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.896034 1.09413i 0.633592 0.773668i
\(3\) −1.60382 + 0.654027i −0.925968 + 0.377603i
\(4\) −0.394247 1.96076i −0.197124 0.980379i
\(5\) 0 0
\(6\) −0.721488 + 2.34082i −0.294546 + 0.955637i
\(7\) −1.04714 + 0.604565i −0.395781 + 0.228504i −0.684662 0.728861i \(-0.740050\pi\)
0.288881 + 0.957365i \(0.406717\pi\)
\(8\) −2.49858 1.32555i −0.883383 0.468651i
\(9\) 2.14450 2.09789i 0.714832 0.699296i
\(10\) 0 0
\(11\) 1.52161 + 2.63550i 0.458782 + 0.794634i 0.998897 0.0469575i \(-0.0149525\pi\)
−0.540115 + 0.841591i \(0.681619\pi\)
\(12\) 1.91469 + 2.88686i 0.552724 + 0.833365i
\(13\) −2.53958 + 4.39869i −0.704354 + 1.21998i 0.262570 + 0.964913i \(0.415430\pi\)
−0.966924 + 0.255064i \(0.917904\pi\)
\(14\) −0.276797 + 1.68742i −0.0739771 + 0.450981i
\(15\) 0 0
\(16\) −3.68914 + 1.54605i −0.922285 + 0.386512i
\(17\) 2.23944i 0.543143i 0.962418 + 0.271572i \(0.0875434\pi\)
−0.962418 + 0.271572i \(0.912457\pi\)
\(18\) −0.373823 4.22614i −0.0881110 0.996111i
\(19\) 2.53835i 0.582337i 0.956672 + 0.291169i \(0.0940441\pi\)
−0.956672 + 0.291169i \(0.905956\pi\)
\(20\) 0 0
\(21\) 1.28402 1.65447i 0.280197 0.361035i
\(22\) 4.24700 + 0.696660i 0.905463 + 0.148528i
\(23\) 3.48067 6.02870i 0.725770 1.25707i −0.232886 0.972504i \(-0.574817\pi\)
0.958656 0.284567i \(-0.0918498\pi\)
\(24\) 4.87423 + 0.491800i 0.994948 + 0.100388i
\(25\) 0 0
\(26\) 2.53719 + 6.72001i 0.497584 + 1.31790i
\(27\) −2.06732 + 4.76720i −0.397856 + 0.917448i
\(28\) 1.59824 + 1.81484i 0.302038 + 0.342972i
\(29\) −4.84407 + 2.79673i −0.899521 + 0.519339i −0.877045 0.480408i \(-0.840488\pi\)
−0.0224766 + 0.999747i \(0.507155\pi\)
\(30\) 0 0
\(31\) 2.83759 + 1.63828i 0.509647 + 0.294245i 0.732688 0.680564i \(-0.238265\pi\)
−0.223042 + 0.974809i \(0.571599\pi\)
\(32\) −1.61401 + 5.42171i −0.285320 + 0.958432i
\(33\) −4.16408 3.23171i −0.724873 0.562568i
\(34\) 2.45024 + 2.00661i 0.420212 + 0.344131i
\(35\) 0 0
\(36\) −4.95891 3.37775i −0.826485 0.562959i
\(37\) 10.3514 1.70176 0.850882 0.525356i \(-0.176068\pi\)
0.850882 + 0.525356i \(0.176068\pi\)
\(38\) 2.77729 + 2.27445i 0.450536 + 0.368964i
\(39\) 1.19618 8.71567i 0.191542 1.39562i
\(40\) 0 0
\(41\) 3.70208 + 2.13740i 0.578168 + 0.333806i 0.760405 0.649449i \(-0.225000\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(42\) −0.659684 2.88735i −0.101791 0.445528i
\(43\) 3.74108 2.15991i 0.570509 0.329384i −0.186844 0.982390i \(-0.559826\pi\)
0.757353 + 0.653006i \(0.226492\pi\)
\(44\) 4.56769 4.02254i 0.688605 0.606421i
\(45\) 0 0
\(46\) −3.47739 9.21023i −0.512713 1.35797i
\(47\) 5.15071 + 8.92129i 0.751308 + 1.30130i 0.947189 + 0.320677i \(0.103910\pi\)
−0.195880 + 0.980628i \(0.562756\pi\)
\(48\) 4.90557 4.89238i 0.708058 0.706154i
\(49\) −2.76900 + 4.79605i −0.395572 + 0.685150i
\(50\) 0 0
\(51\) −1.46465 3.59166i −0.205092 0.502933i
\(52\) 9.62598 + 3.24534i 1.33488 + 0.450047i
\(53\) 9.42683i 1.29487i 0.762119 + 0.647437i \(0.224159\pi\)
−0.762119 + 0.647437i \(0.775841\pi\)
\(54\) 3.36356 + 6.53349i 0.457722 + 0.889095i
\(55\) 0 0
\(56\) 3.41774 0.122528i 0.456715 0.0163735i
\(57\) −1.66015 4.07106i −0.219892 0.539226i
\(58\) −1.28047 + 7.80601i −0.168133 + 1.02498i
\(59\) −4.46335 + 7.73074i −0.581078 + 1.00646i 0.414274 + 0.910152i \(0.364036\pi\)
−0.995352 + 0.0963045i \(0.969298\pi\)
\(60\) 0 0
\(61\) 1.32896 + 2.30183i 0.170156 + 0.294720i 0.938474 0.345349i \(-0.112239\pi\)
−0.768318 + 0.640068i \(0.778906\pi\)
\(62\) 4.33508 1.63674i 0.550555 0.207866i
\(63\) −0.977274 + 3.49327i −0.123125 + 0.440110i
\(64\) 4.48585 + 6.62398i 0.560732 + 0.827998i
\(65\) 0 0
\(66\) −7.26707 + 1.66033i −0.894514 + 0.204373i
\(67\) −12.4858 7.20867i −1.52538 0.880679i −0.999547 0.0300911i \(-0.990420\pi\)
−0.525833 0.850588i \(-0.676246\pi\)
\(68\) 4.39099 0.882891i 0.532486 0.107066i
\(69\) −1.63945 + 11.9454i −0.197366 + 1.43806i
\(70\) 0 0
\(71\) 3.49303 0.414546 0.207273 0.978283i \(-0.433541\pi\)
0.207273 + 0.978283i \(0.433541\pi\)
\(72\) −8.13906 + 2.39912i −0.959197 + 0.282739i
\(73\) −5.10052 −0.596970 −0.298485 0.954414i \(-0.596481\pi\)
−0.298485 + 0.954414i \(0.596481\pi\)
\(74\) 9.27523 11.3258i 1.07822 1.31660i
\(75\) 0 0
\(76\) 4.97709 1.00074i 0.570911 0.114792i
\(77\) −3.18667 1.83982i −0.363154 0.209667i
\(78\) −8.46427 9.11832i −0.958390 1.03245i
\(79\) −3.26472 + 1.88488i −0.367309 + 0.212066i −0.672282 0.740295i \(-0.734686\pi\)
0.304973 + 0.952361i \(0.401353\pi\)
\(80\) 0 0
\(81\) 0.197735 8.99783i 0.0219706 0.999759i
\(82\) 5.65579 2.13538i 0.624577 0.235814i
\(83\) 0.286172 + 0.495665i 0.0314115 + 0.0544063i 0.881304 0.472550i \(-0.156666\pi\)
−0.849892 + 0.526956i \(0.823333\pi\)
\(84\) −3.75024 1.86538i −0.409185 0.203530i
\(85\) 0 0
\(86\) 0.988904 6.02859i 0.106636 0.650079i
\(87\) 5.93990 7.65361i 0.636824 0.820553i
\(88\) −0.308386 8.60199i −0.0328741 0.916975i
\(89\) 2.40129i 0.254536i −0.991868 0.127268i \(-0.959379\pi\)
0.991868 0.127268i \(-0.0406208\pi\)
\(90\) 0 0
\(91\) 6.14138i 0.643791i
\(92\) −13.1931 4.44795i −1.37547 0.463731i
\(93\) −5.62248 0.771656i −0.583024 0.0800170i
\(94\) 14.3763 + 2.35822i 1.48280 + 0.243232i
\(95\) 0 0
\(96\) −0.957353 9.75108i −0.0977094 0.995215i
\(97\) −5.82556 10.0902i −0.591496 1.02450i −0.994031 0.109096i \(-0.965204\pi\)
0.402535 0.915404i \(-0.368129\pi\)
\(98\) 2.76639 + 7.32708i 0.279448 + 0.740146i
\(99\) 8.79207 + 2.45966i 0.883636 + 0.247206i
\(100\) 0 0
\(101\) −4.13758 + 2.38883i −0.411704 + 0.237698i −0.691522 0.722356i \(-0.743059\pi\)
0.279818 + 0.960053i \(0.409726\pi\)
\(102\) −5.24213 1.61573i −0.519048 0.159981i
\(103\) −8.19166 4.72945i −0.807148 0.466007i 0.0388166 0.999246i \(-0.487641\pi\)
−0.845964 + 0.533239i \(0.820975\pi\)
\(104\) 12.1760 7.62416i 1.19396 0.747610i
\(105\) 0 0
\(106\) 10.3142 + 8.44676i 1.00180 + 0.820422i
\(107\) 18.3014 1.76926 0.884630 0.466294i \(-0.154411\pi\)
0.884630 + 0.466294i \(0.154411\pi\)
\(108\) 10.1624 + 2.17405i 0.977873 + 0.209199i
\(109\) −10.2589 −0.982625 −0.491312 0.870983i \(-0.663483\pi\)
−0.491312 + 0.870983i \(0.663483\pi\)
\(110\) 0 0
\(111\) −16.6019 + 6.77012i −1.57578 + 0.642591i
\(112\) 2.92835 3.84925i 0.276703 0.363720i
\(113\) −5.31273 3.06731i −0.499780 0.288548i 0.228843 0.973463i \(-0.426506\pi\)
−0.728623 + 0.684915i \(0.759839\pi\)
\(114\) −5.94183 1.83139i −0.556503 0.171525i
\(115\) 0 0
\(116\) 7.39346 + 8.39545i 0.686466 + 0.779498i
\(117\) 3.78182 + 14.7607i 0.349630 + 1.36463i
\(118\) 4.45914 + 11.8105i 0.410497 + 1.08724i
\(119\) −1.35389 2.34500i −0.124110 0.214966i
\(120\) 0 0
\(121\) 0.869419 1.50588i 0.0790381 0.136898i
\(122\) 3.70930 + 0.608459i 0.335825 + 0.0550873i
\(123\) −7.33540 1.00675i −0.661411 0.0907753i
\(124\) 2.09357 6.20972i 0.188008 0.557649i
\(125\) 0 0
\(126\) 2.94642 + 4.19935i 0.262488 + 0.374108i
\(127\) 9.41213i 0.835192i −0.908633 0.417596i \(-0.862873\pi\)
0.908633 0.417596i \(-0.137127\pi\)
\(128\) 11.2670 + 1.02720i 0.995870 + 0.0907922i
\(129\) −4.58739 + 5.91088i −0.403897 + 0.520424i
\(130\) 0 0
\(131\) 1.06630 1.84689i 0.0931633 0.161364i −0.815677 0.578507i \(-0.803635\pi\)
0.908841 + 0.417144i \(0.136969\pi\)
\(132\) −4.69492 + 9.43884i −0.408640 + 0.821546i
\(133\) −1.53460 2.65800i −0.133067 0.230478i
\(134\) −19.0749 + 7.20187i −1.64782 + 0.622147i
\(135\) 0 0
\(136\) 2.96848 5.59542i 0.254545 0.479803i
\(137\) −14.2781 + 8.24344i −1.21986 + 0.704285i −0.964887 0.262665i \(-0.915399\pi\)
−0.254969 + 0.966949i \(0.582065\pi\)
\(138\) 11.6009 + 12.4973i 0.987531 + 1.06384i
\(139\) −17.4077 10.0504i −1.47650 0.852460i −0.476856 0.878981i \(-0.658224\pi\)
−0.999648 + 0.0265213i \(0.991557\pi\)
\(140\) 0 0
\(141\) −14.0956 10.9395i −1.18706 0.921270i
\(142\) 3.12987 3.82183i 0.262653 0.320721i
\(143\) −15.4570 −1.29258
\(144\) −4.66792 + 11.0549i −0.388993 + 0.921241i
\(145\) 0 0
\(146\) −4.57023 + 5.58064i −0.378235 + 0.461857i
\(147\) 1.30424 9.50302i 0.107572 0.783796i
\(148\) −4.08102 20.2966i −0.335458 1.66837i
\(149\) 1.63133 + 0.941851i 0.133644 + 0.0771594i 0.565331 0.824864i \(-0.308748\pi\)
−0.431687 + 0.902023i \(0.642082\pi\)
\(150\) 0 0
\(151\) 5.35919 3.09413i 0.436124 0.251796i −0.265828 0.964020i \(-0.585645\pi\)
0.701952 + 0.712224i \(0.252312\pi\)
\(152\) 3.36470 6.34228i 0.272913 0.514427i
\(153\) 4.69809 + 4.80246i 0.379818 + 0.388256i
\(154\) −4.86837 + 1.83809i −0.392304 + 0.148117i
\(155\) 0 0
\(156\) −17.5609 + 1.09071i −1.40600 + 0.0873265i
\(157\) −1.10012 + 1.90546i −0.0877991 + 0.152073i −0.906581 0.422033i \(-0.861317\pi\)
0.818781 + 0.574105i \(0.194650\pi\)
\(158\) −0.862984 + 5.26095i −0.0686553 + 0.418539i
\(159\) −6.16540 15.1190i −0.488948 1.19901i
\(160\) 0 0
\(161\) 8.41717i 0.663366i
\(162\) −9.66763 8.27871i −0.759561 0.650436i
\(163\) 15.3649i 1.20347i 0.798694 + 0.601737i \(0.205525\pi\)
−0.798694 + 0.601737i \(0.794475\pi\)
\(164\) 2.73138 8.10155i 0.213285 0.632625i
\(165\) 0 0
\(166\) 0.798742 + 0.131022i 0.0619944 + 0.0101693i
\(167\) −11.1124 + 19.2472i −0.859901 + 1.48939i 0.0121218 + 0.999927i \(0.496141\pi\)
−0.872023 + 0.489465i \(0.837192\pi\)
\(168\) −5.40132 + 2.43181i −0.416721 + 0.187618i
\(169\) −6.39897 11.0833i −0.492229 0.852565i
\(170\) 0 0
\(171\) 5.32517 + 5.44348i 0.407226 + 0.416274i
\(172\) −5.70997 6.48381i −0.435381 0.494386i
\(173\) 13.3460 7.70532i 1.01468 0.585825i 0.102120 0.994772i \(-0.467437\pi\)
0.912558 + 0.408947i \(0.134104\pi\)
\(174\) −3.05170 13.3569i −0.231349 1.01259i
\(175\) 0 0
\(176\) −9.68803 7.37026i −0.730263 0.555554i
\(177\) 2.10230 15.3179i 0.158019 1.15136i
\(178\) −2.62733 2.15164i −0.196926 0.161272i
\(179\) 12.8229 0.958425 0.479212 0.877699i \(-0.340922\pi\)
0.479212 + 0.877699i \(0.340922\pi\)
\(180\) 0 0
\(181\) 17.3649 1.29072 0.645360 0.763879i \(-0.276707\pi\)
0.645360 + 0.763879i \(0.276707\pi\)
\(182\) −6.71947 5.50288i −0.498081 0.407901i
\(183\) −3.63688 2.82255i −0.268846 0.208649i
\(184\) −16.6881 + 10.4494i −1.23026 + 0.770342i
\(185\) 0 0
\(186\) −5.88222 + 5.46030i −0.431306 + 0.400369i
\(187\) −5.90204 + 3.40754i −0.431600 + 0.249184i
\(188\) 15.4618 13.6165i 1.12767 0.993085i
\(189\) −0.717316 6.24174i −0.0521771 0.454020i
\(190\) 0 0
\(191\) 8.91431 + 15.4400i 0.645017 + 1.11720i 0.984298 + 0.176516i \(0.0564829\pi\)
−0.339281 + 0.940685i \(0.610184\pi\)
\(192\) −11.5268 7.68982i −0.831874 0.554965i
\(193\) −2.44181 + 4.22934i −0.175765 + 0.304434i −0.940426 0.339999i \(-0.889573\pi\)
0.764661 + 0.644433i \(0.222907\pi\)
\(194\) −16.2599 2.66720i −1.16739 0.191494i
\(195\) 0 0
\(196\) 10.4956 + 3.53851i 0.749683 + 0.252751i
\(197\) 16.8173i 1.19818i 0.800682 + 0.599090i \(0.204471\pi\)
−0.800682 + 0.599090i \(0.795529\pi\)
\(198\) 10.5692 7.41574i 0.751119 0.527014i
\(199\) 5.91492i 0.419297i 0.977777 + 0.209649i \(0.0672320\pi\)
−0.977777 + 0.209649i \(0.932768\pi\)
\(200\) 0 0
\(201\) 24.7396 + 3.39539i 1.74500 + 0.239492i
\(202\) −1.09371 + 6.66752i −0.0769534 + 0.469125i
\(203\) 3.38161 5.85712i 0.237342 0.411089i
\(204\) −6.46494 + 4.28783i −0.452636 + 0.300208i
\(205\) 0 0
\(206\) −12.5146 + 4.72500i −0.871937 + 0.329206i
\(207\) −5.18325 20.2306i −0.360260 1.40612i
\(208\) 2.56830 20.1537i 0.178080 1.39741i
\(209\) −6.68983 + 3.86237i −0.462745 + 0.267166i
\(210\) 0 0
\(211\) −23.9485 13.8267i −1.64868 0.951868i −0.977596 0.210491i \(-0.932494\pi\)
−0.671089 0.741377i \(-0.734173\pi\)
\(212\) 18.4837 3.71650i 1.26947 0.255250i
\(213\) −5.60220 + 2.28453i −0.383856 + 0.156534i
\(214\) 16.3986 20.0241i 1.12099 1.36882i
\(215\) 0 0
\(216\) 11.4845 9.17093i 0.781422 0.624003i
\(217\) −3.96180 −0.268945
\(218\) −9.19232 + 11.2246i −0.622583 + 0.760225i
\(219\) 8.18033 3.33588i 0.552775 0.225418i
\(220\) 0 0
\(221\) −9.85058 5.68724i −0.662622 0.382565i
\(222\) −7.46843 + 24.2309i −0.501248 + 1.62627i
\(223\) 20.7390 11.9737i 1.38878 0.801815i 0.395606 0.918420i \(-0.370535\pi\)
0.993178 + 0.116605i \(0.0372013\pi\)
\(224\) −1.58768 6.65306i −0.106082 0.444526i
\(225\) 0 0
\(226\) −8.11643 + 3.06442i −0.539897 + 0.203842i
\(227\) 3.45979 + 5.99253i 0.229634 + 0.397739i 0.957700 0.287769i \(-0.0929136\pi\)
−0.728065 + 0.685508i \(0.759580\pi\)
\(228\) −7.32786 + 4.86016i −0.485299 + 0.321872i
\(229\) 7.65837 13.2647i 0.506080 0.876556i −0.493896 0.869521i \(-0.664428\pi\)
0.999975 0.00703439i \(-0.00223914\pi\)
\(230\) 0 0
\(231\) 6.31414 + 0.866584i 0.415440 + 0.0570170i
\(232\) 15.8105 0.566816i 1.03801 0.0372133i
\(233\) 6.61050i 0.433068i 0.976275 + 0.216534i \(0.0694753\pi\)
−0.976275 + 0.216534i \(0.930525\pi\)
\(234\) 19.5388 + 9.08830i 1.27729 + 0.594121i
\(235\) 0 0
\(236\) 16.9178 + 5.70371i 1.10125 + 0.371280i
\(237\) 4.00326 5.15823i 0.260040 0.335063i
\(238\) −3.77886 0.619869i −0.244947 0.0401801i
\(239\) 4.11060 7.11976i 0.265892 0.460539i −0.701905 0.712271i \(-0.747667\pi\)
0.967797 + 0.251732i \(0.0810001\pi\)
\(240\) 0 0
\(241\) −7.30777 12.6574i −0.470735 0.815337i 0.528705 0.848806i \(-0.322678\pi\)
−0.999440 + 0.0334691i \(0.989344\pi\)
\(242\) −0.868600 2.30058i −0.0558357 0.147887i
\(243\) 5.56769 + 14.5602i 0.357168 + 0.934040i
\(244\) 3.98940 3.51327i 0.255395 0.224914i
\(245\) 0 0
\(246\) −7.67428 + 7.12382i −0.489294 + 0.454198i
\(247\) −11.1654 6.44635i −0.710438 0.410172i
\(248\) −4.91834 7.85475i −0.312315 0.498777i
\(249\) −0.783148 0.607794i −0.0496300 0.0385174i
\(250\) 0 0
\(251\) 2.39191 0.150976 0.0754880 0.997147i \(-0.475949\pi\)
0.0754880 + 0.997147i \(0.475949\pi\)
\(252\) 7.23473 + 0.538987i 0.455745 + 0.0339530i
\(253\) 21.1849 1.33188
\(254\) −10.2981 8.43359i −0.646161 0.529170i
\(255\) 0 0
\(256\) 11.2195 11.4072i 0.701218 0.712947i
\(257\) −7.31747 4.22474i −0.456451 0.263532i 0.254100 0.967178i \(-0.418221\pi\)
−0.710551 + 0.703646i \(0.751554\pi\)
\(258\) 2.35683 + 10.3156i 0.146730 + 0.642218i
\(259\) −10.8394 + 6.25812i −0.673526 + 0.388860i
\(260\) 0 0
\(261\) −4.52088 + 16.1599i −0.279835 + 1.00027i
\(262\) −1.06530 2.82155i −0.0658143 0.174316i
\(263\) 3.23162 + 5.59733i 0.199270 + 0.345146i 0.948292 0.317399i \(-0.102810\pi\)
−0.749022 + 0.662545i \(0.769476\pi\)
\(264\) 6.12053 + 13.5944i 0.376693 + 0.836676i
\(265\) 0 0
\(266\) −4.28326 0.702607i −0.262623 0.0430796i
\(267\) 1.57051 + 3.85124i 0.0961135 + 0.235692i
\(268\) −9.21196 + 27.3236i −0.562710 + 1.66905i
\(269\) 6.14888i 0.374904i 0.982274 + 0.187452i \(0.0600229\pi\)
−0.982274 + 0.187452i \(0.939977\pi\)
\(270\) 0 0
\(271\) 0.446839i 0.0271436i 0.999908 + 0.0135718i \(0.00432016\pi\)
−0.999908 + 0.0135718i \(0.995680\pi\)
\(272\) −3.46227 8.26159i −0.209931 0.500932i
\(273\) 4.01663 + 9.84968i 0.243097 + 0.596130i
\(274\) −3.77421 + 23.0085i −0.228009 + 1.38999i
\(275\) 0 0
\(276\) 24.0684 1.49489i 1.44875 0.0899818i
\(277\) 3.41624 + 5.91710i 0.205262 + 0.355524i 0.950216 0.311592i \(-0.100862\pi\)
−0.744954 + 0.667115i \(0.767529\pi\)
\(278\) −26.5943 + 10.0409i −1.59502 + 0.602212i
\(279\) 9.52214 2.43965i 0.570076 0.146058i
\(280\) 0 0
\(281\) −2.85059 + 1.64579i −0.170052 + 0.0981794i −0.582610 0.812752i \(-0.697969\pi\)
0.412559 + 0.910931i \(0.364635\pi\)
\(282\) −24.5993 + 5.62030i −1.46487 + 0.334684i
\(283\) 20.2974 + 11.7187i 1.20655 + 0.696603i 0.962004 0.273034i \(-0.0880271\pi\)
0.244548 + 0.969637i \(0.421360\pi\)
\(284\) −1.37712 6.84898i −0.0817168 0.406412i
\(285\) 0 0
\(286\) −13.8500 + 16.9120i −0.818967 + 1.00003i
\(287\) −5.16879 −0.305104
\(288\) 7.91289 + 15.0129i 0.466272 + 0.884642i
\(289\) 11.9849 0.704996
\(290\) 0 0
\(291\) 15.9424 + 12.3728i 0.934560 + 0.725304i
\(292\) 2.01086 + 10.0009i 0.117677 + 0.585257i
\(293\) −24.1734 13.9565i −1.41223 0.815349i −0.416628 0.909077i \(-0.636788\pi\)
−0.995598 + 0.0937278i \(0.970122\pi\)
\(294\) −9.22891 9.94204i −0.538241 0.579831i
\(295\) 0 0
\(296\) −25.8639 13.7213i −1.50331 0.797535i
\(297\) −15.7096 + 1.80539i −0.911564 + 0.104759i
\(298\) 2.49224 0.940963i 0.144371 0.0545085i
\(299\) 17.6789 + 30.6208i 1.02240 + 1.77085i
\(300\) 0 0
\(301\) −2.61162 + 4.52345i −0.150531 + 0.260727i
\(302\) 1.41663 8.63610i 0.0815178 0.496951i
\(303\) 5.07358 6.53735i 0.291470 0.375561i
\(304\) −3.92441 9.36432i −0.225080 0.537081i
\(305\) 0 0
\(306\) 9.46417 0.837153i 0.541031 0.0478569i
\(307\) 22.5939i 1.28950i 0.764393 + 0.644750i \(0.223039\pi\)
−0.764393 + 0.644750i \(0.776961\pi\)
\(308\) −2.35111 + 6.97362i −0.133967 + 0.397359i
\(309\) 16.2312 + 2.22764i 0.923358 + 0.126726i
\(310\) 0 0
\(311\) 2.94543 5.10164i 0.167020 0.289287i −0.770351 0.637620i \(-0.779919\pi\)
0.937371 + 0.348333i \(0.113252\pi\)
\(312\) −14.5418 + 20.1913i −0.823267 + 1.14310i
\(313\) 3.88369 + 6.72675i 0.219519 + 0.380218i 0.954661 0.297695i \(-0.0962178\pi\)
−0.735142 + 0.677913i \(0.762885\pi\)
\(314\) 1.09908 + 2.91104i 0.0620249 + 0.164279i
\(315\) 0 0
\(316\) 4.98291 + 5.65820i 0.280310 + 0.318299i
\(317\) 10.1939 5.88545i 0.572547 0.330560i −0.185619 0.982622i \(-0.559429\pi\)
0.758166 + 0.652062i \(0.226096\pi\)
\(318\) −22.0665 6.80134i −1.23743 0.381400i
\(319\) −14.7416 8.51104i −0.825369 0.476527i
\(320\) 0 0
\(321\) −29.3522 + 11.9696i −1.63828 + 0.668077i
\(322\) 9.20949 + 7.54207i 0.513225 + 0.420303i
\(323\) −5.68447 −0.316293
\(324\) −17.7205 + 3.15966i −0.984473 + 0.175537i
\(325\) 0 0
\(326\) 16.8113 + 13.7675i 0.931089 + 0.762511i
\(327\) 16.4535 6.70960i 0.909879 0.371042i
\(328\) −6.41675 10.2478i −0.354306 0.565838i
\(329\) −10.7870 6.22788i −0.594707 0.343354i
\(330\) 0 0
\(331\) −3.74464 + 2.16197i −0.205824 + 0.118833i −0.599369 0.800473i \(-0.704582\pi\)
0.393545 + 0.919305i \(0.371249\pi\)
\(332\) 0.859056 0.756529i 0.0471468 0.0415199i
\(333\) 22.1986 21.7161i 1.21648 1.19004i
\(334\) 11.1019 + 29.4045i 0.607469 + 1.60894i
\(335\) 0 0
\(336\) −2.17904 + 8.08873i −0.118877 + 0.441277i
\(337\) 3.88505 6.72910i 0.211632 0.366558i −0.740593 0.671953i \(-0.765455\pi\)
0.952225 + 0.305396i \(0.0987888\pi\)
\(338\) −17.8603 2.92973i −0.971474 0.159357i
\(339\) 10.5268 + 1.44475i 0.571737 + 0.0784679i
\(340\) 0 0
\(341\) 9.97131i 0.539977i
\(342\) 10.7274 0.948894i 0.580073 0.0513103i
\(343\) 15.1601i 0.818568i
\(344\) −12.2105 + 0.437752i −0.658344 + 0.0236020i
\(345\) 0 0
\(346\) 3.52784 21.5065i 0.189658 1.15620i
\(347\) 5.63307 9.75677i 0.302399 0.523771i −0.674280 0.738476i \(-0.735546\pi\)
0.976679 + 0.214705i \(0.0688791\pi\)
\(348\) −17.3487 8.62929i −0.929986 0.462578i
\(349\) 11.1403 + 19.2956i 0.596326 + 1.03287i 0.993358 + 0.115063i \(0.0367069\pi\)
−0.397032 + 0.917805i \(0.629960\pi\)
\(350\) 0 0
\(351\) −15.7193 21.2002i −0.839034 1.13158i
\(352\) −16.7448 + 3.99598i −0.892502 + 0.212986i
\(353\) 19.1084 11.0323i 1.01704 0.587188i 0.103794 0.994599i \(-0.466902\pi\)
0.913245 + 0.407411i \(0.133568\pi\)
\(354\) −14.8761 16.0255i −0.790653 0.851748i
\(355\) 0 0
\(356\) −4.70835 + 0.946702i −0.249542 + 0.0501751i
\(357\) 3.70509 + 2.87548i 0.196094 + 0.152187i
\(358\) 11.4897 14.0299i 0.607250 0.741502i
\(359\) −1.70332 −0.0898978 −0.0449489 0.998989i \(-0.514313\pi\)
−0.0449489 + 0.998989i \(0.514313\pi\)
\(360\) 0 0
\(361\) 12.5568 0.660883
\(362\) 15.5595 18.9994i 0.817789 0.998588i
\(363\) −0.409509 + 2.98379i −0.0214937 + 0.156608i
\(364\) −12.0418 + 2.42122i −0.631159 + 0.126906i
\(365\) 0 0
\(366\) −6.34702 + 1.45013i −0.331764 + 0.0757993i
\(367\) −8.15927 + 4.71076i −0.425910 + 0.245900i −0.697603 0.716485i \(-0.745750\pi\)
0.271692 + 0.962384i \(0.412417\pi\)
\(368\) −3.52003 + 27.6220i −0.183494 + 1.43990i
\(369\) 12.4231 3.18291i 0.646722 0.165696i
\(370\) 0 0
\(371\) −5.69914 9.87119i −0.295884 0.512487i
\(372\) 0.703615 + 11.3285i 0.0364808 + 0.587357i
\(373\) 7.29277 12.6314i 0.377605 0.654031i −0.613108 0.789999i \(-0.710081\pi\)
0.990713 + 0.135968i \(0.0434143\pi\)
\(374\) −1.56013 + 9.51088i −0.0806721 + 0.491796i
\(375\) 0 0
\(376\) −1.04390 29.1181i −0.0538351 1.50165i
\(377\) 28.4101i 1.46319i
\(378\) −7.47203 4.80798i −0.384320 0.247296i
\(379\) 9.46065i 0.485961i −0.970031 0.242980i \(-0.921875\pi\)
0.970031 0.242980i \(-0.0781251\pi\)
\(380\) 0 0
\(381\) 6.15579 + 15.0954i 0.315371 + 0.773361i
\(382\) 24.8809 + 4.08137i 1.27302 + 0.208821i
\(383\) −3.43007 + 5.94105i −0.175268 + 0.303573i −0.940254 0.340474i \(-0.889413\pi\)
0.764986 + 0.644047i \(0.222746\pi\)
\(384\) −18.7421 + 5.72147i −0.956427 + 0.291973i
\(385\) 0 0
\(386\) 2.43951 + 6.46129i 0.124168 + 0.328871i
\(387\) 3.49148 12.4803i 0.177482 0.634409i
\(388\) −17.4876 + 15.4005i −0.887801 + 0.781843i
\(389\) 7.11643 4.10868i 0.360818 0.208318i −0.308622 0.951185i \(-0.599868\pi\)
0.669439 + 0.742867i \(0.266534\pi\)
\(390\) 0 0
\(391\) 13.5009 + 7.79474i 0.682769 + 0.394197i
\(392\) 13.2760 8.31290i 0.670538 0.419865i
\(393\) −0.502244 + 3.65948i −0.0253349 + 0.184596i
\(394\) 18.4003 + 15.0688i 0.926993 + 0.759157i
\(395\) 0 0
\(396\) 1.35656 18.2088i 0.0681695 0.915028i
\(397\) 7.07936 0.355303 0.177651 0.984093i \(-0.443150\pi\)
0.177651 + 0.984093i \(0.443150\pi\)
\(398\) 6.47170 + 5.29996i 0.324397 + 0.265663i
\(399\) 4.19963 + 3.25930i 0.210244 + 0.163169i
\(400\) 0 0
\(401\) −15.3220 8.84615i −0.765143 0.441755i 0.0659963 0.997820i \(-0.478977\pi\)
−0.831139 + 0.556064i \(0.812311\pi\)
\(402\) 25.8826 24.0260i 1.29090 1.19831i
\(403\) −14.4126 + 8.32112i −0.717943 + 0.414505i
\(404\) 6.31514 + 7.17099i 0.314190 + 0.356770i
\(405\) 0 0
\(406\) −3.37842 8.94810i −0.167668 0.444087i
\(407\) 15.7508 + 27.2812i 0.780739 + 1.35228i
\(408\) −1.10135 + 10.9155i −0.0545251 + 0.540399i
\(409\) 11.3542 19.6660i 0.561428 0.972422i −0.435944 0.899974i \(-0.643585\pi\)
0.997372 0.0724482i \(-0.0230812\pi\)
\(410\) 0 0
\(411\) 17.5080 22.5593i 0.863608 1.11277i
\(412\) −6.04377 + 17.9264i −0.297755 + 0.883171i
\(413\) 10.7935i 0.531115i
\(414\) −26.7793 12.4561i −1.31613 0.612186i
\(415\) 0 0
\(416\) −19.7495 20.8684i −0.968299 1.02316i
\(417\) 34.4921 + 4.73387i 1.68909 + 0.231818i
\(418\) −1.76837 + 10.7804i −0.0864936 + 0.527285i
\(419\) −13.1805 + 22.8292i −0.643908 + 1.11528i 0.340645 + 0.940192i \(0.389355\pi\)
−0.984553 + 0.175089i \(0.943979\pi\)
\(420\) 0 0
\(421\) −8.57768 14.8570i −0.418050 0.724084i 0.577693 0.816254i \(-0.303953\pi\)
−0.995743 + 0.0921697i \(0.970620\pi\)
\(422\) −36.5869 + 13.8137i −1.78102 + 0.672438i
\(423\) 29.7616 + 8.32607i 1.44706 + 0.404828i
\(424\) 12.4957 23.5537i 0.606845 1.14387i
\(425\) 0 0
\(426\) −2.52018 + 8.17656i −0.122103 + 0.396156i
\(427\) −2.78322 1.60689i −0.134689 0.0777629i
\(428\) −7.21526 35.8845i −0.348763 1.73454i
\(429\) 24.7903 10.1093i 1.19689 0.488082i
\(430\) 0 0
\(431\) −12.5816 −0.606037 −0.303018 0.952985i \(-0.597994\pi\)
−0.303018 + 0.952985i \(0.597994\pi\)
\(432\) 0.256313 20.7830i 0.0123319 0.999924i
\(433\) 11.7433 0.564346 0.282173 0.959364i \(-0.408945\pi\)
0.282173 + 0.959364i \(0.408945\pi\)
\(434\) −3.54991 + 4.33473i −0.170401 + 0.208074i
\(435\) 0 0
\(436\) 4.04454 + 20.1152i 0.193698 + 0.963344i
\(437\) 15.3030 + 8.83516i 0.732039 + 0.422643i
\(438\) 3.67996 11.9394i 0.175835 0.570487i
\(439\) −1.45738 + 0.841421i −0.0695571 + 0.0401588i −0.534375 0.845247i \(-0.679453\pi\)
0.464818 + 0.885406i \(0.346120\pi\)
\(440\) 0 0
\(441\) 4.12346 + 16.0942i 0.196355 + 0.766389i
\(442\) −15.0490 + 5.68188i −0.715810 + 0.270259i
\(443\) −0.379510 0.657331i −0.0180311 0.0312307i 0.856869 0.515534i \(-0.172406\pi\)
−0.874900 + 0.484303i \(0.839073\pi\)
\(444\) 19.8198 + 29.8831i 0.940606 + 1.41819i
\(445\) 0 0
\(446\) 5.48207 33.4200i 0.259584 1.58248i
\(447\) −3.23237 0.443626i −0.152886 0.0209828i
\(448\) −8.70194 4.22423i −0.411128 0.199576i
\(449\) 17.4579i 0.823887i −0.911209 0.411943i \(-0.864850\pi\)
0.911209 0.411943i \(-0.135150\pi\)
\(450\) 0 0
\(451\) 13.0091i 0.612576i
\(452\) −3.91972 + 11.6263i −0.184368 + 0.546853i
\(453\) −6.57154 + 8.46749i −0.308758 + 0.397837i
\(454\) 9.65671 + 1.58405i 0.453212 + 0.0743430i
\(455\) 0 0
\(456\) −1.24836 + 12.3725i −0.0584598 + 0.579396i
\(457\) −17.4319 30.1929i −0.815430 1.41237i −0.909019 0.416756i \(-0.863167\pi\)
0.0935884 0.995611i \(-0.470166\pi\)
\(458\) −7.65116 20.2649i −0.357515 0.946916i
\(459\) −10.6758 4.62963i −0.498306 0.216093i
\(460\) 0 0
\(461\) 27.0906 15.6407i 1.26173 0.728462i 0.288324 0.957533i \(-0.406902\pi\)
0.973410 + 0.229071i \(0.0735688\pi\)
\(462\) 6.60584 6.13201i 0.307332 0.285287i
\(463\) −8.90511 5.14137i −0.413856 0.238940i 0.278589 0.960410i \(-0.410133\pi\)
−0.692445 + 0.721471i \(0.743466\pi\)
\(464\) 13.5466 17.8067i 0.628884 0.826654i
\(465\) 0 0
\(466\) 7.23276 + 5.92323i 0.335051 + 0.274388i
\(467\) −2.90585 −0.134467 −0.0672333 0.997737i \(-0.521417\pi\)
−0.0672333 + 0.997737i \(0.521417\pi\)
\(468\) 27.4512 13.2346i 1.26893 0.611770i
\(469\) 17.4324 0.804955
\(470\) 0 0
\(471\) 0.518173 3.77554i 0.0238761 0.173967i
\(472\) 21.3995 13.3995i 0.984992 0.616764i
\(473\) 11.3849 + 6.57308i 0.523479 + 0.302231i
\(474\) −2.05673 9.00204i −0.0944687 0.413478i
\(475\) 0 0
\(476\) −4.06421 + 3.57915i −0.186283 + 0.164050i
\(477\) 19.7764 + 20.2158i 0.905501 + 0.925618i
\(478\) −4.10672 10.8771i −0.187837 0.497506i
\(479\) 9.42773 + 16.3293i 0.430764 + 0.746105i 0.996939 0.0781799i \(-0.0249109\pi\)
−0.566175 + 0.824285i \(0.691578\pi\)
\(480\) 0 0
\(481\) −26.2883 + 45.5327i −1.19864 + 2.07611i
\(482\) −20.3969 3.34582i −0.929053 0.152398i
\(483\) −5.50506 13.4997i −0.250489 0.614256i
\(484\) −3.29543 1.11103i −0.149792 0.0505014i
\(485\) 0 0
\(486\) 20.9197 + 6.95469i 0.948935 + 0.315471i
\(487\) 11.5696i 0.524268i −0.965031 0.262134i \(-0.915574\pi\)
0.965031 0.262134i \(-0.0844263\pi\)
\(488\) −0.269343 7.51293i −0.0121926 0.340094i
\(489\) −10.0491 24.6426i −0.454435 1.11438i
\(490\) 0 0
\(491\) −0.747617 + 1.29491i −0.0337395 + 0.0584385i −0.882402 0.470496i \(-0.844075\pi\)
0.848663 + 0.528935i \(0.177408\pi\)
\(492\) 0.917977 + 14.7799i 0.0413856 + 0.666327i
\(493\) −6.26309 10.8480i −0.282075 0.488569i
\(494\) −17.0577 + 6.44028i −0.767464 + 0.289762i
\(495\) 0 0
\(496\) −13.0011 1.65681i −0.583768 0.0743930i
\(497\) −3.65768 + 2.11176i −0.164069 + 0.0947255i
\(498\) −1.36673 + 0.312263i −0.0612448 + 0.0139928i
\(499\) 27.2612 + 15.7393i 1.22038 + 0.704586i 0.964999 0.262254i \(-0.0844660\pi\)
0.255380 + 0.966841i \(0.417799\pi\)
\(500\) 0 0
\(501\) 5.23409 38.1369i 0.233842 1.70383i
\(502\) 2.14323 2.61706i 0.0956571 0.116805i
\(503\) 1.90449 0.0849171 0.0424585 0.999098i \(-0.486481\pi\)
0.0424585 + 0.999098i \(0.486481\pi\)
\(504\) 7.07229 7.43280i 0.315025 0.331083i
\(505\) 0 0
\(506\) 18.9824 23.1790i 0.843869 1.03043i
\(507\) 17.5116 + 13.5906i 0.777719 + 0.603581i
\(508\) −18.4549 + 3.71071i −0.818804 + 0.164636i
\(509\) 27.2228 + 15.7171i 1.20663 + 0.696647i 0.962021 0.272975i \(-0.0880078\pi\)
0.244607 + 0.969622i \(0.421341\pi\)
\(510\) 0 0
\(511\) 5.34094 3.08360i 0.236269 0.136410i
\(512\) −2.42789 22.4968i −0.107299 0.994227i
\(513\) −12.1008 5.24758i −0.534264 0.231686i
\(514\) −11.1791 + 4.22076i −0.493090 + 0.186170i
\(515\) 0 0
\(516\) 13.3984 + 6.66440i 0.589831 + 0.293384i
\(517\) −15.6747 + 27.1494i −0.689374 + 1.19403i
\(518\) −2.86524 + 17.4672i −0.125892 + 0.767464i
\(519\) −16.3652 + 21.0866i −0.718350 + 0.925600i
\(520\) 0 0
\(521\) 23.2742i 1.01966i −0.860275 0.509831i \(-0.829708\pi\)
0.860275 0.509831i \(-0.170292\pi\)
\(522\) 13.6302 + 19.4262i 0.596577 + 0.850263i
\(523\) 10.8804i 0.475769i −0.971293 0.237884i \(-0.923546\pi\)
0.971293 0.237884i \(-0.0764539\pi\)
\(524\) −4.04169 1.36263i −0.176562 0.0595267i
\(525\) 0 0
\(526\) 9.01985 + 1.47958i 0.393284 + 0.0645127i
\(527\) −3.66883 + 6.35461i −0.159817 + 0.276811i
\(528\) 20.3582 + 5.48435i 0.885978 + 0.238676i
\(529\) −12.7302 22.0493i −0.553485 0.958664i
\(530\) 0 0
\(531\) 6.64660 + 25.9422i 0.288438 + 1.12579i
\(532\) −4.60669 + 4.05689i −0.199725 + 0.175888i
\(533\) −18.8035 + 10.8562i −0.814470 + 0.470235i
\(534\) 5.62099 + 1.73250i 0.243244 + 0.0749727i
\(535\) 0 0
\(536\) 21.6414 + 34.5619i 0.934764 + 1.49285i
\(537\) −20.5656 + 8.38649i −0.887471 + 0.361904i
\(538\) 6.72769 + 5.50961i 0.290051 + 0.237536i
\(539\) −16.8533 −0.725925
\(540\) 0 0
\(541\) −6.53795 −0.281088 −0.140544 0.990074i \(-0.544885\pi\)
−0.140544 + 0.990074i \(0.544885\pi\)
\(542\) 0.488901 + 0.400383i 0.0210001 + 0.0171979i
\(543\) −27.8502 + 11.3571i −1.19516 + 0.487379i
\(544\) −12.1416 3.61448i −0.520566 0.154970i
\(545\) 0 0
\(546\) 14.3759 + 4.43093i 0.615231 + 0.189626i
\(547\) −23.0165 + 13.2886i −0.984113 + 0.568178i −0.903509 0.428569i \(-0.859018\pi\)
−0.0806034 + 0.996746i \(0.525685\pi\)
\(548\) 21.7925 + 24.7458i 0.930928 + 1.05709i
\(549\) 7.67895 + 2.14826i 0.327729 + 0.0916854i
\(550\) 0 0
\(551\) −7.09907 12.2959i −0.302431 0.523825i
\(552\) 19.9305 27.6735i 0.848299 1.17786i
\(553\) 2.27907 3.94747i 0.0969160 0.167863i
\(554\) 9.53514 + 1.56411i 0.405109 + 0.0664525i
\(555\) 0 0
\(556\) −12.8434 + 38.0947i −0.544680 + 1.61557i
\(557\) 8.68248i 0.367889i 0.982937 + 0.183944i \(0.0588866\pi\)
−0.982937 + 0.183944i \(0.941113\pi\)
\(558\) 5.86286 12.6045i 0.248195 0.533591i
\(559\) 21.9411i 0.928010i
\(560\) 0 0
\(561\) 7.23720 9.32519i 0.305555 0.393710i
\(562\) −0.753514 + 4.59360i −0.0317851 + 0.193769i
\(563\) 15.8324 27.4226i 0.667257 1.15572i −0.311411 0.950275i \(-0.600801\pi\)
0.978668 0.205448i \(-0.0658652\pi\)
\(564\) −15.8925 + 31.9509i −0.669195 + 1.34538i
\(565\) 0 0
\(566\) 31.0089 11.7076i 1.30340 0.492109i
\(567\) 5.23272 + 9.54151i 0.219754 + 0.400706i
\(568\) −8.72762 4.63017i −0.366203 0.194278i
\(569\) 27.9697 16.1483i 1.17255 0.676973i 0.218272 0.975888i \(-0.429958\pi\)
0.954280 + 0.298915i \(0.0966248\pi\)
\(570\) 0 0
\(571\) 12.7245 + 7.34651i 0.532505 + 0.307442i 0.742036 0.670360i \(-0.233860\pi\)
−0.209531 + 0.977802i \(0.567194\pi\)
\(572\) 6.09388 + 30.3074i 0.254798 + 1.26722i
\(573\) −24.3952 18.9329i −1.01912 0.790932i
\(574\) −4.63141 + 5.65534i −0.193311 + 0.236049i
\(575\) 0 0
\(576\) 23.5163 + 4.79429i 0.979844 + 0.199762i
\(577\) 22.4886 0.936214 0.468107 0.883672i \(-0.344936\pi\)
0.468107 + 0.883672i \(0.344936\pi\)
\(578\) 10.7389 13.1131i 0.446679 0.545432i
\(579\) 1.15013 8.38012i 0.0477977 0.348266i
\(580\) 0 0
\(581\) −0.599324 0.346020i −0.0248641 0.0143553i
\(582\) 27.8224 6.35667i 1.15327 0.263493i
\(583\) −24.8444 + 14.3439i −1.02895 + 0.594065i
\(584\) 12.7441 + 6.76097i 0.527354 + 0.279771i
\(585\) 0 0
\(586\) −36.9305 + 13.9434i −1.52558 + 0.575996i
\(587\) −17.2484 29.8752i −0.711919 1.23308i −0.964136 0.265409i \(-0.914493\pi\)
0.252217 0.967671i \(-0.418840\pi\)
\(588\) −19.1473 + 1.18924i −0.789622 + 0.0490434i
\(589\) −4.15854 + 7.20280i −0.171350 + 0.296786i
\(590\) 0 0
\(591\) −10.9989 26.9719i −0.452436 1.10948i
\(592\) −38.1879 + 16.0038i −1.56951 + 0.657752i
\(593\) 11.5133i 0.472794i 0.971656 + 0.236397i \(0.0759667\pi\)
−0.971656 + 0.236397i \(0.924033\pi\)
\(594\) −12.1010 + 18.8061i −0.496511 + 0.771622i
\(595\) 0 0
\(596\) 1.20359 3.56997i 0.0493011 0.146232i
\(597\) −3.86852 9.48648i −0.158328 0.388256i
\(598\) 49.3441 + 8.09419i 2.01783 + 0.330996i
\(599\) 17.8060 30.8410i 0.727535 1.26013i −0.230387 0.973099i \(-0.573999\pi\)
0.957922 0.287028i \(-0.0926674\pi\)
\(600\) 0 0
\(601\) −20.4137 35.3576i −0.832693 1.44227i −0.895895 0.444266i \(-0.853465\pi\)
0.0632021 0.998001i \(-0.479869\pi\)
\(602\) 2.60916 + 6.91062i 0.106341 + 0.281656i
\(603\) −41.8987 + 10.7348i −1.70625 + 0.437155i
\(604\) −8.17968 9.28821i −0.332826 0.377932i
\(605\) 0 0
\(606\) −2.60662 11.4088i −0.105887 0.463453i
\(607\) −1.90026 1.09711i −0.0771290 0.0445304i 0.460940 0.887432i \(-0.347513\pi\)
−0.538069 + 0.842901i \(0.680846\pi\)
\(608\) −13.7622 4.09693i −0.558131 0.166153i
\(609\) −1.59279 + 11.6054i −0.0645430 + 0.470276i
\(610\) 0 0
\(611\) −52.3227 −2.11675
\(612\) 7.56426 11.1052i 0.305767 0.448900i
\(613\) −38.7673 −1.56580 −0.782899 0.622149i \(-0.786260\pi\)
−0.782899 + 0.622149i \(0.786260\pi\)
\(614\) 24.7207 + 20.2449i 0.997645 + 0.817017i
\(615\) 0 0
\(616\) 5.52339 + 8.82103i 0.222544 + 0.355409i
\(617\) 12.8653 + 7.42778i 0.517937 + 0.299031i 0.736090 0.676884i \(-0.236670\pi\)
−0.218153 + 0.975915i \(0.570003\pi\)
\(618\) 16.9810 15.7630i 0.683076 0.634080i
\(619\) 12.3383 7.12352i 0.495918 0.286318i −0.231108 0.972928i \(-0.574235\pi\)
0.727026 + 0.686610i \(0.240902\pi\)
\(620\) 0 0
\(621\) 21.5444 + 29.0563i 0.864545 + 1.16599i
\(622\) −2.94266 7.79393i −0.117990 0.312508i
\(623\) 1.45174 + 2.51448i 0.0581626 + 0.100741i
\(624\) 9.06196 + 34.0027i 0.362769 + 1.36120i
\(625\) 0 0
\(626\) 10.8399 + 1.77813i 0.433248 + 0.0710682i
\(627\) 8.20320 10.5699i 0.327604 0.422121i
\(628\) 4.16987 + 1.40584i 0.166396 + 0.0560993i
\(629\) 23.1814i 0.924302i
\(630\) 0 0
\(631\) 38.8200i 1.54540i 0.634772 + 0.772700i \(0.281094\pi\)
−0.634772 + 0.772700i \(0.718906\pi\)
\(632\) 10.6557 0.382012i 0.423860 0.0151956i
\(633\) 47.4522 + 6.51258i 1.88606 + 0.258852i
\(634\) 2.69462 16.4270i 0.107017 0.652401i
\(635\) 0 0
\(636\) −27.2139 + 18.0495i −1.07910 + 0.715708i
\(637\) −14.0642 24.3599i −0.557245 0.965176i
\(638\) −22.5211 + 8.50302i −0.891620 + 0.336638i
\(639\) 7.49078 7.32798i 0.296331 0.289890i
\(640\) 0 0
\(641\) 16.5595 9.56061i 0.654060 0.377621i −0.135950 0.990716i \(-0.543409\pi\)
0.790010 + 0.613094i \(0.210075\pi\)
\(642\) −13.2042 + 42.8403i −0.521129 + 1.69077i
\(643\) 5.69143 + 3.28595i 0.224448 + 0.129585i 0.608008 0.793931i \(-0.291969\pi\)
−0.383560 + 0.923516i \(0.625302\pi\)
\(644\) 16.5040 3.31845i 0.650350 0.130765i
\(645\) 0 0
\(646\) −5.09348 + 6.21956i −0.200400 + 0.244705i
\(647\) 12.7191 0.500040 0.250020 0.968241i \(-0.419563\pi\)
0.250020 + 0.968241i \(0.419563\pi\)
\(648\) −12.4211 + 22.2197i −0.487947 + 0.872873i
\(649\) −27.1658 −1.06635
\(650\) 0 0
\(651\) 6.35403 2.59112i 0.249034 0.101554i
\(652\) 30.1269 6.05758i 1.17986 0.237233i
\(653\) 38.1762 + 22.0410i 1.49395 + 0.862532i 0.999976 0.00694441i \(-0.00221049\pi\)
0.493974 + 0.869477i \(0.335544\pi\)
\(654\) 7.40167 24.0143i 0.289428 0.939033i
\(655\) 0 0
\(656\) −16.9620 2.16157i −0.662256 0.0843951i
\(657\) −10.9380 + 10.7003i −0.426734 + 0.417459i
\(658\) −16.4796 + 6.22201i −0.642444 + 0.242559i
\(659\) −10.8929 18.8671i −0.424328 0.734957i 0.572030 0.820233i \(-0.306156\pi\)
−0.996357 + 0.0852757i \(0.972823\pi\)
\(660\) 0 0
\(661\) −10.2756 + 17.7979i −0.399676 + 0.692260i −0.993686 0.112198i \(-0.964211\pi\)
0.594009 + 0.804458i \(0.297544\pi\)
\(662\) −0.989845 + 6.03433i −0.0384714 + 0.234531i
\(663\) 19.5182 + 2.67877i 0.758024 + 0.104035i
\(664\) −0.0579989 1.61780i −0.00225079 0.0627826i
\(665\) 0 0
\(666\) −3.86960 43.7466i −0.149944 1.69515i
\(667\) 38.9379i 1.50768i
\(668\) 42.1201 + 14.2005i 1.62967 + 0.549434i
\(669\) −25.4305 + 32.7675i −0.983202 + 1.26686i
\(670\) 0 0
\(671\) −4.04432 + 7.00497i −0.156129 + 0.270424i
\(672\) 6.89764 + 9.63194i 0.266082 + 0.371560i
\(673\) −1.08874 1.88576i −0.0419680 0.0726906i 0.844278 0.535905i \(-0.180029\pi\)
−0.886246 + 0.463214i \(0.846696\pi\)
\(674\) −3.88139 10.2803i −0.149505 0.395981i
\(675\) 0 0
\(676\) −19.2090 + 16.9164i −0.738807 + 0.650631i
\(677\) −1.92840 + 1.11336i −0.0741143 + 0.0427899i −0.536599 0.843837i \(-0.680291\pi\)
0.462485 + 0.886627i \(0.346958\pi\)
\(678\) 11.0131 10.2231i 0.422956 0.392618i
\(679\) 12.2003 + 7.04386i 0.468205 + 0.270319i
\(680\) 0 0
\(681\) −9.46817 7.34817i −0.362821 0.281582i
\(682\) 10.9099 + 8.93463i 0.417762 + 0.342125i
\(683\) 12.9800 0.496665 0.248333 0.968675i \(-0.420117\pi\)
0.248333 + 0.968675i \(0.420117\pi\)
\(684\) 8.57392 12.5875i 0.327832 0.481293i
\(685\) 0 0
\(686\) −16.5871 13.5839i −0.633299 0.518637i
\(687\) −3.60721 + 26.2830i −0.137624 + 1.00276i
\(688\) −10.4620 + 13.7521i −0.398861 + 0.524294i
\(689\) −41.4657 23.9402i −1.57972 0.912050i
\(690\) 0 0
\(691\) −24.1859 + 13.9637i −0.920074 + 0.531205i −0.883659 0.468132i \(-0.844927\pi\)
−0.0364156 + 0.999337i \(0.511594\pi\)
\(692\) −20.3699 23.1305i −0.774347 0.879289i
\(693\) −10.6935 + 2.73977i −0.406214 + 0.104075i
\(694\) −5.62776 14.9057i −0.213627 0.565813i
\(695\) 0 0
\(696\) −24.9866 + 11.2496i −0.947113 + 0.426414i
\(697\) −4.78657 + 8.29058i −0.181304 + 0.314028i
\(698\) 31.0940 + 5.10052i 1.17692 + 0.193058i
\(699\) −4.32345 10.6021i −0.163528 0.401007i
\(700\) 0 0
\(701\) 31.0643i 1.17328i 0.809847 + 0.586641i \(0.199550\pi\)
−0.809847 + 0.586641i \(0.800450\pi\)
\(702\) −37.2808 1.79711i −1.40707 0.0678276i
\(703\) 26.2756i 0.991001i
\(704\) −10.6318 + 21.9016i −0.400701 + 0.825447i
\(705\) 0 0
\(706\) 5.05106 30.7924i 0.190099 1.15889i
\(707\) 2.88841 5.00287i 0.108630 0.188152i
\(708\) −30.8635 + 1.91693i −1.15992 + 0.0720427i
\(709\) 21.7239 + 37.6269i 0.815859 + 1.41311i 0.908710 + 0.417429i \(0.137069\pi\)
−0.0928511 + 0.995680i \(0.529598\pi\)
\(710\) 0 0
\(711\) −3.04690 + 10.8911i −0.114268 + 0.408449i
\(712\) −3.18302 + 5.99982i −0.119289 + 0.224853i
\(713\) 19.7535 11.4047i 0.739773 0.427108i
\(714\) 6.46604 1.47732i 0.241985 0.0552873i
\(715\) 0 0
\(716\) −5.05537 25.1425i −0.188928 0.939619i
\(717\) −1.93615 + 14.1073i −0.0723069 + 0.526846i
\(718\) −1.52623 + 1.86366i −0.0569585 + 0.0695510i
\(719\) 12.6495 0.471747 0.235874 0.971784i \(-0.424205\pi\)
0.235874 + 0.971784i \(0.424205\pi\)
\(720\) 0 0
\(721\) 11.4371 0.425938
\(722\) 11.2513 13.7388i 0.418730 0.511304i
\(723\) 19.9987 + 15.5208i 0.743759 + 0.577225i
\(724\) −6.84605 34.0483i −0.254431 1.26539i
\(725\) 0 0
\(726\) 2.89772 + 3.12163i 0.107544 + 0.115855i
\(727\) 43.4035 25.0590i 1.60975 0.929389i 0.620323 0.784347i \(-0.287002\pi\)
0.989425 0.145042i \(-0.0463318\pi\)
\(728\) −8.14068 + 15.3448i −0.301714 + 0.568714i
\(729\) −18.4524 19.7106i −0.683422 0.730024i
\(730\) 0 0
\(731\) 4.83699 + 8.37791i 0.178902 + 0.309868i
\(732\) −4.10051 + 8.24383i −0.151559 + 0.304701i
\(733\) −14.7327 + 25.5178i −0.544166 + 0.942523i 0.454493 + 0.890750i \(0.349821\pi\)
−0.998659 + 0.0517728i \(0.983513\pi\)
\(734\) −2.15679 + 13.1483i −0.0796087 + 0.485313i
\(735\) 0 0
\(736\) 27.0680 + 28.6016i 0.997740 + 1.05427i
\(737\) 43.8751i 1.61616i
\(738\) 7.64902 16.4445i 0.281564 0.605332i
\(739\) 45.3131i 1.66687i −0.552618 0.833435i \(-0.686371\pi\)
0.552618 0.833435i \(-0.313629\pi\)
\(740\) 0 0
\(741\) 22.1234 + 3.03633i 0.812725 + 0.111542i
\(742\) −15.9070 2.60932i −0.583964 0.0957911i
\(743\) −4.03779 + 6.99366i −0.148132 + 0.256573i −0.930537 0.366197i \(-0.880659\pi\)
0.782405 + 0.622770i \(0.213993\pi\)
\(744\) 13.0254 + 9.38090i 0.477533 + 0.343921i
\(745\) 0 0
\(746\) −7.28589 19.2974i −0.266756 0.706530i
\(747\) 1.65354 + 0.462595i 0.0605000 + 0.0169255i
\(748\) 9.00823 + 10.2291i 0.329373 + 0.374011i
\(749\) −19.1641 + 11.0644i −0.700239 + 0.404283i
\(750\) 0 0
\(751\) −9.71367 5.60819i −0.354457 0.204646i 0.312190 0.950020i \(-0.398938\pi\)
−0.666646 + 0.745374i \(0.732271\pi\)
\(752\) −32.7944 24.9486i −1.19589 0.909784i
\(753\) −3.83620 + 1.56437i −0.139799 + 0.0570090i
\(754\) −31.0844 25.4564i −1.13203 0.927067i
\(755\) 0 0
\(756\) −11.9557 + 3.86727i −0.434826 + 0.140651i
\(757\) 26.9148 0.978236 0.489118 0.872218i \(-0.337319\pi\)
0.489118 + 0.872218i \(0.337319\pi\)
\(758\) −10.3512 8.47706i −0.375972 0.307901i
\(759\) −33.9768 + 13.8555i −1.23328 + 0.502922i
\(760\) 0 0
\(761\) 6.74550 + 3.89451i 0.244524 + 0.141176i 0.617254 0.786764i \(-0.288245\pi\)
−0.372730 + 0.927940i \(0.621578\pi\)
\(762\) 22.0321 + 6.79074i 0.798140 + 0.246003i
\(763\) 10.7425 6.20218i 0.388904 0.224534i
\(764\) 26.7597 23.5660i 0.968132 0.852587i
\(765\) 0 0
\(766\) 3.42683 + 9.07632i 0.123816 + 0.327941i
\(767\) −22.6701 39.2657i −0.818569 1.41780i
\(768\) −10.5335 + 25.6329i −0.380094 + 0.924948i
\(769\) −3.36491 + 5.82819i −0.121342 + 0.210170i −0.920297 0.391220i \(-0.872053\pi\)
0.798955 + 0.601390i \(0.205386\pi\)
\(770\) 0 0
\(771\) 14.4990 + 1.98992i 0.522170 + 0.0716651i
\(772\) 9.25538 + 3.12039i 0.333108 + 0.112305i
\(773\) 16.5270i 0.594435i −0.954810 0.297217i \(-0.903941\pi\)
0.954810 0.297217i \(-0.0960586\pi\)
\(774\) −10.5266 15.0029i −0.378371 0.539268i
\(775\) 0 0
\(776\) 1.18067 + 32.9332i 0.0423837 + 1.18223i
\(777\) 13.2915 17.1262i 0.476829 0.614398i
\(778\) 1.88113 11.4678i 0.0674419 0.411141i
\(779\) −5.42547 + 9.39719i −0.194388 + 0.336689i
\(780\) 0 0
\(781\) 5.31502 + 9.20588i 0.190186 + 0.329412i
\(782\) 20.6257 7.78740i 0.737574 0.278477i
\(783\) −3.31831 28.8744i −0.118587 1.03189i
\(784\) 2.80031 21.9743i 0.100011 0.784796i
\(785\) 0 0
\(786\) 3.55392 + 3.82853i 0.126764 + 0.136559i
\(787\) 2.38973 + 1.37971i 0.0851847 + 0.0491814i 0.541987 0.840387i \(-0.317672\pi\)
−0.456803 + 0.889568i \(0.651005\pi\)
\(788\) 32.9746 6.63016i 1.17467 0.236190i
\(789\) −8.84375 6.86356i −0.314846 0.244349i
\(790\) 0 0
\(791\) 7.41755 0.263738
\(792\) −18.7073 17.8000i −0.664736 0.632495i
\(793\) −13.5001 −0.479401
\(794\) 6.34334 7.74575i 0.225117 0.274886i
\(795\) 0 0
\(796\) 11.5977 2.33194i 0.411070 0.0826534i
\(797\) −4.54011 2.62123i −0.160819 0.0928488i 0.417431 0.908709i \(-0.362931\pi\)
−0.578250 + 0.815860i \(0.696264\pi\)
\(798\) 7.32911 1.67451i 0.259448 0.0592769i
\(799\) −19.9787 + 11.5347i −0.706794 + 0.408068i
\(800\) 0 0
\(801\) −5.03763 5.14956i −0.177996 0.181951i
\(802\) −23.4079 + 8.83781i −0.826560 + 0.312074i
\(803\) −7.76099 13.4424i −0.273879 0.474373i
\(804\) −3.09600 49.8471i −0.109187 1.75797i
\(805\) 0 0
\(806\) −3.80978 + 23.2253i −0.134194 + 0.818076i
\(807\) −4.02154 9.86172i −0.141565 0.347149i
\(808\) 13.5046 0.484147i 0.475090 0.0170322i
\(809\) 47.1813i 1.65881i 0.558650 + 0.829403i \(0.311319\pi\)
−0.558650 + 0.829403i \(0.688681\pi\)
\(810\) 0 0
\(811\) 18.8666i 0.662495i 0.943544 + 0.331247i \(0.107469\pi\)
−0.943544 + 0.331247i \(0.892531\pi\)
\(812\) −12.8176 4.32136i −0.449809 0.151650i
\(813\) −0.292245 0.716651i −0.0102495 0.0251341i
\(814\) 43.9625 + 7.21143i 1.54089 + 0.252760i
\(815\) 0 0
\(816\) 10.9562 + 10.9857i 0.383543 + 0.384577i
\(817\) 5.48261 + 9.49617i 0.191812 + 0.332229i
\(818\) −11.3435 30.0444i −0.396615 1.05048i
\(819\) −12.8839 13.1702i −0.450201 0.460203i
\(820\) 0 0
\(821\) 1.12399 0.648938i 0.0392277 0.0226481i −0.480258 0.877127i \(-0.659457\pi\)
0.519486 + 0.854479i \(0.326124\pi\)
\(822\) −8.99499 39.3699i −0.313736 1.37318i
\(823\) 5.77693 + 3.33531i 0.201371 + 0.116262i 0.597295 0.802022i \(-0.296242\pi\)
−0.395924 + 0.918283i \(0.629576\pi\)
\(824\) 14.1984 + 22.6754i 0.494626 + 0.789934i
\(825\) 0 0
\(826\) −11.8095 9.67137i −0.410907 0.336510i
\(827\) −37.4924 −1.30374 −0.651869 0.758331i \(-0.726015\pi\)
−0.651869 + 0.758331i \(0.726015\pi\)
\(828\) −37.6238 + 18.1389i −1.30752 + 0.630372i
\(829\) −22.9261 −0.796255 −0.398127 0.917330i \(-0.630340\pi\)
−0.398127 + 0.917330i \(0.630340\pi\)
\(830\) 0 0
\(831\) −9.34898 7.25566i −0.324313 0.251696i
\(832\) −40.5290 + 2.90972i −1.40509 + 0.100876i
\(833\) −10.7405 6.20100i −0.372135 0.214852i
\(834\) 36.0856 33.4972i 1.24954 1.15991i
\(835\) 0 0
\(836\) 10.2106 + 11.5944i 0.353142 + 0.401001i
\(837\) −13.6762 + 10.1405i −0.472720 + 0.350507i
\(838\) 13.1680 + 34.8769i 0.454882 + 1.20480i
\(839\) −9.11048 15.7798i −0.314529 0.544780i 0.664808 0.747014i \(-0.268513\pi\)
−0.979337 + 0.202234i \(0.935180\pi\)
\(840\) 0 0
\(841\) 1.14335 1.98034i 0.0394259 0.0682877i
\(842\) −23.9414 3.92724i −0.825074 0.135342i
\(843\) 3.49545 4.50391i 0.120390 0.155123i
\(844\) −17.6691 + 52.4084i −0.608197 + 1.80397i
\(845\) 0 0
\(846\) 35.7772 25.1026i 1.23004 0.863046i
\(847\) 2.10248i 0.0722422i
\(848\) −14.5743 34.7769i −0.500484 1.19424i
\(849\) −40.2177 5.51967i −1.38027 0.189435i
\(850\) 0 0
\(851\) 36.0299 62.4057i 1.23509 2.13924i
\(852\) 6.68807 + 10.0839i 0.229129 + 0.345468i
\(853\) −0.975478 1.68958i −0.0333997 0.0578500i 0.848842 0.528646i \(-0.177300\pi\)
−0.882242 + 0.470796i \(0.843967\pi\)
\(854\) −4.25201 + 1.60538i −0.145501 + 0.0549349i
\(855\) 0 0
\(856\) −45.7275 24.2593i −1.56293 0.829166i
\(857\) −11.2785 + 6.51166i −0.385267 + 0.222434i −0.680107 0.733113i \(-0.738067\pi\)
0.294840 + 0.955546i \(0.404733\pi\)
\(858\) 11.1520 36.1821i 0.380724 1.23524i
\(859\) −3.50034 2.02092i −0.119430 0.0689530i 0.439095 0.898441i \(-0.355299\pi\)
−0.558525 + 0.829488i \(0.688633\pi\)
\(860\) 0 0
\(861\) 8.28982 3.38053i 0.282516 0.115208i
\(862\) −11.2736 + 13.7660i −0.383980 + 0.468871i
\(863\) −10.6258 −0.361705 −0.180853 0.983510i \(-0.557886\pi\)
−0.180853 + 0.983510i \(0.557886\pi\)
\(864\) −22.5097 18.9027i −0.765796 0.643084i
\(865\) 0 0
\(866\) 10.5224 12.8487i 0.357565 0.436616i
\(867\) −19.2217 + 7.83847i −0.652803 + 0.266208i
\(868\) 1.56193 + 7.76813i 0.0530153 + 0.263667i
\(869\) −9.93523 5.73611i −0.337030 0.194584i
\(870\) 0 0
\(871\) 63.4174 36.6140i 2.14882 1.24062i
\(872\) 25.6327 + 13.5986i 0.868034 + 0.460508i
\(873\) −33.6609 9.41696i −1.13925 0.318716i
\(874\) 23.3788 8.82684i 0.790799 0.298572i
\(875\) 0 0
\(876\) −9.76591 14.7245i −0.329960 0.497494i
\(877\) −26.5530 + 45.9911i −0.896631 + 1.55301i −0.0648570 + 0.997895i \(0.520659\pi\)
−0.831774 + 0.555115i \(0.812674\pi\)
\(878\) −0.385240 + 2.34851i −0.0130012 + 0.0792584i
\(879\) 47.8978 + 6.57373i 1.61555 + 0.221727i
\(880\) 0 0
\(881\) 10.8244i 0.364685i 0.983235 + 0.182342i \(0.0583679\pi\)
−0.983235 + 0.182342i \(0.941632\pi\)
\(882\) 21.3039 + 9.90931i 0.717340 + 0.333664i
\(883\) 21.6083i 0.727178i −0.931559 0.363589i \(-0.881551\pi\)
0.931559 0.363589i \(-0.118449\pi\)
\(884\) −7.26773 + 21.5568i −0.244440 + 0.725033i
\(885\) 0 0
\(886\) −1.05926 0.173757i −0.0355865 0.00583747i
\(887\) 0.264026 0.457306i 0.00886511 0.0153548i −0.861559 0.507658i \(-0.830511\pi\)
0.870424 + 0.492303i \(0.163845\pi\)
\(888\) 50.4553 + 5.09083i 1.69317 + 0.170837i
\(889\) 5.69025 + 9.85580i 0.190845 + 0.330553i
\(890\) 0 0
\(891\) 24.0147 13.1700i 0.804522 0.441213i
\(892\) −31.6537 35.9435i −1.05984 1.20348i
\(893\) −22.6454 + 13.0743i −0.757798 + 0.437515i
\(894\) −3.38169 + 3.13913i −0.113101 + 0.104988i
\(895\) 0 0
\(896\) −12.4191 + 5.73601i −0.414893 + 0.191627i
\(897\) −48.3807 37.5478i −1.61538 1.25369i
\(898\) −19.1012 15.6428i −0.637415 0.522008i
\(899\) −18.3273 −0.611251
\(900\) 0 0
\(901\) −21.1108 −0.703302
\(902\) 14.2337 + 11.6566i 0.473930 + 0.388123i
\(903\) 1.23011 8.96289i 0.0409355 0.298266i
\(904\) 9.20846 + 14.7062i 0.306269 + 0.489121i
\(905\) 0 0
\(906\) 3.37622 + 14.7773i 0.112167 + 0.490942i
\(907\) 40.9884 23.6647i 1.36100 0.785773i 0.371242 0.928536i \(-0.378932\pi\)
0.989757 + 0.142763i \(0.0455988\pi\)
\(908\) 10.3859 9.14635i 0.344668 0.303532i
\(909\) −3.86152 + 13.8030i −0.128079 + 0.457817i
\(910\) 0 0
\(911\) 18.8160 + 32.5902i 0.623401 + 1.07976i 0.988848 + 0.148930i \(0.0475829\pi\)
−0.365447 + 0.930832i \(0.619084\pi\)
\(912\) 12.4186 + 12.4521i 0.411220 + 0.412329i
\(913\) −0.870884 + 1.50841i −0.0288220 + 0.0499213i
\(914\) −48.6546 7.98110i −1.60935 0.263991i
\(915\) 0 0
\(916\) −29.0281 9.78664i −0.959117 0.323360i
\(917\) 2.57860i 0.0851528i
\(918\) −14.6313 + 7.53247i −0.482906 + 0.248609i
\(919\) 42.9157i 1.41566i −0.706383 0.707830i \(-0.749674\pi\)
0.706383 0.707830i \(-0.250326\pi\)
\(920\) 0 0
\(921\) −14.7770 36.2366i −0.486919 1.19404i
\(922\) 7.16103 43.6553i 0.235836 1.43771i
\(923\) −8.87083 + 15.3647i −0.291987 + 0.505736i
\(924\) −0.790173 12.7222i −0.0259948 0.418528i
\(925\) 0 0
\(926\) −13.6046 + 5.13652i −0.447075 + 0.168797i
\(927\) −27.4888 + 7.04287i −0.902852 + 0.231318i
\(928\) −7.34464 30.7771i −0.241100 1.01031i
\(929\) −25.1609 + 14.5267i −0.825503 + 0.476605i −0.852311 0.523036i \(-0.824799\pi\)
0.0268072 + 0.999641i \(0.491466\pi\)
\(930\) 0 0
\(931\) −12.1741 7.02870i −0.398989 0.230356i
\(932\) 12.9616 2.60617i 0.424571 0.0853680i
\(933\) −1.38734 + 10.1085i −0.0454196 + 0.330938i
\(934\) −2.60374 + 3.17938i −0.0851969 + 0.104033i
\(935\) 0 0
\(936\) 10.1168 41.8939i 0.330679 1.36935i
\(937\) −51.0143 −1.66656 −0.833282 0.552848i \(-0.813541\pi\)
−0.833282 + 0.552848i \(0.813541\pi\)
\(938\) 15.6201 19.0734i 0.510013 0.622768i
\(939\) −10.6282 8.24847i −0.346839 0.269179i
\(940\) 0 0
\(941\) 7.54730 + 4.35743i 0.246035 + 0.142048i 0.617947 0.786220i \(-0.287964\pi\)
−0.371912 + 0.928268i \(0.621298\pi\)
\(942\) −3.66663 3.94996i −0.119465 0.128697i
\(943\) 25.7715 14.8792i 0.839235 0.484532i
\(944\) 4.51382 35.4203i 0.146912 1.15283i
\(945\) 0 0
\(946\) 17.3931 6.56689i 0.565498 0.213508i
\(947\) −19.0803 33.0481i −0.620028 1.07392i −0.989480 0.144670i \(-0.953788\pi\)
0.369452 0.929250i \(-0.379545\pi\)
\(948\) −11.6923 5.81580i −0.379749 0.188888i
\(949\) 12.9532 22.4356i 0.420478 0.728290i
\(950\) 0 0
\(951\) −12.5000 + 16.1063i −0.405339 + 0.522283i
\(952\) 0.274394 + 7.65382i 0.00889315 + 0.248062i
\(953\) 40.4395i 1.30996i 0.755645 + 0.654982i \(0.227324\pi\)
−0.755645 + 0.654982i \(0.772676\pi\)
\(954\) 39.8391 3.52397i 1.28984 0.114093i
\(955\) 0 0
\(956\) −15.5807 5.25293i −0.503916 0.169892i
\(957\) 29.2093 + 4.00883i 0.944202 + 0.129587i
\(958\) 26.3140 + 4.31643i 0.850166 + 0.139458i
\(959\) 9.96739 17.2640i 0.321864 0.557485i
\(960\) 0 0
\(961\) −10.1320 17.5492i −0.326840 0.566104i
\(962\) 26.2636 + 69.5617i 0.846771 + 2.24276i
\(963\) 39.2472 38.3942i 1.26472 1.23724i
\(964\) −21.9371 + 19.3189i −0.706546 + 0.622220i
\(965\) 0 0
\(966\) −19.7031 6.07289i −0.633938 0.195392i
\(967\) 14.5754 + 8.41511i 0.468713 + 0.270612i 0.715701 0.698407i \(-0.246107\pi\)
−0.246988 + 0.969019i \(0.579441\pi\)
\(968\) −4.16843 + 2.61011i −0.133978 + 0.0838921i
\(969\) 9.11689 3.71780i 0.292877 0.119433i
\(970\) 0 0
\(971\) 34.0951 1.09416 0.547082 0.837079i \(-0.315738\pi\)
0.547082 + 0.837079i \(0.315738\pi\)
\(972\) 26.3541 16.6572i 0.845307 0.534281i
\(973\) 24.3044 0.779163
\(974\) −12.6587 10.3667i −0.405609 0.332172i
\(975\) 0 0
\(976\) −8.46147 6.43714i −0.270845 0.206048i
\(977\) −0.748148 0.431943i −0.0239354 0.0138191i 0.487985 0.872852i \(-0.337732\pi\)
−0.511920 + 0.859033i \(0.671066\pi\)
\(978\) −35.9666 11.0856i −1.15008 0.354479i
\(979\) 6.32860 3.65382i 0.202263 0.116777i
\(980\) 0 0
\(981\) −22.0002 + 21.5220i −0.702412 + 0.687145i
\(982\) 0.746913 + 1.97828i 0.0238349 + 0.0631293i
\(983\) 18.4107 + 31.8882i 0.587209 + 1.01708i 0.994596 + 0.103821i \(0.0331069\pi\)
−0.407387 + 0.913256i \(0.633560\pi\)
\(984\) 16.9936 + 12.2389i 0.541738 + 0.390161i
\(985\) 0 0
\(986\) −17.4811 2.86752i −0.556711 0.0913205i
\(987\) 21.3737 + 2.93343i 0.680331 + 0.0933720i
\(988\) −8.23780 + 24.4341i −0.262079 + 0.777353i
\(989\) 30.0718i 0.956227i
\(990\) 0 0
\(991\) 35.9773i 1.14286i −0.820652 0.571428i \(-0.806390\pi\)
0.820652 0.571428i \(-0.193610\pi\)
\(992\) −13.4622 + 12.7404i −0.427426 + 0.404508i
\(993\) 4.59175 5.91651i 0.145715 0.187755i
\(994\) −0.966859 + 5.89419i −0.0306669 + 0.186952i
\(995\) 0 0
\(996\) −0.882983 + 1.77518i −0.0279784 + 0.0562489i
\(997\) −16.7322 28.9811i −0.529915 0.917840i −0.999391 0.0348944i \(-0.988891\pi\)
0.469476 0.882945i \(-0.344443\pi\)
\(998\) 41.6478 15.7244i 1.31834 0.497748i
\(999\) −21.3997 + 49.3473i −0.677057 + 1.56128i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.f.851.17 48
4.3 odd 2 inner 900.2.r.f.851.24 48
5.2 odd 4 900.2.o.c.599.19 48
5.3 odd 4 900.2.o.b.599.6 48
5.4 even 2 180.2.q.a.131.8 yes 48
9.2 odd 6 inner 900.2.r.f.551.24 48
15.14 odd 2 540.2.q.a.71.17 48
20.3 even 4 900.2.o.b.599.11 48
20.7 even 4 900.2.o.c.599.14 48
20.19 odd 2 180.2.q.a.131.1 yes 48
36.11 even 6 inner 900.2.r.f.551.17 48
45.2 even 12 900.2.o.b.299.11 48
45.4 even 6 1620.2.e.b.971.17 48
45.14 odd 6 1620.2.e.b.971.32 48
45.29 odd 6 180.2.q.a.11.1 48
45.34 even 6 540.2.q.a.251.24 48
45.38 even 12 900.2.o.c.299.14 48
60.59 even 2 540.2.q.a.71.24 48
180.47 odd 12 900.2.o.b.299.6 48
180.59 even 6 1620.2.e.b.971.18 48
180.79 odd 6 540.2.q.a.251.17 48
180.83 odd 12 900.2.o.c.299.19 48
180.119 even 6 180.2.q.a.11.8 yes 48
180.139 odd 6 1620.2.e.b.971.31 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.1 48 45.29 odd 6
180.2.q.a.11.8 yes 48 180.119 even 6
180.2.q.a.131.1 yes 48 20.19 odd 2
180.2.q.a.131.8 yes 48 5.4 even 2
540.2.q.a.71.17 48 15.14 odd 2
540.2.q.a.71.24 48 60.59 even 2
540.2.q.a.251.17 48 180.79 odd 6
540.2.q.a.251.24 48 45.34 even 6
900.2.o.b.299.6 48 180.47 odd 12
900.2.o.b.299.11 48 45.2 even 12
900.2.o.b.599.6 48 5.3 odd 4
900.2.o.b.599.11 48 20.3 even 4
900.2.o.c.299.14 48 45.38 even 12
900.2.o.c.299.19 48 180.83 odd 12
900.2.o.c.599.14 48 20.7 even 4
900.2.o.c.599.19 48 5.2 odd 4
900.2.r.f.551.17 48 36.11 even 6 inner
900.2.r.f.551.24 48 9.2 odd 6 inner
900.2.r.f.851.17 48 1.1 even 1 trivial
900.2.r.f.851.24 48 4.3 odd 2 inner
1620.2.e.b.971.17 48 45.4 even 6
1620.2.e.b.971.18 48 180.59 even 6
1620.2.e.b.971.31 48 180.139 odd 6
1620.2.e.b.971.32 48 45.14 odd 6