Properties

Label 1620.2.e.b.971.18
Level $1620$
Weight $2$
Character 1620.971
Analytic conductor $12.936$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1620,2,Mod(971,1620)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1620.971"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1620, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 971.18
Character \(\chi\) \(=\) 1620.971
Dual form 1620.2.e.b.971.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.499529 + 1.32305i) q^{2} +(-1.50094 - 1.32181i) q^{4} -1.00000i q^{5} -1.20913i q^{7} +(2.49858 - 1.32555i) q^{8} +(1.32305 + 0.499529i) q^{10} -3.04322 q^{11} -5.07917 q^{13} +(1.59974 + 0.603996i) q^{14} +(0.505654 + 3.96791i) q^{16} +2.23944i q^{17} -2.53835i q^{19} +(-1.32181 + 1.50094i) q^{20} +(1.52017 - 4.02634i) q^{22} +6.96134 q^{23} -1.00000 q^{25} +(2.53719 - 6.72001i) q^{26} +(-1.59824 + 1.81484i) q^{28} +5.59345i q^{29} +3.27657i q^{31} +(-5.50235 - 1.31308i) q^{32} +(-2.96289 - 1.11866i) q^{34} -1.20913 q^{35} -10.3514 q^{37} +(3.35837 + 1.26798i) q^{38} +(-1.32555 - 2.49858i) q^{40} +4.27480i q^{41} +4.31983i q^{43} +(4.56769 + 4.02254i) q^{44} +(-3.47739 + 9.21023i) q^{46} +10.3014 q^{47} +5.53800 q^{49} +(0.499529 - 1.32305i) q^{50} +(7.62354 + 6.71368i) q^{52} +9.42683i q^{53} +3.04322i q^{55} +(-1.60276 - 3.02112i) q^{56} +(-7.40044 - 2.79409i) q^{58} +8.92669 q^{59} -2.65793 q^{61} +(-4.33508 - 1.63674i) q^{62} +(4.48585 - 6.62398i) q^{64} +5.07917i q^{65} +14.4173i q^{67} +(2.96010 - 3.36126i) q^{68} +(0.603996 - 1.59974i) q^{70} +3.49303 q^{71} +5.10052 q^{73} +(5.17084 - 13.6955i) q^{74} +(-3.35521 + 3.80992i) q^{76} +3.67965i q^{77} +3.76977i q^{79} +(3.96791 - 0.505654i) q^{80} +(-5.65579 - 2.13538i) q^{82} +0.572344 q^{83} +2.23944 q^{85} +(-5.71536 - 2.15788i) q^{86} +(-7.60373 + 4.03392i) q^{88} +2.40129i q^{89} +6.14138i q^{91} +(-10.4486 - 9.20155i) q^{92} +(-5.14586 + 13.6293i) q^{94} -2.53835 q^{95} -11.6511 q^{97} +(-2.76639 + 7.32708i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{25} + 12 q^{34} + 12 q^{40} - 12 q^{46} - 48 q^{49} + 36 q^{52} + 36 q^{58} - 48 q^{64} - 24 q^{73} - 12 q^{76} - 36 q^{82} - 36 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.499529 + 1.32305i −0.353220 + 0.935540i
\(3\) 0 0
\(4\) −1.50094 1.32181i −0.750471 0.660903i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.20913i 0.457008i −0.973543 0.228504i \(-0.926617\pi\)
0.973543 0.228504i \(-0.0733835\pi\)
\(8\) 2.49858 1.32555i 0.883383 0.468651i
\(9\) 0 0
\(10\) 1.32305 + 0.499529i 0.418386 + 0.157965i
\(11\) −3.04322 −0.917564 −0.458782 0.888549i \(-0.651714\pi\)
−0.458782 + 0.888549i \(0.651714\pi\)
\(12\) 0 0
\(13\) −5.07917 −1.40871 −0.704354 0.709849i \(-0.748763\pi\)
−0.704354 + 0.709849i \(0.748763\pi\)
\(14\) 1.59974 + 0.603996i 0.427550 + 0.161425i
\(15\) 0 0
\(16\) 0.505654 + 3.96791i 0.126413 + 0.991978i
\(17\) 2.23944i 0.543143i 0.962418 + 0.271572i \(0.0875434\pi\)
−0.962418 + 0.271572i \(0.912457\pi\)
\(18\) 0 0
\(19\) 2.53835i 0.582337i −0.956672 0.291169i \(-0.905956\pi\)
0.956672 0.291169i \(-0.0940441\pi\)
\(20\) −1.32181 + 1.50094i −0.295565 + 0.335621i
\(21\) 0 0
\(22\) 1.52017 4.02634i 0.324102 0.858418i
\(23\) 6.96134 1.45154 0.725770 0.687937i \(-0.241484\pi\)
0.725770 + 0.687937i \(0.241484\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 2.53719 6.72001i 0.497584 1.31790i
\(27\) 0 0
\(28\) −1.59824 + 1.81484i −0.302038 + 0.342972i
\(29\) 5.59345i 1.03868i 0.854568 + 0.519339i \(0.173822\pi\)
−0.854568 + 0.519339i \(0.826178\pi\)
\(30\) 0 0
\(31\) 3.27657i 0.588489i 0.955730 + 0.294245i \(0.0950680\pi\)
−0.955730 + 0.294245i \(0.904932\pi\)
\(32\) −5.50235 1.31308i −0.972687 0.232122i
\(33\) 0 0
\(34\) −2.96289 1.11866i −0.508132 0.191849i
\(35\) −1.20913 −0.204380
\(36\) 0 0
\(37\) −10.3514 −1.70176 −0.850882 0.525356i \(-0.823932\pi\)
−0.850882 + 0.525356i \(0.823932\pi\)
\(38\) 3.35837 + 1.26798i 0.544800 + 0.205693i
\(39\) 0 0
\(40\) −1.32555 2.49858i −0.209587 0.395061i
\(41\) 4.27480i 0.667611i 0.942642 + 0.333806i \(0.108333\pi\)
−0.942642 + 0.333806i \(0.891667\pi\)
\(42\) 0 0
\(43\) 4.31983i 0.658767i 0.944196 + 0.329384i \(0.106841\pi\)
−0.944196 + 0.329384i \(0.893159\pi\)
\(44\) 4.56769 + 4.02254i 0.688605 + 0.606421i
\(45\) 0 0
\(46\) −3.47739 + 9.21023i −0.512713 + 1.35797i
\(47\) 10.3014 1.50262 0.751308 0.659951i \(-0.229423\pi\)
0.751308 + 0.659951i \(0.229423\pi\)
\(48\) 0 0
\(49\) 5.53800 0.791143
\(50\) 0.499529 1.32305i 0.0706440 0.187108i
\(51\) 0 0
\(52\) 7.62354 + 6.71368i 1.05719 + 0.931020i
\(53\) 9.42683i 1.29487i 0.762119 + 0.647437i \(0.224159\pi\)
−0.762119 + 0.647437i \(0.775841\pi\)
\(54\) 0 0
\(55\) 3.04322i 0.410347i
\(56\) −1.60276 3.02112i −0.214178 0.403714i
\(57\) 0 0
\(58\) −7.40044 2.79409i −0.971725 0.366882i
\(59\) 8.92669 1.16216 0.581078 0.813848i \(-0.302631\pi\)
0.581078 + 0.813848i \(0.302631\pi\)
\(60\) 0 0
\(61\) −2.65793 −0.340313 −0.170156 0.985417i \(-0.554427\pi\)
−0.170156 + 0.985417i \(0.554427\pi\)
\(62\) −4.33508 1.63674i −0.550555 0.207866i
\(63\) 0 0
\(64\) 4.48585 6.62398i 0.560732 0.827998i
\(65\) 5.07917i 0.629993i
\(66\) 0 0
\(67\) 14.4173i 1.76136i 0.473714 + 0.880679i \(0.342913\pi\)
−0.473714 + 0.880679i \(0.657087\pi\)
\(68\) 2.96010 3.36126i 0.358965 0.407613i
\(69\) 0 0
\(70\) 0.603996 1.59974i 0.0721913 0.191206i
\(71\) 3.49303 0.414546 0.207273 0.978283i \(-0.433541\pi\)
0.207273 + 0.978283i \(0.433541\pi\)
\(72\) 0 0
\(73\) 5.10052 0.596970 0.298485 0.954414i \(-0.403519\pi\)
0.298485 + 0.954414i \(0.403519\pi\)
\(74\) 5.17084 13.6955i 0.601098 1.59207i
\(75\) 0 0
\(76\) −3.35521 + 3.80992i −0.384869 + 0.437027i
\(77\) 3.67965i 0.419335i
\(78\) 0 0
\(79\) 3.76977i 0.424132i 0.977255 + 0.212066i \(0.0680192\pi\)
−0.977255 + 0.212066i \(0.931981\pi\)
\(80\) 3.96791 0.505654i 0.443626 0.0565338i
\(81\) 0 0
\(82\) −5.65579 2.13538i −0.624577 0.235814i
\(83\) 0.572344 0.0628230 0.0314115 0.999507i \(-0.490000\pi\)
0.0314115 + 0.999507i \(0.490000\pi\)
\(84\) 0 0
\(85\) 2.23944 0.242901
\(86\) −5.71536 2.15788i −0.616303 0.232690i
\(87\) 0 0
\(88\) −7.60373 + 4.03392i −0.810561 + 0.430018i
\(89\) 2.40129i 0.254536i 0.991868 + 0.127268i \(0.0406208\pi\)
−0.991868 + 0.127268i \(0.959379\pi\)
\(90\) 0 0
\(91\) 6.14138i 0.643791i
\(92\) −10.4486 9.20155i −1.08934 0.959328i
\(93\) 0 0
\(94\) −5.14586 + 13.6293i −0.530755 + 1.40576i
\(95\) −2.53835 −0.260429
\(96\) 0 0
\(97\) −11.6511 −1.18299 −0.591496 0.806308i \(-0.701462\pi\)
−0.591496 + 0.806308i \(0.701462\pi\)
\(98\) −2.76639 + 7.32708i −0.279448 + 0.740146i
\(99\) 0 0
\(100\) 1.50094 + 1.32181i 0.150094 + 0.132181i
\(101\) 4.77766i 0.475395i 0.971339 + 0.237698i \(0.0763927\pi\)
−0.971339 + 0.237698i \(0.923607\pi\)
\(102\) 0 0
\(103\) 9.45891i 0.932014i 0.884781 + 0.466007i \(0.154308\pi\)
−0.884781 + 0.466007i \(0.845692\pi\)
\(104\) −12.6907 + 6.73267i −1.24443 + 0.660193i
\(105\) 0 0
\(106\) −12.4722 4.70897i −1.21141 0.457376i
\(107\) −18.3014 −1.76926 −0.884630 0.466294i \(-0.845589\pi\)
−0.884630 + 0.466294i \(0.845589\pi\)
\(108\) 0 0
\(109\) −10.2589 −0.982625 −0.491312 0.870983i \(-0.663483\pi\)
−0.491312 + 0.870983i \(0.663483\pi\)
\(110\) −4.02634 1.52017i −0.383896 0.144943i
\(111\) 0 0
\(112\) 4.79772 0.611402i 0.453342 0.0577720i
\(113\) 6.13462i 0.577096i 0.957465 + 0.288548i \(0.0931725\pi\)
−0.957465 + 0.288548i \(0.906827\pi\)
\(114\) 0 0
\(115\) 6.96134i 0.649149i
\(116\) 7.39346 8.39545i 0.686466 0.779498i
\(117\) 0 0
\(118\) −4.45914 + 11.8105i −0.410497 + 1.08724i
\(119\) 2.70777 0.248221
\(120\) 0 0
\(121\) −1.73884 −0.158076
\(122\) 1.32771 3.51658i 0.120205 0.318376i
\(123\) 0 0
\(124\) 4.33099 4.91794i 0.388934 0.441644i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 9.41213i 0.835192i −0.908633 0.417596i \(-0.862873\pi\)
0.908633 0.417596i \(-0.137127\pi\)
\(128\) 6.52307 + 9.24389i 0.576563 + 0.817053i
\(129\) 0 0
\(130\) −6.72001 2.53719i −0.589384 0.222526i
\(131\) −2.13260 −0.186327 −0.0931633 0.995651i \(-0.529698\pi\)
−0.0931633 + 0.995651i \(0.529698\pi\)
\(132\) 0 0
\(133\) −3.06920 −0.266133
\(134\) −19.0749 7.20187i −1.64782 0.622147i
\(135\) 0 0
\(136\) 2.96848 + 5.59542i 0.254545 + 0.479803i
\(137\) 16.4869i 1.40857i −0.709918 0.704285i \(-0.751268\pi\)
0.709918 0.704285i \(-0.248732\pi\)
\(138\) 0 0
\(139\) 20.1007i 1.70492i −0.522792 0.852460i \(-0.675110\pi\)
0.522792 0.852460i \(-0.324890\pi\)
\(140\) 1.81484 + 1.59824i 0.153382 + 0.135076i
\(141\) 0 0
\(142\) −1.74487 + 4.62146i −0.146426 + 0.387824i
\(143\) 15.4570 1.29258
\(144\) 0 0
\(145\) 5.59345 0.464511
\(146\) −2.54785 + 6.74826i −0.210862 + 0.558490i
\(147\) 0 0
\(148\) 15.5369 + 13.6826i 1.27713 + 1.12470i
\(149\) 1.88370i 0.154319i 0.997019 + 0.0771594i \(0.0245850\pi\)
−0.997019 + 0.0771594i \(0.975415\pi\)
\(150\) 0 0
\(151\) 6.18825i 0.503593i −0.967780 0.251796i \(-0.918979\pi\)
0.967780 0.251796i \(-0.0810214\pi\)
\(152\) −3.36470 6.34228i −0.272913 0.514427i
\(153\) 0 0
\(154\) −4.86837 1.83809i −0.392304 0.148117i
\(155\) 3.27657 0.263180
\(156\) 0 0
\(157\) −2.20024 −0.175598 −0.0877991 0.996138i \(-0.527983\pi\)
−0.0877991 + 0.996138i \(0.527983\pi\)
\(158\) −4.98761 1.88311i −0.396793 0.149812i
\(159\) 0 0
\(160\) −1.31308 + 5.50235i −0.103808 + 0.434999i
\(161\) 8.41717i 0.663366i
\(162\) 0 0
\(163\) 15.3649i 1.20347i 0.798694 + 0.601737i \(0.205525\pi\)
−0.798694 + 0.601737i \(0.794475\pi\)
\(164\) 5.65046 6.41622i 0.441227 0.501023i
\(165\) 0 0
\(166\) −0.285903 + 0.757242i −0.0221903 + 0.0587734i
\(167\) −22.2247 −1.71980 −0.859901 0.510461i \(-0.829475\pi\)
−0.859901 + 0.510461i \(0.829475\pi\)
\(168\) 0 0
\(169\) 12.7979 0.984457
\(170\) −1.11866 + 2.96289i −0.0857975 + 0.227244i
\(171\) 0 0
\(172\) 5.70997 6.48381i 0.435381 0.494386i
\(173\) 15.4106i 1.17165i 0.810438 + 0.585825i \(0.199229\pi\)
−0.810438 + 0.585825i \(0.800771\pi\)
\(174\) 0 0
\(175\) 1.20913i 0.0914017i
\(176\) −1.53881 12.0752i −0.115992 0.910203i
\(177\) 0 0
\(178\) −3.17703 1.19951i −0.238129 0.0899073i
\(179\) 12.8229 0.958425 0.479212 0.877699i \(-0.340922\pi\)
0.479212 + 0.877699i \(0.340922\pi\)
\(180\) 0 0
\(181\) 17.3649 1.29072 0.645360 0.763879i \(-0.276707\pi\)
0.645360 + 0.763879i \(0.276707\pi\)
\(182\) −8.12537 3.06779i −0.602293 0.227400i
\(183\) 0 0
\(184\) 17.3935 9.22758i 1.28227 0.680266i
\(185\) 10.3514i 0.761052i
\(186\) 0 0
\(187\) 6.81509i 0.498369i
\(188\) −15.4618 13.6165i −1.12767 0.993085i
\(189\) 0 0
\(190\) 1.26798 3.35837i 0.0919889 0.243642i
\(191\) −17.8286 −1.29003 −0.645017 0.764169i \(-0.723150\pi\)
−0.645017 + 0.764169i \(0.723150\pi\)
\(192\) 0 0
\(193\) −4.88362 −0.351530 −0.175765 0.984432i \(-0.556240\pi\)
−0.175765 + 0.984432i \(0.556240\pi\)
\(194\) 5.82007 15.4151i 0.417856 1.10674i
\(195\) 0 0
\(196\) −8.31222 7.32017i −0.593730 0.522869i
\(197\) 16.8173i 1.19818i 0.800682 + 0.599090i \(0.204471\pi\)
−0.800682 + 0.599090i \(0.795529\pi\)
\(198\) 0 0
\(199\) 5.91492i 0.419297i −0.977777 0.209649i \(-0.932768\pi\)
0.977777 0.209649i \(-0.0672320\pi\)
\(200\) −2.49858 + 1.32555i −0.176677 + 0.0937303i
\(201\) 0 0
\(202\) −6.32110 2.38658i −0.444751 0.167919i
\(203\) 6.76321 0.474685
\(204\) 0 0
\(205\) 4.27480 0.298565
\(206\) −12.5146 4.72500i −0.871937 0.329206i
\(207\) 0 0
\(208\) −2.56830 20.1537i −0.178080 1.39741i
\(209\) 7.72475i 0.534332i
\(210\) 0 0
\(211\) 27.6534i 1.90374i −0.306507 0.951868i \(-0.599160\pi\)
0.306507 0.951868i \(-0.400840\pi\)
\(212\) 12.4604 14.1491i 0.855787 0.971766i
\(213\) 0 0
\(214\) 9.14206 24.2137i 0.624938 1.65521i
\(215\) 4.31983 0.294610
\(216\) 0 0
\(217\) 3.96180 0.268945
\(218\) 5.12462 13.5731i 0.347083 0.919285i
\(219\) 0 0
\(220\) 4.02254 4.56769i 0.271200 0.307954i
\(221\) 11.3745i 0.765130i
\(222\) 0 0
\(223\) 23.9473i 1.60363i 0.597572 + 0.801815i \(0.296132\pi\)
−0.597572 + 0.801815i \(0.703868\pi\)
\(224\) −1.58768 + 6.65306i −0.106082 + 0.444526i
\(225\) 0 0
\(226\) −8.11643 3.06442i −0.539897 0.203842i
\(227\) 6.91958 0.459269 0.229634 0.973277i \(-0.426247\pi\)
0.229634 + 0.973277i \(0.426247\pi\)
\(228\) 0 0
\(229\) −15.3167 −1.01216 −0.506080 0.862487i \(-0.668906\pi\)
−0.506080 + 0.862487i \(0.668906\pi\)
\(230\) 9.21023 + 3.47739i 0.607305 + 0.229292i
\(231\) 0 0
\(232\) 7.41438 + 13.9757i 0.486778 + 0.917551i
\(233\) 6.61050i 0.433068i 0.976275 + 0.216534i \(0.0694753\pi\)
−0.976275 + 0.216534i \(0.930525\pi\)
\(234\) 0 0
\(235\) 10.3014i 0.671991i
\(236\) −13.3984 11.7994i −0.872165 0.768073i
\(237\) 0 0
\(238\) −1.35261 + 3.58253i −0.0876767 + 0.232221i
\(239\) −8.22119 −0.531785 −0.265892 0.964003i \(-0.585667\pi\)
−0.265892 + 0.964003i \(0.585667\pi\)
\(240\) 0 0
\(241\) 14.6155 0.941470 0.470735 0.882275i \(-0.343989\pi\)
0.470735 + 0.882275i \(0.343989\pi\)
\(242\) 0.868600 2.30058i 0.0558357 0.147887i
\(243\) 0 0
\(244\) 3.98940 + 3.51327i 0.255395 + 0.224914i
\(245\) 5.53800i 0.353810i
\(246\) 0 0
\(247\) 12.8927i 0.820343i
\(248\) 4.34324 + 8.18679i 0.275796 + 0.519861i
\(249\) 0 0
\(250\) −1.32305 0.499529i −0.0836773 0.0315930i
\(251\) 2.39191 0.150976 0.0754880 0.997147i \(-0.475949\pi\)
0.0754880 + 0.997147i \(0.475949\pi\)
\(252\) 0 0
\(253\) −21.1849 −1.33188
\(254\) 12.4528 + 4.70163i 0.781355 + 0.295007i
\(255\) 0 0
\(256\) −15.4886 + 4.01278i −0.968039 + 0.250799i
\(257\) 8.44949i 0.527065i 0.964651 + 0.263532i \(0.0848876\pi\)
−0.964651 + 0.263532i \(0.915112\pi\)
\(258\) 0 0
\(259\) 12.5162i 0.777721i
\(260\) 6.71368 7.62354i 0.416365 0.472792i
\(261\) 0 0
\(262\) 1.06530 2.82155i 0.0658143 0.174316i
\(263\) 6.46324 0.398540 0.199270 0.979945i \(-0.436143\pi\)
0.199270 + 0.979945i \(0.436143\pi\)
\(264\) 0 0
\(265\) 9.42683 0.579086
\(266\) 1.53315 4.06071i 0.0940036 0.248978i
\(267\) 0 0
\(268\) 19.0569 21.6396i 1.16409 1.32185i
\(269\) 6.14888i 0.374904i −0.982274 0.187452i \(-0.939977\pi\)
0.982274 0.187452i \(-0.0600229\pi\)
\(270\) 0 0
\(271\) 0.446839i 0.0271436i −0.999908 0.0135718i \(-0.995680\pi\)
0.999908 0.0135718i \(-0.00432016\pi\)
\(272\) −8.88588 + 1.13238i −0.538786 + 0.0686606i
\(273\) 0 0
\(274\) 21.8130 + 8.23567i 1.31777 + 0.497535i
\(275\) 3.04322 0.183513
\(276\) 0 0
\(277\) 6.83247 0.410524 0.205262 0.978707i \(-0.434195\pi\)
0.205262 + 0.978707i \(0.434195\pi\)
\(278\) 26.5943 + 10.0409i 1.59502 + 0.602212i
\(279\) 0 0
\(280\) −3.02112 + 1.60276i −0.180546 + 0.0957832i
\(281\) 3.29157i 0.196359i 0.995169 + 0.0981794i \(0.0313019\pi\)
−0.995169 + 0.0981794i \(0.968698\pi\)
\(282\) 0 0
\(283\) 23.4374i 1.39321i −0.717457 0.696603i \(-0.754694\pi\)
0.717457 0.696603i \(-0.245306\pi\)
\(284\) −5.24283 4.61711i −0.311105 0.273975i
\(285\) 0 0
\(286\) −7.72122 + 20.4504i −0.456565 + 1.20926i
\(287\) 5.16879 0.305104
\(288\) 0 0
\(289\) 11.9849 0.704996
\(290\) −2.79409 + 7.40044i −0.164075 + 0.434569i
\(291\) 0 0
\(292\) −7.65558 6.74190i −0.448009 0.394540i
\(293\) 27.9131i 1.63070i 0.578970 + 0.815349i \(0.303455\pi\)
−0.578970 + 0.815349i \(0.696545\pi\)
\(294\) 0 0
\(295\) 8.92669i 0.519732i
\(296\) −25.8639 + 13.7213i −1.50331 + 0.797535i
\(297\) 0 0
\(298\) −2.49224 0.940963i −0.144371 0.0545085i
\(299\) −35.3578 −2.04480
\(300\) 0 0
\(301\) 5.22323 0.301062
\(302\) 8.18739 + 3.09121i 0.471131 + 0.177879i
\(303\) 0 0
\(304\) 10.0719 1.28353i 0.577666 0.0736153i
\(305\) 2.65793i 0.152193i
\(306\) 0 0
\(307\) 22.5939i 1.28950i 0.764393 + 0.644750i \(0.223039\pi\)
−0.764393 + 0.644750i \(0.776961\pi\)
\(308\) 4.86378 5.52293i 0.277140 0.314698i
\(309\) 0 0
\(310\) −1.63674 + 4.33508i −0.0929606 + 0.246216i
\(311\) −5.89086 −0.334040 −0.167020 0.985953i \(-0.553414\pi\)
−0.167020 + 0.985953i \(0.553414\pi\)
\(312\) 0 0
\(313\) 7.76738 0.439038 0.219519 0.975608i \(-0.429551\pi\)
0.219519 + 0.975608i \(0.429551\pi\)
\(314\) 1.09908 2.91104i 0.0620249 0.164279i
\(315\) 0 0
\(316\) 4.98291 5.65820i 0.280310 0.318299i
\(317\) 11.7709i 0.661120i 0.943785 + 0.330560i \(0.107238\pi\)
−0.943785 + 0.330560i \(0.892762\pi\)
\(318\) 0 0
\(319\) 17.0221i 0.953054i
\(320\) −6.62398 4.48585i −0.370292 0.250767i
\(321\) 0 0
\(322\) 11.1364 + 4.20462i 0.620606 + 0.234314i
\(323\) 5.68447 0.316293
\(324\) 0 0
\(325\) 5.07917 0.281742
\(326\) −20.3286 7.67523i −1.12590 0.425091i
\(327\) 0 0
\(328\) 5.66644 + 10.6809i 0.312877 + 0.589757i
\(329\) 12.4558i 0.686709i
\(330\) 0 0
\(331\) 4.32394i 0.237665i 0.992914 + 0.118833i \(0.0379152\pi\)
−0.992914 + 0.118833i \(0.962085\pi\)
\(332\) −0.859056 0.756529i −0.0471468 0.0415199i
\(333\) 0 0
\(334\) 11.1019 29.4045i 0.607469 1.60894i
\(335\) 14.4173 0.787703
\(336\) 0 0
\(337\) 7.77010 0.423264 0.211632 0.977349i \(-0.432122\pi\)
0.211632 + 0.977349i \(0.432122\pi\)
\(338\) −6.39294 + 16.9324i −0.347730 + 0.920999i
\(339\) 0 0
\(340\) −3.36126 2.96010i −0.182290 0.160534i
\(341\) 9.97131i 0.539977i
\(342\) 0 0
\(343\) 15.1601i 0.818568i
\(344\) 5.72613 + 10.7935i 0.308732 + 0.581944i
\(345\) 0 0
\(346\) −20.3891 7.69806i −1.09613 0.413850i
\(347\) 11.2661 0.604798 0.302399 0.953181i \(-0.402212\pi\)
0.302399 + 0.953181i \(0.402212\pi\)
\(348\) 0 0
\(349\) −22.2806 −1.19265 −0.596326 0.802742i \(-0.703374\pi\)
−0.596326 + 0.802742i \(0.703374\pi\)
\(350\) −1.59974 0.603996i −0.0855100 0.0322849i
\(351\) 0 0
\(352\) 16.7448 + 3.99598i 0.892502 + 0.212986i
\(353\) 22.0645i 1.17438i 0.809451 + 0.587188i \(0.199765\pi\)
−0.809451 + 0.587188i \(0.800235\pi\)
\(354\) 0 0
\(355\) 3.49303i 0.185391i
\(356\) 3.17404 3.60420i 0.168224 0.191022i
\(357\) 0 0
\(358\) −6.40538 + 16.9653i −0.338535 + 0.896645i
\(359\) −1.70332 −0.0898978 −0.0449489 0.998989i \(-0.514313\pi\)
−0.0449489 + 0.998989i \(0.514313\pi\)
\(360\) 0 0
\(361\) 12.5568 0.660883
\(362\) −8.67425 + 22.9746i −0.455908 + 1.20752i
\(363\) 0 0
\(364\) 8.11771 9.21785i 0.425484 0.483147i
\(365\) 5.10052i 0.266973i
\(366\) 0 0
\(367\) 9.42151i 0.491799i −0.969295 0.245900i \(-0.920917\pi\)
0.969295 0.245900i \(-0.0790833\pi\)
\(368\) 3.52003 + 27.6220i 0.183494 + 1.43990i
\(369\) 0 0
\(370\) −13.6955 5.17084i −0.711995 0.268819i
\(371\) 11.3983 0.591769
\(372\) 0 0
\(373\) 14.5855 0.755210 0.377605 0.925967i \(-0.376748\pi\)
0.377605 + 0.925967i \(0.376748\pi\)
\(374\) 9.01673 + 3.40433i 0.466244 + 0.176034i
\(375\) 0 0
\(376\) 25.7390 13.6550i 1.32739 0.704203i
\(377\) 28.4101i 1.46319i
\(378\) 0 0
\(379\) 9.46065i 0.485961i 0.970031 + 0.242980i \(0.0781251\pi\)
−0.970031 + 0.242980i \(0.921875\pi\)
\(380\) 3.80992 + 3.35521i 0.195445 + 0.172119i
\(381\) 0 0
\(382\) 8.90590 23.5882i 0.455666 1.20688i
\(383\) −6.86013 −0.350536 −0.175268 0.984521i \(-0.556079\pi\)
−0.175268 + 0.984521i \(0.556079\pi\)
\(384\) 0 0
\(385\) 3.67965 0.187532
\(386\) 2.43951 6.46129i 0.124168 0.328871i
\(387\) 0 0
\(388\) 17.4876 + 15.4005i 0.887801 + 0.781843i
\(389\) 8.21735i 0.416636i −0.978061 0.208318i \(-0.933201\pi\)
0.978061 0.208318i \(-0.0667989\pi\)
\(390\) 0 0
\(391\) 15.5895i 0.788394i
\(392\) 13.8372 7.34088i 0.698883 0.370770i
\(393\) 0 0
\(394\) −22.2501 8.40070i −1.12095 0.423221i
\(395\) 3.76977 0.189678
\(396\) 0 0
\(397\) −7.07936 −0.355303 −0.177651 0.984093i \(-0.556850\pi\)
−0.177651 + 0.984093i \(0.556850\pi\)
\(398\) 7.82575 + 2.95467i 0.392269 + 0.148104i
\(399\) 0 0
\(400\) −0.505654 3.96791i −0.0252827 0.198396i
\(401\) 17.6923i 0.883511i −0.897136 0.441755i \(-0.854356\pi\)
0.897136 0.441755i \(-0.145644\pi\)
\(402\) 0 0
\(403\) 16.6422i 0.829009i
\(404\) 6.31514 7.17099i 0.314190 0.356770i
\(405\) 0 0
\(406\) −3.37842 + 8.94810i −0.167668 + 0.444087i
\(407\) 31.5016 1.56148
\(408\) 0 0
\(409\) −22.7084 −1.12286 −0.561428 0.827526i \(-0.689748\pi\)
−0.561428 + 0.827526i \(0.689748\pi\)
\(410\) −2.13538 + 5.65579i −0.105459 + 0.279319i
\(411\) 0 0
\(412\) 12.5028 14.1973i 0.615971 0.699449i
\(413\) 10.7935i 0.531115i
\(414\) 0 0
\(415\) 0.572344i 0.0280953i
\(416\) 27.9473 + 6.66934i 1.37023 + 0.326992i
\(417\) 0 0
\(418\) −10.2203 3.85873i −0.499889 0.188737i
\(419\) 26.3609 1.28782 0.643908 0.765103i \(-0.277312\pi\)
0.643908 + 0.765103i \(0.277312\pi\)
\(420\) 0 0
\(421\) 17.1554 0.836101 0.418050 0.908424i \(-0.362714\pi\)
0.418050 + 0.908424i \(0.362714\pi\)
\(422\) 36.5869 + 13.8137i 1.78102 + 0.672438i
\(423\) 0 0
\(424\) 12.4957 + 23.5537i 0.606845 + 1.14387i
\(425\) 2.23944i 0.108629i
\(426\) 0 0
\(427\) 3.21378i 0.155526i
\(428\) 27.4693 + 24.1909i 1.32778 + 1.16931i
\(429\) 0 0
\(430\) −2.15788 + 5.71536i −0.104062 + 0.275619i
\(431\) −12.5816 −0.606037 −0.303018 0.952985i \(-0.597994\pi\)
−0.303018 + 0.952985i \(0.597994\pi\)
\(432\) 0 0
\(433\) −11.7433 −0.564346 −0.282173 0.959364i \(-0.591055\pi\)
−0.282173 + 0.959364i \(0.591055\pi\)
\(434\) −1.97903 + 5.24167i −0.0949966 + 0.251608i
\(435\) 0 0
\(436\) 15.3980 + 13.5603i 0.737431 + 0.649420i
\(437\) 17.6703i 0.845286i
\(438\) 0 0
\(439\) 1.68284i 0.0803176i 0.999193 + 0.0401588i \(0.0127864\pi\)
−0.999193 + 0.0401588i \(0.987214\pi\)
\(440\) 4.03392 + 7.60373i 0.192310 + 0.362494i
\(441\) 0 0
\(442\) 15.0490 + 5.68188i 0.715810 + 0.270259i
\(443\) −0.759020 −0.0360621 −0.0180311 0.999837i \(-0.505740\pi\)
−0.0180311 + 0.999837i \(0.505740\pi\)
\(444\) 0 0
\(445\) 2.40129 0.113832
\(446\) −31.6836 11.9624i −1.50026 0.566434i
\(447\) 0 0
\(448\) −8.00926 5.42398i −0.378402 0.256259i
\(449\) 17.4579i 0.823887i 0.911209 + 0.411943i \(0.135150\pi\)
−0.911209 + 0.411943i \(0.864850\pi\)
\(450\) 0 0
\(451\) 13.0091i 0.612576i
\(452\) 8.10878 9.20770i 0.381405 0.433094i
\(453\) 0 0
\(454\) −3.45653 + 9.15498i −0.162223 + 0.429665i
\(455\) 6.14138 0.287912
\(456\) 0 0
\(457\) −34.8638 −1.63086 −0.815430 0.578855i \(-0.803500\pi\)
−0.815430 + 0.578855i \(0.803500\pi\)
\(458\) 7.65116 20.2649i 0.357515 0.946916i
\(459\) 0 0
\(460\) −9.20155 + 10.4486i −0.429025 + 0.487167i
\(461\) 31.2815i 1.45692i −0.685086 0.728462i \(-0.740235\pi\)
0.685086 0.728462i \(-0.259765\pi\)
\(462\) 0 0
\(463\) 10.2827i 0.477879i 0.971034 + 0.238940i \(0.0767998\pi\)
−0.971034 + 0.238940i \(0.923200\pi\)
\(464\) −22.1943 + 2.82835i −1.03035 + 0.131303i
\(465\) 0 0
\(466\) −8.74605 3.30214i −0.405153 0.152968i
\(467\) 2.90585 0.134467 0.0672333 0.997737i \(-0.478583\pi\)
0.0672333 + 0.997737i \(0.478583\pi\)
\(468\) 0 0
\(469\) 17.4324 0.804955
\(470\) 13.6293 + 5.14586i 0.628674 + 0.237361i
\(471\) 0 0
\(472\) 22.3041 11.8327i 1.02663 0.544646i
\(473\) 13.1462i 0.604461i
\(474\) 0 0
\(475\) 2.53835i 0.116467i
\(476\) −4.06421 3.57915i −0.186283 0.164050i
\(477\) 0 0
\(478\) 4.10672 10.8771i 0.187837 0.497506i
\(479\) −18.8555 −0.861528 −0.430764 0.902465i \(-0.641756\pi\)
−0.430764 + 0.902465i \(0.641756\pi\)
\(480\) 0 0
\(481\) 52.5767 2.39729
\(482\) −7.30088 + 19.3371i −0.332546 + 0.880783i
\(483\) 0 0
\(484\) 2.60990 + 2.29841i 0.118632 + 0.104473i
\(485\) 11.6511i 0.529050i
\(486\) 0 0
\(487\) 11.5696i 0.524268i −0.965031 0.262134i \(-0.915574\pi\)
0.965031 0.262134i \(-0.0844263\pi\)
\(488\) −6.64106 + 3.52321i −0.300627 + 0.159488i
\(489\) 0 0
\(490\) 7.32708 + 2.76639i 0.331004 + 0.124973i
\(491\) 1.49523 0.0674790 0.0337395 0.999431i \(-0.489258\pi\)
0.0337395 + 0.999431i \(0.489258\pi\)
\(492\) 0 0
\(493\) −12.5262 −0.564151
\(494\) −17.0577 6.44028i −0.767464 0.289762i
\(495\) 0 0
\(496\) −13.0011 + 1.65681i −0.583768 + 0.0743930i
\(497\) 4.22352i 0.189451i
\(498\) 0 0
\(499\) 31.4785i 1.40917i 0.709618 + 0.704586i \(0.248867\pi\)
−0.709618 + 0.704586i \(0.751133\pi\)
\(500\) 1.32181 1.50094i 0.0591130 0.0671242i
\(501\) 0 0
\(502\) −1.19483 + 3.16463i −0.0533278 + 0.141244i
\(503\) −1.90449 −0.0849171 −0.0424585 0.999098i \(-0.513519\pi\)
−0.0424585 + 0.999098i \(0.513519\pi\)
\(504\) 0 0
\(505\) 4.77766 0.212603
\(506\) 10.5825 28.0287i 0.470447 1.24603i
\(507\) 0 0
\(508\) −12.4410 + 14.1271i −0.551981 + 0.626787i
\(509\) 31.4341i 1.39329i 0.717414 + 0.696647i \(0.245326\pi\)
−0.717414 + 0.696647i \(0.754674\pi\)
\(510\) 0 0
\(511\) 6.16719i 0.272820i
\(512\) 2.42789 22.4968i 0.107299 0.994227i
\(513\) 0 0
\(514\) −11.1791 4.22076i −0.493090 0.186170i
\(515\) 9.45891 0.416809
\(516\) 0 0
\(517\) −31.3494 −1.37875
\(518\) −16.5596 6.25222i −0.727589 0.274707i
\(519\) 0 0
\(520\) 6.73267 + 12.6907i 0.295247 + 0.556525i
\(521\) 23.2742i 1.01966i 0.860275 + 0.509831i \(0.170292\pi\)
−0.860275 + 0.509831i \(0.829708\pi\)
\(522\) 0 0
\(523\) 10.8804i 0.475769i −0.971293 0.237884i \(-0.923546\pi\)
0.971293 0.237884i \(-0.0764539\pi\)
\(524\) 3.20092 + 2.81889i 0.139833 + 0.123144i
\(525\) 0 0
\(526\) −3.22857 + 8.55121i −0.140773 + 0.372851i
\(527\) −7.33767 −0.319634
\(528\) 0 0
\(529\) 25.4603 1.10697
\(530\) −4.70897 + 12.4722i −0.204545 + 0.541758i
\(531\) 0 0
\(532\) 4.60669 + 4.05689i 0.199725 + 0.175888i
\(533\) 21.7124i 0.940469i
\(534\) 0 0
\(535\) 18.3014i 0.791237i
\(536\) 19.1108 + 36.0229i 0.825463 + 1.55595i
\(537\) 0 0
\(538\) 8.13530 + 3.07154i 0.350738 + 0.132424i
\(539\) −16.8533 −0.725925
\(540\) 0 0
\(541\) −6.53795 −0.281088 −0.140544 0.990074i \(-0.544885\pi\)
−0.140544 + 0.990074i \(0.544885\pi\)
\(542\) 0.591192 + 0.223209i 0.0253939 + 0.00958765i
\(543\) 0 0
\(544\) 2.94055 12.3222i 0.126075 0.528308i
\(545\) 10.2589i 0.439443i
\(546\) 0 0
\(547\) 26.5771i 1.13636i −0.822906 0.568178i \(-0.807649\pi\)
0.822906 0.568178i \(-0.192351\pi\)
\(548\) −21.7925 + 24.7458i −0.930928 + 1.05709i
\(549\) 0 0
\(550\) −1.52017 + 4.02634i −0.0648204 + 0.171684i
\(551\) 14.1981 0.604861
\(552\) 0 0
\(553\) 4.55814 0.193832
\(554\) −3.41302 + 9.03973i −0.145005 + 0.384061i
\(555\) 0 0
\(556\) −26.5693 + 30.1700i −1.12679 + 1.27949i
\(557\) 8.68248i 0.367889i 0.982937 + 0.183944i \(0.0588866\pi\)
−0.982937 + 0.183944i \(0.941113\pi\)
\(558\) 0 0
\(559\) 21.9411i 0.928010i
\(560\) −0.611402 4.79772i −0.0258364 0.202741i
\(561\) 0 0
\(562\) −4.35493 1.64424i −0.183702 0.0693579i
\(563\) 31.6649 1.33451 0.667257 0.744827i \(-0.267468\pi\)
0.667257 + 0.744827i \(0.267468\pi\)
\(564\) 0 0
\(565\) 6.13462 0.258085
\(566\) 31.0089 + 11.7076i 1.30340 + 0.492109i
\(567\) 0 0
\(568\) 8.72762 4.63017i 0.366203 0.194278i
\(569\) 32.2966i 1.35395i −0.736008 0.676973i \(-0.763291\pi\)
0.736008 0.676973i \(-0.236709\pi\)
\(570\) 0 0
\(571\) 14.6930i 0.614884i 0.951567 + 0.307442i \(0.0994729\pi\)
−0.951567 + 0.307442i \(0.900527\pi\)
\(572\) −23.2001 20.4312i −0.970043 0.854270i
\(573\) 0 0
\(574\) −2.58196 + 6.83859i −0.107769 + 0.285437i
\(575\) −6.96134 −0.290308
\(576\) 0 0
\(577\) −22.4886 −0.936214 −0.468107 0.883672i \(-0.655064\pi\)
−0.468107 + 0.883672i \(0.655064\pi\)
\(578\) −5.98682 + 15.8567i −0.249019 + 0.659552i
\(579\) 0 0
\(580\) −8.39545 7.39346i −0.348602 0.306997i
\(581\) 0.692039i 0.0287106i
\(582\) 0 0
\(583\) 28.6879i 1.18813i
\(584\) 12.7441 6.76097i 0.527354 0.279771i
\(585\) 0 0
\(586\) −36.9305 13.9434i −1.52558 0.575996i
\(587\) −34.4969 −1.42384 −0.711919 0.702262i \(-0.752174\pi\)
−0.711919 + 0.702262i \(0.752174\pi\)
\(588\) 0 0
\(589\) 8.31708 0.342699
\(590\) 11.8105 + 4.45914i 0.486230 + 0.183580i
\(591\) 0 0
\(592\) −5.23424 41.0736i −0.215126 1.68811i
\(593\) 11.5133i 0.472794i 0.971656 + 0.236397i \(0.0759667\pi\)
−0.971656 + 0.236397i \(0.924033\pi\)
\(594\) 0 0
\(595\) 2.70777i 0.111008i
\(596\) 2.48989 2.82733i 0.101990 0.115812i
\(597\) 0 0
\(598\) 17.6623 46.7803i 0.722263 1.91299i
\(599\) −35.6121 −1.45507 −0.727535 0.686071i \(-0.759334\pi\)
−0.727535 + 0.686071i \(0.759334\pi\)
\(600\) 0 0
\(601\) 40.8274 1.66539 0.832693 0.553735i \(-0.186798\pi\)
0.832693 + 0.553735i \(0.186798\pi\)
\(602\) −2.60916 + 6.91062i −0.106341 + 0.281656i
\(603\) 0 0
\(604\) −8.17968 + 9.28821i −0.332826 + 0.377932i
\(605\) 1.73884i 0.0706938i
\(606\) 0 0
\(607\) 2.19423i 0.0890609i 0.999008 + 0.0445304i \(0.0141792\pi\)
−0.999008 + 0.0445304i \(0.985821\pi\)
\(608\) −3.33305 + 13.9669i −0.135173 + 0.566432i
\(609\) 0 0
\(610\) −3.51658 1.32771i −0.142382 0.0537575i
\(611\) −52.3227 −2.11675
\(612\) 0 0
\(613\) 38.7673 1.56580 0.782899 0.622149i \(-0.213740\pi\)
0.782899 + 0.622149i \(0.213740\pi\)
\(614\) −29.8929 11.2863i −1.20638 0.455478i
\(615\) 0 0
\(616\) 4.87754 + 9.19391i 0.196522 + 0.370433i
\(617\) 14.8556i 0.598062i −0.954243 0.299031i \(-0.903337\pi\)
0.954243 0.299031i \(-0.0966634\pi\)
\(618\) 0 0
\(619\) 14.2470i 0.572637i −0.958135 0.286318i \(-0.907569\pi\)
0.958135 0.286318i \(-0.0924315\pi\)
\(620\) −4.91794 4.33099i −0.197509 0.173937i
\(621\) 0 0
\(622\) 2.94266 7.79393i 0.117990 0.312508i
\(623\) 2.90347 0.116325
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −3.88003 + 10.2767i −0.155077 + 0.410738i
\(627\) 0 0
\(628\) 3.30243 + 2.90829i 0.131781 + 0.116053i
\(629\) 23.1814i 0.924302i
\(630\) 0 0
\(631\) 38.8200i 1.54540i −0.634772 0.772700i \(-0.718906\pi\)
0.634772 0.772700i \(-0.281094\pi\)
\(632\) 4.99700 + 9.41909i 0.198770 + 0.374671i
\(633\) 0 0
\(634\) −15.5735 5.87991i −0.618504 0.233521i
\(635\) −9.41213 −0.373509
\(636\) 0 0
\(637\) −28.1284 −1.11449
\(638\) 22.5211 + 8.50302i 0.891620 + 0.336638i
\(639\) 0 0
\(640\) 9.24389 6.52307i 0.365397 0.257847i
\(641\) 19.1212i 0.755243i −0.925960 0.377621i \(-0.876742\pi\)
0.925960 0.377621i \(-0.123258\pi\)
\(642\) 0 0
\(643\) 6.57189i 0.259170i −0.991568 0.129585i \(-0.958635\pi\)
0.991568 0.129585i \(-0.0413645\pi\)
\(644\) −11.1259 + 12.6337i −0.438421 + 0.497837i
\(645\) 0 0
\(646\) −2.83956 + 7.52086i −0.111721 + 0.295904i
\(647\) −12.7191 −0.500040 −0.250020 0.968241i \(-0.580437\pi\)
−0.250020 + 0.968241i \(0.580437\pi\)
\(648\) 0 0
\(649\) −27.1658 −1.06635
\(650\) −2.53719 + 6.72001i −0.0995168 + 0.263581i
\(651\) 0 0
\(652\) 20.3095 23.0619i 0.795380 0.903173i
\(653\) 44.0821i 1.72506i −0.506002 0.862532i \(-0.668877\pi\)
0.506002 0.862532i \(-0.331123\pi\)
\(654\) 0 0
\(655\) 2.13260i 0.0833278i
\(656\) −16.9620 + 2.16157i −0.662256 + 0.0843951i
\(657\) 0 0
\(658\) 16.4796 + 6.22201i 0.642444 + 0.242559i
\(659\) 21.7858 0.848656 0.424328 0.905509i \(-0.360510\pi\)
0.424328 + 0.905509i \(0.360510\pi\)
\(660\) 0 0
\(661\) 20.5513 0.799353 0.399676 0.916656i \(-0.369123\pi\)
0.399676 + 0.916656i \(0.369123\pi\)
\(662\) −5.72080 2.15993i −0.222345 0.0839481i
\(663\) 0 0
\(664\) 1.43005 0.758669i 0.0554968 0.0294421i
\(665\) 3.06920i 0.119018i
\(666\) 0 0
\(667\) 38.9379i 1.50768i
\(668\) 33.3580 + 29.3768i 1.29066 + 1.13662i
\(669\) 0 0
\(670\) −7.20187 + 19.0749i −0.278233 + 0.736928i
\(671\) 8.08865 0.312259
\(672\) 0 0
\(673\) −2.17749 −0.0839359 −0.0419680 0.999119i \(-0.513363\pi\)
−0.0419680 + 0.999119i \(0.513363\pi\)
\(674\) −3.88139 + 10.2803i −0.149505 + 0.395981i
\(675\) 0 0
\(676\) −19.2090 16.9164i −0.738807 0.650631i
\(677\) 2.22672i 0.0855798i −0.999084 0.0427899i \(-0.986375\pi\)
0.999084 0.0427899i \(-0.0136246\pi\)
\(678\) 0 0
\(679\) 14.0877i 0.540637i
\(680\) 5.59542 2.96848i 0.214575 0.113836i
\(681\) 0 0
\(682\) 13.1926 + 4.98095i 0.505170 + 0.190731i
\(683\) −12.9800 −0.496665 −0.248333 0.968675i \(-0.579883\pi\)
−0.248333 + 0.968675i \(0.579883\pi\)
\(684\) 0 0
\(685\) −16.4869 −0.629931
\(686\) 20.0576 + 7.57290i 0.765803 + 0.289135i
\(687\) 0 0
\(688\) −17.1407 + 2.18434i −0.653482 + 0.0832770i
\(689\) 47.8805i 1.82410i
\(690\) 0 0
\(691\) 27.9275i 1.06241i 0.847243 + 0.531205i \(0.178261\pi\)
−0.847243 + 0.531205i \(0.821739\pi\)
\(692\) 20.3699 23.1305i 0.774347 0.879289i
\(693\) 0 0
\(694\) −5.62776 + 14.9057i −0.213627 + 0.565813i
\(695\) −20.1007 −0.762464
\(696\) 0 0
\(697\) −9.57314 −0.362608
\(698\) 11.1298 29.4784i 0.421269 1.11577i
\(699\) 0 0
\(700\) 1.59824 1.81484i 0.0604077 0.0685943i
\(701\) 31.0643i 1.17328i −0.809847 0.586641i \(-0.800450\pi\)
0.809847 0.586641i \(-0.199550\pi\)
\(702\) 0 0
\(703\) 26.2756i 0.991001i
\(704\) −13.6514 + 20.1582i −0.514507 + 0.759741i
\(705\) 0 0
\(706\) −29.1925 11.0219i −1.09868 0.414813i
\(707\) 5.77682 0.217260
\(708\) 0 0
\(709\) −43.4478 −1.63172 −0.815859 0.578251i \(-0.803735\pi\)
−0.815859 + 0.578251i \(0.803735\pi\)
\(710\) 4.62146 + 1.74487i 0.173440 + 0.0654837i
\(711\) 0 0
\(712\) 3.18302 + 5.99982i 0.119289 + 0.224853i
\(713\) 22.8093i 0.854216i
\(714\) 0 0
\(715\) 15.4570i 0.578059i
\(716\) −19.2464 16.9493i −0.719270 0.633426i
\(717\) 0 0
\(718\) 0.850858 2.25358i 0.0317537 0.0841030i
\(719\) 12.6495 0.471747 0.235874 0.971784i \(-0.424205\pi\)
0.235874 + 0.971784i \(0.424205\pi\)
\(720\) 0 0
\(721\) 11.4371 0.425938
\(722\) −6.27247 + 16.6133i −0.233437 + 0.618283i
\(723\) 0 0
\(724\) −26.0636 22.9530i −0.968648 0.853041i
\(725\) 5.59345i 0.207736i
\(726\) 0 0
\(727\) 50.1181i 1.85878i 0.369103 + 0.929389i \(0.379665\pi\)
−0.369103 + 0.929389i \(0.620335\pi\)
\(728\) 8.14068 + 15.3448i 0.301714 + 0.568714i
\(729\) 0 0
\(730\) 6.74826 + 2.54785i 0.249764 + 0.0943003i
\(731\) −9.67397 −0.357805
\(732\) 0 0
\(733\) −29.4655 −1.08833 −0.544166 0.838978i \(-0.683154\pi\)
−0.544166 + 0.838978i \(0.683154\pi\)
\(734\) 12.4652 + 4.70632i 0.460098 + 0.173713i
\(735\) 0 0
\(736\) −38.3037 9.14079i −1.41189 0.336934i
\(737\) 43.8751i 1.61616i
\(738\) 0 0
\(739\) 45.3131i 1.66687i 0.552618 + 0.833435i \(0.313629\pi\)
−0.552618 + 0.833435i \(0.686371\pi\)
\(740\) 13.6826 15.5369i 0.502982 0.571148i
\(741\) 0 0
\(742\) −5.69376 + 15.0805i −0.209025 + 0.553623i
\(743\) −8.07559 −0.296265 −0.148132 0.988968i \(-0.547326\pi\)
−0.148132 + 0.988968i \(0.547326\pi\)
\(744\) 0 0
\(745\) 1.88370 0.0690135
\(746\) −7.28589 + 19.2974i −0.266756 + 0.706530i
\(747\) 0 0
\(748\) −9.00823 + 10.2291i −0.329373 + 0.374011i
\(749\) 22.1287i 0.808567i
\(750\) 0 0
\(751\) 11.2164i 0.409291i −0.978836 0.204646i \(-0.934396\pi\)
0.978836 0.204646i \(-0.0656042\pi\)
\(752\) 5.20895 + 40.8751i 0.189951 + 1.49056i
\(753\) 0 0
\(754\) 37.5881 + 14.1917i 1.36888 + 0.516829i
\(755\) −6.18825 −0.225214
\(756\) 0 0
\(757\) −26.9148 −0.978236 −0.489118 0.872218i \(-0.662681\pi\)
−0.489118 + 0.872218i \(0.662681\pi\)
\(758\) −12.5169 4.72587i −0.454636 0.171651i
\(759\) 0 0
\(760\) −6.34228 + 3.36470i −0.230059 + 0.122051i
\(761\) 7.78903i 0.282352i 0.989985 + 0.141176i \(0.0450884\pi\)
−0.989985 + 0.141176i \(0.954912\pi\)
\(762\) 0 0
\(763\) 12.4044i 0.449068i
\(764\) 26.7597 + 23.5660i 0.968132 + 0.852587i
\(765\) 0 0
\(766\) 3.42683 9.07632i 0.123816 0.327941i
\(767\) −45.3402 −1.63714
\(768\) 0 0
\(769\) 6.72981 0.242683 0.121342 0.992611i \(-0.461280\pi\)
0.121342 + 0.992611i \(0.461280\pi\)
\(770\) −1.83809 + 4.86837i −0.0662401 + 0.175444i
\(771\) 0 0
\(772\) 7.33003 + 6.45520i 0.263813 + 0.232328i
\(773\) 16.5270i 0.594435i −0.954810 0.297217i \(-0.903941\pi\)
0.954810 0.297217i \(-0.0960586\pi\)
\(774\) 0 0
\(775\) 3.27657i 0.117698i
\(776\) −29.1113 + 15.4441i −1.04503 + 0.554411i
\(777\) 0 0
\(778\) 10.8720 + 4.10480i 0.389780 + 0.147164i
\(779\) 10.8509 0.388775
\(780\) 0 0
\(781\) −10.6300 −0.380372
\(782\) −20.6257 7.78740i −0.737574 0.278477i
\(783\) 0 0
\(784\) 2.80031 + 21.9743i 0.100011 + 0.784796i
\(785\) 2.20024i 0.0785299i
\(786\) 0 0
\(787\) 2.75942i 0.0983628i −0.998790 0.0491814i \(-0.984339\pi\)
0.998790 0.0491814i \(-0.0156612\pi\)
\(788\) 22.2292 25.2417i 0.791881 0.899199i
\(789\) 0 0
\(790\) −1.88311 + 4.98761i −0.0669980 + 0.177451i
\(791\) 7.41755 0.263738
\(792\) 0 0
\(793\) 13.5001 0.479401
\(794\) 3.53634 9.36637i 0.125500 0.332400i
\(795\) 0 0
\(796\) −7.81838 + 8.87795i −0.277115 + 0.314670i
\(797\) 5.24247i 0.185698i 0.995680 + 0.0928488i \(0.0295973\pi\)
−0.995680 + 0.0928488i \(0.970403\pi\)
\(798\) 0 0
\(799\) 23.0694i 0.816136i
\(800\) 5.50235 + 1.31308i 0.194537 + 0.0464243i
\(801\) 0 0
\(802\) 23.4079 + 8.83781i 0.826560 + 0.312074i
\(803\) −15.5220 −0.547759
\(804\) 0 0
\(805\) −8.41717 −0.296666
\(806\) 22.0186 + 8.31328i 0.775571 + 0.292823i
\(807\) 0 0
\(808\) 6.33301 + 11.9374i 0.222795 + 0.419956i
\(809\) 47.1813i 1.65881i −0.558650 0.829403i \(-0.688681\pi\)
0.558650 0.829403i \(-0.311319\pi\)
\(810\) 0 0
\(811\) 18.8666i 0.662495i −0.943544 0.331247i \(-0.892531\pi\)
0.943544 0.331247i \(-0.107469\pi\)
\(812\) −10.1512 8.93966i −0.356237 0.313721i
\(813\) 0 0
\(814\) −15.7360 + 41.6784i −0.551546 + 1.46083i
\(815\) 15.3649 0.538210
\(816\) 0 0
\(817\) 10.9652 0.383625
\(818\) 11.3435 30.0444i 0.396615 1.05048i
\(819\) 0 0
\(820\) −6.41622 5.65046i −0.224064 0.197323i
\(821\) 1.29788i 0.0452962i −0.999743 0.0226481i \(-0.992790\pi\)
0.999743 0.0226481i \(-0.00720973\pi\)
\(822\) 0 0
\(823\) 6.67062i 0.232523i −0.993219 0.116262i \(-0.962909\pi\)
0.993219 0.116262i \(-0.0370911\pi\)
\(824\) 12.5382 + 23.6339i 0.436790 + 0.823325i
\(825\) 0 0
\(826\) 14.2804 + 5.39168i 0.496880 + 0.187601i
\(827\) 37.4924 1.30374 0.651869 0.758331i \(-0.273985\pi\)
0.651869 + 0.758331i \(0.273985\pi\)
\(828\) 0 0
\(829\) −22.9261 −0.796255 −0.398127 0.917330i \(-0.630340\pi\)
−0.398127 + 0.917330i \(0.630340\pi\)
\(830\) 0.757242 + 0.285903i 0.0262843 + 0.00992382i
\(831\) 0 0
\(832\) −22.7844 + 33.6443i −0.789907 + 1.16641i
\(833\) 12.4020i 0.429704i
\(834\) 0 0
\(835\) 22.2247i 0.769119i
\(836\) 10.2106 11.5944i 0.353142 0.401001i
\(837\) 0 0
\(838\) −13.1680 + 34.8769i −0.454882 + 1.20480i
\(839\) 18.2210 0.629057 0.314529 0.949248i \(-0.398154\pi\)
0.314529 + 0.949248i \(0.398154\pi\)
\(840\) 0 0
\(841\) −2.28670 −0.0788518
\(842\) −8.56959 + 22.6975i −0.295328 + 0.782206i
\(843\) 0 0
\(844\) −36.5524 + 41.5061i −1.25819 + 1.42870i
\(845\) 12.7979i 0.440263i
\(846\) 0 0
\(847\) 2.10248i 0.0722422i
\(848\) −37.4048 + 4.76671i −1.28449 + 0.163690i
\(849\) 0 0
\(850\) 2.96289 + 1.11866i 0.101626 + 0.0383698i
\(851\) −72.0599 −2.47018
\(852\) 0 0
\(853\) −1.95096 −0.0667994 −0.0333997 0.999442i \(-0.510633\pi\)
−0.0333997 + 0.999442i \(0.510633\pi\)
\(854\) −4.25201 1.60538i −0.145501 0.0549349i
\(855\) 0 0
\(856\) −45.7275 + 24.2593i −1.56293 + 0.829166i
\(857\) 13.0233i 0.444868i −0.974948 0.222434i \(-0.928600\pi\)
0.974948 0.222434i \(-0.0714002\pi\)
\(858\) 0 0
\(859\) 4.04184i 0.137906i −0.997620 0.0689530i \(-0.978034\pi\)
0.997620 0.0689530i \(-0.0219658\pi\)
\(860\) −6.48381 5.70997i −0.221096 0.194709i
\(861\) 0 0
\(862\) 6.28489 16.6462i 0.214064 0.566972i
\(863\) 10.6258 0.361705 0.180853 0.983510i \(-0.442114\pi\)
0.180853 + 0.983510i \(0.442114\pi\)
\(864\) 0 0
\(865\) 15.4106 0.523978
\(866\) 5.86611 15.5370i 0.199338 0.527969i
\(867\) 0 0
\(868\) −5.94643 5.23673i −0.201835 0.177746i
\(869\) 11.4722i 0.389168i
\(870\) 0 0
\(871\) 73.2281i 2.48124i
\(872\) −25.6327 + 13.5986i −0.868034 + 0.460508i
\(873\) 0 0
\(874\) 23.3788 + 8.82684i 0.790799 + 0.298572i
\(875\) 1.20913 0.0408761
\(876\) 0 0
\(877\) −53.1060 −1.79326 −0.896631 0.442779i \(-0.853992\pi\)
−0.896631 + 0.442779i \(0.853992\pi\)
\(878\) −2.22649 0.840628i −0.0751404 0.0283698i
\(879\) 0 0
\(880\) −12.0752 + 1.53881i −0.407055 + 0.0518734i
\(881\) 10.8244i 0.364685i −0.983235 0.182342i \(-0.941632\pi\)
0.983235 0.182342i \(-0.0583679\pi\)
\(882\) 0 0
\(883\) 21.6083i 0.727178i −0.931559 0.363589i \(-0.881551\pi\)
0.931559 0.363589i \(-0.118449\pi\)
\(884\) −15.0349 + 17.0724i −0.505677 + 0.574208i
\(885\) 0 0
\(886\) 0.379152 1.00422i 0.0127379 0.0337376i
\(887\) 0.528051 0.0177302 0.00886511 0.999961i \(-0.497178\pi\)
0.00886511 + 0.999961i \(0.497178\pi\)
\(888\) 0 0
\(889\) −11.3805 −0.381690
\(890\) −1.19951 + 3.17703i −0.0402078 + 0.106494i
\(891\) 0 0
\(892\) 31.6537 35.9435i 1.05984 1.20348i
\(893\) 26.1486i 0.875030i
\(894\) 0 0
\(895\) 12.8229i 0.428621i
\(896\) 11.1771 7.88724i 0.373400 0.263494i
\(897\) 0 0
\(898\) −23.0977 8.72070i −0.770779 0.291013i
\(899\) −18.3273 −0.611251
\(900\) 0 0
\(901\) −21.1108 −0.703302
\(902\) 17.2118 + 6.49844i 0.573090 + 0.216374i
\(903\) 0 0
\(904\) 8.13172 + 15.3279i 0.270457 + 0.509797i
\(905\) 17.3649i 0.577227i
\(906\) 0 0
\(907\) 47.3294i 1.57155i 0.618515 + 0.785773i \(0.287735\pi\)
−0.618515 + 0.785773i \(0.712265\pi\)
\(908\) −10.3859 9.14635i −0.344668 0.303532i
\(909\) 0 0
\(910\) −3.06779 + 8.12537i −0.101696 + 0.269353i
\(911\) −37.6319 −1.24680 −0.623401 0.781902i \(-0.714250\pi\)
−0.623401 + 0.781902i \(0.714250\pi\)
\(912\) 0 0
\(913\) −1.74177 −0.0576441
\(914\) 17.4155 46.1267i 0.576053 1.52574i
\(915\) 0 0
\(916\) 22.9896 + 20.2458i 0.759596 + 0.668939i
\(917\) 2.57860i 0.0851528i
\(918\) 0 0
\(919\) 42.9157i 1.41566i 0.706383 + 0.707830i \(0.250326\pi\)
−0.706383 + 0.707830i \(0.749674\pi\)
\(920\) −9.22758 17.3935i −0.304224 0.573447i
\(921\) 0 0
\(922\) 41.3871 + 15.6260i 1.36301 + 0.514615i
\(923\) −17.7417 −0.583974
\(924\) 0 0
\(925\) 10.3514 0.340353
\(926\) −13.6046 5.13652i −0.447075 0.168797i
\(927\) 0 0
\(928\) 7.34464 30.7771i 0.241100 1.01031i
\(929\) 29.0533i 0.953209i 0.879118 + 0.476605i \(0.158133\pi\)
−0.879118 + 0.476605i \(0.841867\pi\)
\(930\) 0 0
\(931\) 14.0574i 0.460712i
\(932\) 8.73781 9.92198i 0.286216 0.325005i
\(933\) 0 0
\(934\) −1.45156 + 3.84459i −0.0474963 + 0.125799i
\(935\) −6.81509 −0.222877
\(936\) 0 0
\(937\) 51.0143 1.66656 0.833282 0.552848i \(-0.186459\pi\)
0.833282 + 0.552848i \(0.186459\pi\)
\(938\) −8.70801 + 23.0641i −0.284326 + 0.753068i
\(939\) 0 0
\(940\) −13.6165 + 15.4618i −0.444121 + 0.504310i
\(941\) 8.71487i 0.284097i 0.989860 + 0.142048i \(0.0453688\pi\)
−0.989860 + 0.142048i \(0.954631\pi\)
\(942\) 0 0
\(943\) 29.7583i 0.969065i
\(944\) 4.51382 + 35.4203i 0.146912 + 1.15283i
\(945\) 0 0
\(946\) 17.3931 + 6.56689i 0.565498 + 0.213508i
\(947\) −38.1607 −1.24006 −0.620028 0.784580i \(-0.712879\pi\)
−0.620028 + 0.784580i \(0.712879\pi\)
\(948\) 0 0
\(949\) −25.9064 −0.840957
\(950\) −3.35837 1.26798i −0.108960 0.0411387i
\(951\) 0 0
\(952\) 6.76560 3.58928i 0.219274 0.116329i
\(953\) 40.4395i 1.30996i 0.755645 + 0.654982i \(0.227324\pi\)
−0.755645 + 0.654982i \(0.772676\pi\)
\(954\) 0 0
\(955\) 17.8286i 0.576920i
\(956\) 12.3395 + 10.8668i 0.399089 + 0.351458i
\(957\) 0 0
\(958\) 9.41884 24.9468i 0.304309 0.805994i
\(959\) −19.9348 −0.643728
\(960\) 0 0
\(961\) 20.2641 0.653680
\(962\) −26.2636 + 69.5617i −0.846771 + 2.24276i
\(963\) 0 0
\(964\) −21.9371 19.3189i −0.706546 0.622220i
\(965\) 4.88362i 0.157209i
\(966\) 0 0
\(967\) 16.8302i 0.541224i −0.962689 0.270612i \(-0.912774\pi\)
0.962689 0.270612i \(-0.0872260\pi\)
\(968\) −4.34463 + 2.30491i −0.139642 + 0.0740826i
\(969\) 0 0
\(970\) −15.4151 5.82007i −0.494947 0.186871i
\(971\) 34.0951 1.09416 0.547082 0.837079i \(-0.315738\pi\)
0.547082 + 0.837079i \(0.315738\pi\)
\(972\) 0 0
\(973\) −24.3044 −0.779163
\(974\) 15.3072 + 5.77934i 0.490474 + 0.185182i
\(975\) 0 0
\(976\) −1.34399 10.5464i −0.0430201 0.337583i
\(977\) 0.863887i 0.0276382i 0.999905 + 0.0138191i \(0.00439889\pi\)
−0.999905 + 0.0138191i \(0.995601\pi\)
\(978\) 0 0
\(979\) 7.30764i 0.233553i
\(980\) −7.32017 + 8.31222i −0.233834 + 0.265524i
\(981\) 0 0
\(982\) −0.746913 + 1.97828i −0.0238349 + 0.0631293i
\(983\) 36.8214 1.17442 0.587209 0.809435i \(-0.300226\pi\)
0.587209 + 0.809435i \(0.300226\pi\)
\(984\) 0 0
\(985\) 16.8173 0.535842
\(986\) 6.25719 16.5728i 0.199269 0.527786i
\(987\) 0 0
\(988\) 17.0417 19.3512i 0.542168 0.615644i
\(989\) 30.0718i 0.956227i
\(990\) 0 0
\(991\) 35.9773i 1.14286i 0.820652 + 0.571428i \(0.193610\pi\)
−0.820652 + 0.571428i \(0.806390\pi\)
\(992\) 4.30239 18.0288i 0.136601 0.572416i
\(993\) 0 0
\(994\) 5.58795 + 2.10977i 0.177239 + 0.0669179i
\(995\) −5.91492 −0.187515
\(996\) 0 0
\(997\) −33.4645 −1.05983 −0.529915 0.848051i \(-0.677776\pi\)
−0.529915 + 0.848051i \(0.677776\pi\)
\(998\) −41.6478 15.7244i −1.31834 0.497748i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.e.b.971.18 48
3.2 odd 2 inner 1620.2.e.b.971.31 48
4.3 odd 2 inner 1620.2.e.b.971.32 48
9.2 odd 6 180.2.q.a.131.1 yes 48
9.4 even 3 180.2.q.a.11.8 yes 48
9.5 odd 6 540.2.q.a.251.17 48
9.7 even 3 540.2.q.a.71.24 48
12.11 even 2 inner 1620.2.e.b.971.17 48
36.7 odd 6 540.2.q.a.71.17 48
36.11 even 6 180.2.q.a.131.8 yes 48
36.23 even 6 540.2.q.a.251.24 48
36.31 odd 6 180.2.q.a.11.1 48
45.2 even 12 900.2.o.b.599.11 48
45.4 even 6 900.2.r.f.551.17 48
45.13 odd 12 900.2.o.b.299.6 48
45.22 odd 12 900.2.o.c.299.19 48
45.29 odd 6 900.2.r.f.851.24 48
45.38 even 12 900.2.o.c.599.14 48
180.47 odd 12 900.2.o.b.599.6 48
180.67 even 12 900.2.o.c.299.14 48
180.83 odd 12 900.2.o.c.599.19 48
180.103 even 12 900.2.o.b.299.11 48
180.119 even 6 900.2.r.f.851.17 48
180.139 odd 6 900.2.r.f.551.24 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.1 48 36.31 odd 6
180.2.q.a.11.8 yes 48 9.4 even 3
180.2.q.a.131.1 yes 48 9.2 odd 6
180.2.q.a.131.8 yes 48 36.11 even 6
540.2.q.a.71.17 48 36.7 odd 6
540.2.q.a.71.24 48 9.7 even 3
540.2.q.a.251.17 48 9.5 odd 6
540.2.q.a.251.24 48 36.23 even 6
900.2.o.b.299.6 48 45.13 odd 12
900.2.o.b.299.11 48 180.103 even 12
900.2.o.b.599.6 48 180.47 odd 12
900.2.o.b.599.11 48 45.2 even 12
900.2.o.c.299.14 48 180.67 even 12
900.2.o.c.299.19 48 45.22 odd 12
900.2.o.c.599.14 48 45.38 even 12
900.2.o.c.599.19 48 180.83 odd 12
900.2.r.f.551.17 48 45.4 even 6
900.2.r.f.551.24 48 180.139 odd 6
900.2.r.f.851.17 48 180.119 even 6
900.2.r.f.851.24 48 45.29 odd 6
1620.2.e.b.971.17 48 12.11 even 2 inner
1620.2.e.b.971.18 48 1.1 even 1 trivial
1620.2.e.b.971.31 48 3.2 odd 2 inner
1620.2.e.b.971.32 48 4.3 odd 2 inner