Properties

Label 900.2.o.c.299.19
Level $900$
Weight $2$
Character 900.299
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(299,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.299"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,6,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 299.19
Character \(\chi\) \(=\) 900.299
Dual form 900.2.o.c.599.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.09413 - 0.896034i) q^{2} +(0.654027 - 1.60382i) q^{3} +(0.394247 - 1.96076i) q^{4} +(-0.721488 - 2.34082i) q^{6} +(-0.604565 + 1.04714i) q^{7} +(-1.32555 - 2.49858i) q^{8} +(-2.14450 - 2.09789i) q^{9} +(1.52161 - 2.63550i) q^{11} +(-2.88686 - 1.91469i) q^{12} +(4.39869 - 2.53958i) q^{13} +(0.276797 + 1.68742i) q^{14} +(-3.68914 - 1.54605i) q^{16} -2.23944 q^{17} +(-4.22614 - 0.373823i) q^{18} +2.53835i q^{19} +(1.28402 + 1.65447i) q^{21} +(-0.696660 - 4.24700i) q^{22} +(-6.02870 + 3.48067i) q^{23} +(-4.87423 + 0.491800i) q^{24} +(2.53719 - 6.72001i) q^{26} +(-4.76720 + 2.06732i) q^{27} +(1.81484 + 1.59824i) q^{28} +(4.84407 + 2.79673i) q^{29} +(2.83759 - 1.63828i) q^{31} +(-5.42171 + 1.61401i) q^{32} +(-3.23171 - 4.16408i) q^{33} +(-2.45024 + 2.00661i) q^{34} +(-4.95891 + 3.37775i) q^{36} -10.3514i q^{37} +(2.27445 + 2.77729i) q^{38} +(-1.19618 - 8.71567i) q^{39} +(3.70208 - 2.13740i) q^{41} +(2.88735 + 0.659684i) q^{42} +(-2.15991 + 3.74108i) q^{43} +(-4.56769 - 4.02254i) q^{44} +(-3.47739 + 9.21023i) q^{46} +(-8.92129 - 5.15071i) q^{47} +(-4.89238 + 4.90557i) q^{48} +(2.76900 + 4.79605i) q^{49} +(-1.46465 + 3.59166i) q^{51} +(-3.24534 - 9.62598i) q^{52} +9.42683 q^{53} +(-3.36356 + 6.53349i) q^{54} +(3.41774 + 0.122528i) q^{56} +(4.07106 + 1.66015i) q^{57} +(7.80601 - 1.28047i) q^{58} +(4.46335 + 7.73074i) q^{59} +(1.32896 - 2.30183i) q^{61} +(1.63674 - 4.33508i) q^{62} +(3.49327 - 0.977274i) q^{63} +(-4.48585 + 6.62398i) q^{64} +(-7.26707 - 1.66033i) q^{66} +(7.20867 + 12.4858i) q^{67} +(-0.882891 + 4.39099i) q^{68} +(1.63945 + 11.9454i) q^{69} +3.49303 q^{71} +(-2.39912 + 8.13906i) q^{72} -5.10052i q^{73} +(-9.27523 - 11.3258i) q^{74} +(4.97709 + 1.00074i) q^{76} +(1.83982 + 3.18667i) q^{77} +(-9.11832 - 8.46427i) q^{78} +(3.26472 + 1.88488i) q^{79} +(0.197735 + 8.99783i) q^{81} +(2.13538 - 5.65579i) q^{82} +(0.495665 + 0.286172i) q^{83} +(3.75024 - 1.86538i) q^{84} +(0.988904 + 6.02859i) q^{86} +(7.65361 - 5.93990i) q^{87} +(-8.60199 - 0.308386i) q^{88} -2.40129i q^{89} +6.14138i q^{91} +(4.44795 + 13.1931i) q^{92} +(-0.771656 - 5.62248i) q^{93} +(-14.3763 + 2.35822i) q^{94} +(-0.957353 + 9.75108i) q^{96} +(10.0902 + 5.82556i) q^{97} +(7.32708 + 2.76639i) q^{98} +(-8.79207 + 2.45966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{6} + 12 q^{8} - 4 q^{9} + 28 q^{12} + 30 q^{14} - 18 q^{18} - 4 q^{21} - 42 q^{22} + 28 q^{24} + 12 q^{29} - 48 q^{33} + 6 q^{34} + 42 q^{36} - 6 q^{38} - 60 q^{41} + 16 q^{42} - 12 q^{46} - 74 q^{48}+ \cdots + 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.09413 0.896034i 0.773668 0.633592i
\(3\) 0.654027 1.60382i 0.377603 0.925968i
\(4\) 0.394247 1.96076i 0.197124 0.980379i
\(5\) 0 0
\(6\) −0.721488 2.34082i −0.294546 0.955637i
\(7\) −0.604565 + 1.04714i −0.228504 + 0.395781i −0.957365 0.288881i \(-0.906717\pi\)
0.728861 + 0.684662i \(0.240050\pi\)
\(8\) −1.32555 2.49858i −0.468651 0.883383i
\(9\) −2.14450 2.09789i −0.714832 0.699296i
\(10\) 0 0
\(11\) 1.52161 2.63550i 0.458782 0.794634i −0.540115 0.841591i \(-0.681619\pi\)
0.998897 + 0.0469575i \(0.0149525\pi\)
\(12\) −2.88686 1.91469i −0.833365 0.552724i
\(13\) 4.39869 2.53958i 1.21998 0.704354i 0.255064 0.966924i \(-0.417904\pi\)
0.964913 + 0.262570i \(0.0845702\pi\)
\(14\) 0.276797 + 1.68742i 0.0739771 + 0.450981i
\(15\) 0 0
\(16\) −3.68914 1.54605i −0.922285 0.386512i
\(17\) −2.23944 −0.543143 −0.271572 0.962418i \(-0.587543\pi\)
−0.271572 + 0.962418i \(0.587543\pi\)
\(18\) −4.22614 0.373823i −0.996111 0.0881110i
\(19\) 2.53835i 0.582337i 0.956672 + 0.291169i \(0.0940441\pi\)
−0.956672 + 0.291169i \(0.905956\pi\)
\(20\) 0 0
\(21\) 1.28402 + 1.65447i 0.280197 + 0.361035i
\(22\) −0.696660 4.24700i −0.148528 0.905463i
\(23\) −6.02870 + 3.48067i −1.25707 + 0.725770i −0.972504 0.232886i \(-0.925183\pi\)
−0.284567 + 0.958656i \(0.591850\pi\)
\(24\) −4.87423 + 0.491800i −0.994948 + 0.100388i
\(25\) 0 0
\(26\) 2.53719 6.72001i 0.497584 1.31790i
\(27\) −4.76720 + 2.06732i −0.917448 + 0.397856i
\(28\) 1.81484 + 1.59824i 0.342972 + 0.302038i
\(29\) 4.84407 + 2.79673i 0.899521 + 0.519339i 0.877045 0.480408i \(-0.159512\pi\)
0.0224766 + 0.999747i \(0.492845\pi\)
\(30\) 0 0
\(31\) 2.83759 1.63828i 0.509647 0.294245i −0.223042 0.974809i \(-0.571599\pi\)
0.732688 + 0.680564i \(0.238265\pi\)
\(32\) −5.42171 + 1.61401i −0.958432 + 0.285320i
\(33\) −3.23171 4.16408i −0.562568 0.724873i
\(34\) −2.45024 + 2.00661i −0.420212 + 0.344131i
\(35\) 0 0
\(36\) −4.95891 + 3.37775i −0.826485 + 0.562959i
\(37\) 10.3514i 1.70176i −0.525356 0.850882i \(-0.676068\pi\)
0.525356 0.850882i \(-0.323932\pi\)
\(38\) 2.27445 + 2.77729i 0.368964 + 0.450536i
\(39\) −1.19618 8.71567i −0.191542 1.39562i
\(40\) 0 0
\(41\) 3.70208 2.13740i 0.578168 0.333806i −0.182237 0.983255i \(-0.558334\pi\)
0.760405 + 0.649449i \(0.225000\pi\)
\(42\) 2.88735 + 0.659684i 0.445528 + 0.101791i
\(43\) −2.15991 + 3.74108i −0.329384 + 0.570509i −0.982390 0.186844i \(-0.940174\pi\)
0.653006 + 0.757353i \(0.273508\pi\)
\(44\) −4.56769 4.02254i −0.688605 0.606421i
\(45\) 0 0
\(46\) −3.47739 + 9.21023i −0.512713 + 1.35797i
\(47\) −8.92129 5.15071i −1.30130 0.751308i −0.320677 0.947189i \(-0.603910\pi\)
−0.980628 + 0.195880i \(0.937244\pi\)
\(48\) −4.89238 + 4.90557i −0.706154 + 0.708058i
\(49\) 2.76900 + 4.79605i 0.395572 + 0.685150i
\(50\) 0 0
\(51\) −1.46465 + 3.59166i −0.205092 + 0.502933i
\(52\) −3.24534 9.62598i −0.450047 1.33488i
\(53\) 9.42683 1.29487 0.647437 0.762119i \(-0.275841\pi\)
0.647437 + 0.762119i \(0.275841\pi\)
\(54\) −3.36356 + 6.53349i −0.457722 + 0.889095i
\(55\) 0 0
\(56\) 3.41774 + 0.122528i 0.456715 + 0.0163735i
\(57\) 4.07106 + 1.66015i 0.539226 + 0.219892i
\(58\) 7.80601 1.28047i 1.02498 0.168133i
\(59\) 4.46335 + 7.73074i 0.581078 + 1.00646i 0.995352 + 0.0963045i \(0.0307023\pi\)
−0.414274 + 0.910152i \(0.635964\pi\)
\(60\) 0 0
\(61\) 1.32896 2.30183i 0.170156 0.294720i −0.768318 0.640068i \(-0.778906\pi\)
0.938474 + 0.345349i \(0.112239\pi\)
\(62\) 1.63674 4.33508i 0.207866 0.550555i
\(63\) 3.49327 0.977274i 0.440110 0.123125i
\(64\) −4.48585 + 6.62398i −0.560732 + 0.827998i
\(65\) 0 0
\(66\) −7.26707 1.66033i −0.894514 0.204373i
\(67\) 7.20867 + 12.4858i 0.880679 + 1.52538i 0.850588 + 0.525833i \(0.176246\pi\)
0.0300911 + 0.999547i \(0.490420\pi\)
\(68\) −0.882891 + 4.39099i −0.107066 + 0.532486i
\(69\) 1.63945 + 11.9454i 0.197366 + 1.43806i
\(70\) 0 0
\(71\) 3.49303 0.414546 0.207273 0.978283i \(-0.433541\pi\)
0.207273 + 0.978283i \(0.433541\pi\)
\(72\) −2.39912 + 8.13906i −0.282739 + 0.959197i
\(73\) 5.10052i 0.596970i −0.954414 0.298485i \(-0.903519\pi\)
0.954414 0.298485i \(-0.0964813\pi\)
\(74\) −9.27523 11.3258i −1.07822 1.31660i
\(75\) 0 0
\(76\) 4.97709 + 1.00074i 0.570911 + 0.114792i
\(77\) 1.83982 + 3.18667i 0.209667 + 0.363154i
\(78\) −9.11832 8.46427i −1.03245 0.958390i
\(79\) 3.26472 + 1.88488i 0.367309 + 0.212066i 0.672282 0.740295i \(-0.265314\pi\)
−0.304973 + 0.952361i \(0.598647\pi\)
\(80\) 0 0
\(81\) 0.197735 + 8.99783i 0.0219706 + 0.999759i
\(82\) 2.13538 5.65579i 0.235814 0.624577i
\(83\) 0.495665 + 0.286172i 0.0544063 + 0.0314115i 0.526956 0.849892i \(-0.323333\pi\)
−0.472550 + 0.881304i \(0.656666\pi\)
\(84\) 3.75024 1.86538i 0.409185 0.203530i
\(85\) 0 0
\(86\) 0.988904 + 6.02859i 0.106636 + 0.650079i
\(87\) 7.65361 5.93990i 0.820553 0.636824i
\(88\) −8.60199 0.308386i −0.916975 0.0328741i
\(89\) 2.40129i 0.254536i −0.991868 0.127268i \(-0.959379\pi\)
0.991868 0.127268i \(-0.0406208\pi\)
\(90\) 0 0
\(91\) 6.14138i 0.643791i
\(92\) 4.44795 + 13.1931i 0.463731 + 1.37547i
\(93\) −0.771656 5.62248i −0.0800170 0.583024i
\(94\) −14.3763 + 2.35822i −1.48280 + 0.243232i
\(95\) 0 0
\(96\) −0.957353 + 9.75108i −0.0977094 + 0.995215i
\(97\) 10.0902 + 5.82556i 1.02450 + 0.591496i 0.915404 0.402535i \(-0.131871\pi\)
0.109096 + 0.994031i \(0.465204\pi\)
\(98\) 7.32708 + 2.76639i 0.740146 + 0.279448i
\(99\) −8.79207 + 2.45966i −0.883636 + 0.247206i
\(100\) 0 0
\(101\) −4.13758 2.38883i −0.411704 0.237698i 0.279818 0.960053i \(-0.409726\pi\)
−0.691522 + 0.722356i \(0.743059\pi\)
\(102\) 1.61573 + 5.24213i 0.159981 + 0.519048i
\(103\) −4.72945 8.19166i −0.466007 0.807148i 0.533239 0.845964i \(-0.320975\pi\)
−0.999246 + 0.0388166i \(0.987641\pi\)
\(104\) −12.1760 7.62416i −1.19396 0.747610i
\(105\) 0 0
\(106\) 10.3142 8.44676i 1.00180 0.820422i
\(107\) 18.3014i 1.76926i −0.466294 0.884630i \(-0.654411\pi\)
0.466294 0.884630i \(-0.345589\pi\)
\(108\) 2.17405 + 10.1624i 0.209199 + 0.977873i
\(109\) 10.2589 0.982625 0.491312 0.870983i \(-0.336517\pi\)
0.491312 + 0.870983i \(0.336517\pi\)
\(110\) 0 0
\(111\) −16.6019 6.77012i −1.57578 0.642591i
\(112\) 3.84925 2.92835i 0.363720 0.276703i
\(113\) −3.06731 5.31273i −0.288548 0.499780i 0.684915 0.728623i \(-0.259839\pi\)
−0.973463 + 0.228843i \(0.926506\pi\)
\(114\) 5.94183 1.83139i 0.556503 0.171525i
\(115\) 0 0
\(116\) 7.39346 8.39545i 0.686466 0.779498i
\(117\) −14.7607 3.78182i −1.36463 0.349630i
\(118\) 11.8105 + 4.45914i 1.08724 + 0.410497i
\(119\) 1.35389 2.34500i 0.124110 0.214966i
\(120\) 0 0
\(121\) 0.869419 + 1.50588i 0.0790381 + 0.136898i
\(122\) −0.608459 3.70930i −0.0550873 0.335825i
\(123\) −1.00675 7.33540i −0.0907753 0.661411i
\(124\) −2.09357 6.20972i −0.188008 0.557649i
\(125\) 0 0
\(126\) 2.94642 4.19935i 0.262488 0.374108i
\(127\) 9.41213 0.835192 0.417596 0.908633i \(-0.362873\pi\)
0.417596 + 0.908633i \(0.362873\pi\)
\(128\) 1.02720 + 11.2670i 0.0907922 + 0.995870i
\(129\) 4.58739 + 5.91088i 0.403897 + 0.520424i
\(130\) 0 0
\(131\) 1.06630 + 1.84689i 0.0931633 + 0.161364i 0.908841 0.417144i \(-0.136969\pi\)
−0.815677 + 0.578507i \(0.803635\pi\)
\(132\) −9.43884 + 4.69492i −0.821546 + 0.408640i
\(133\) −2.65800 1.53460i −0.230478 0.133067i
\(134\) 19.0749 + 7.20187i 1.64782 + 0.622147i
\(135\) 0 0
\(136\) 2.96848 + 5.59542i 0.254545 + 0.479803i
\(137\) −8.24344 + 14.2781i −0.704285 + 1.21986i 0.262665 + 0.964887i \(0.415399\pi\)
−0.966949 + 0.254969i \(0.917935\pi\)
\(138\) 12.4973 + 11.6009i 1.06384 + 0.987531i
\(139\) 17.4077 10.0504i 1.47650 0.852460i 0.476856 0.878981i \(-0.341776\pi\)
0.999648 + 0.0265213i \(0.00844298\pi\)
\(140\) 0 0
\(141\) −14.0956 + 10.9395i −1.18706 + 0.921270i
\(142\) 3.82183 3.12987i 0.320721 0.262653i
\(143\) 15.4570i 1.29258i
\(144\) 4.66792 + 11.0549i 0.388993 + 0.921241i
\(145\) 0 0
\(146\) −4.57023 5.58064i −0.378235 0.461857i
\(147\) 9.50302 1.30424i 0.783796 0.107572i
\(148\) −20.2966 4.08102i −1.66837 0.335458i
\(149\) −1.63133 + 0.941851i −0.133644 + 0.0771594i −0.565331 0.824864i \(-0.691252\pi\)
0.431687 + 0.902023i \(0.357918\pi\)
\(150\) 0 0
\(151\) 5.35919 + 3.09413i 0.436124 + 0.251796i 0.701952 0.712224i \(-0.252312\pi\)
−0.265828 + 0.964020i \(0.585645\pi\)
\(152\) 6.34228 3.36470i 0.514427 0.272913i
\(153\) 4.80246 + 4.69809i 0.388256 + 0.379818i
\(154\) 4.86837 + 1.83809i 0.392304 + 0.148117i
\(155\) 0 0
\(156\) −17.5609 1.09071i −1.40600 0.0873265i
\(157\) −1.90546 + 1.10012i −0.152073 + 0.0877991i −0.574105 0.818781i \(-0.694650\pi\)
0.422033 + 0.906581i \(0.361317\pi\)
\(158\) 5.26095 0.862984i 0.418539 0.0686553i
\(159\) 6.16540 15.1190i 0.488948 1.19901i
\(160\) 0 0
\(161\) 8.41717i 0.663366i
\(162\) 8.27871 + 9.66763i 0.650436 + 0.759561i
\(163\) 15.3649 1.20347 0.601737 0.798694i \(-0.294475\pi\)
0.601737 + 0.798694i \(0.294475\pi\)
\(164\) −2.73138 8.10155i −0.213285 0.632625i
\(165\) 0 0
\(166\) 0.798742 0.131022i 0.0619944 0.0101693i
\(167\) −19.2472 + 11.1124i −1.48939 + 0.859901i −0.999927 0.0121218i \(-0.996141\pi\)
−0.489465 + 0.872023i \(0.662808\pi\)
\(168\) 2.43181 5.40132i 0.187618 0.416721i
\(169\) 6.39897 11.0833i 0.492229 0.852565i
\(170\) 0 0
\(171\) 5.32517 5.44348i 0.407226 0.416274i
\(172\) 6.48381 + 5.70997i 0.494386 + 0.435381i
\(173\) −7.70532 + 13.3460i −0.585825 + 1.01468i 0.408947 + 0.912558i \(0.365896\pi\)
−0.994772 + 0.102120i \(0.967437\pi\)
\(174\) 3.05170 13.3569i 0.231349 1.01259i
\(175\) 0 0
\(176\) −9.68803 + 7.37026i −0.730263 + 0.555554i
\(177\) 15.3179 2.10230i 1.15136 0.158019i
\(178\) −2.15164 2.62733i −0.161272 0.196926i
\(179\) −12.8229 −0.958425 −0.479212 0.877699i \(-0.659078\pi\)
−0.479212 + 0.877699i \(0.659078\pi\)
\(180\) 0 0
\(181\) 17.3649 1.29072 0.645360 0.763879i \(-0.276707\pi\)
0.645360 + 0.763879i \(0.276707\pi\)
\(182\) 5.50288 + 6.71947i 0.407901 + 0.498081i
\(183\) −2.82255 3.63688i −0.208649 0.268846i
\(184\) 16.6881 + 10.4494i 1.23026 + 0.770342i
\(185\) 0 0
\(186\) −5.88222 5.46030i −0.431306 0.400369i
\(187\) −3.40754 + 5.90204i −0.249184 + 0.431600i
\(188\) −13.6165 + 15.4618i −0.993085 + 1.12767i
\(189\) 0.717316 6.24174i 0.0521771 0.454020i
\(190\) 0 0
\(191\) 8.91431 15.4400i 0.645017 1.11720i −0.339281 0.940685i \(-0.610184\pi\)
0.984298 0.176516i \(-0.0564829\pi\)
\(192\) 7.68982 + 11.5268i 0.554965 + 0.831874i
\(193\) 4.22934 2.44181i 0.304434 0.175765i −0.339999 0.940426i \(-0.610427\pi\)
0.644433 + 0.764661i \(0.277093\pi\)
\(194\) 16.2599 2.66720i 1.16739 0.191494i
\(195\) 0 0
\(196\) 10.4956 3.53851i 0.749683 0.252751i
\(197\) −16.8173 −1.19818 −0.599090 0.800682i \(-0.704471\pi\)
−0.599090 + 0.800682i \(0.704471\pi\)
\(198\) −7.41574 + 10.5692i −0.527014 + 0.751119i
\(199\) 5.91492i 0.419297i 0.977777 + 0.209649i \(0.0672320\pi\)
−0.977777 + 0.209649i \(0.932768\pi\)
\(200\) 0 0
\(201\) 24.7396 3.39539i 1.74500 0.239492i
\(202\) −6.66752 + 1.09371i −0.469125 + 0.0769534i
\(203\) −5.85712 + 3.38161i −0.411089 + 0.237342i
\(204\) 6.46494 + 4.28783i 0.452636 + 0.300208i
\(205\) 0 0
\(206\) −12.5146 4.72500i −0.871937 0.329206i
\(207\) 20.2306 + 5.18325i 1.40612 + 0.360260i
\(208\) −20.1537 + 2.56830i −1.39741 + 0.178080i
\(209\) 6.68983 + 3.86237i 0.462745 + 0.267166i
\(210\) 0 0
\(211\) −23.9485 + 13.8267i −1.64868 + 0.951868i −0.671089 + 0.741377i \(0.734173\pi\)
−0.977596 + 0.210491i \(0.932494\pi\)
\(212\) 3.71650 18.4837i 0.255250 1.26947i
\(213\) 2.28453 5.60220i 0.156534 0.383856i
\(214\) −16.3986 20.0241i −1.12099 1.36882i
\(215\) 0 0
\(216\) 11.4845 + 9.17093i 0.781422 + 0.624003i
\(217\) 3.96180i 0.268945i
\(218\) 11.2246 9.19232i 0.760225 0.622583i
\(219\) −8.18033 3.33588i −0.552775 0.225418i
\(220\) 0 0
\(221\) −9.85058 + 5.68724i −0.662622 + 0.382565i
\(222\) −24.2309 + 7.46843i −1.62627 + 0.501248i
\(223\) −11.9737 + 20.7390i −0.801815 + 1.38878i 0.116605 + 0.993178i \(0.462799\pi\)
−0.918420 + 0.395606i \(0.870535\pi\)
\(224\) 1.58768 6.65306i 0.106082 0.444526i
\(225\) 0 0
\(226\) −8.11643 3.06442i −0.539897 0.203842i
\(227\) −5.99253 3.45979i −0.397739 0.229634i 0.287769 0.957700i \(-0.407086\pi\)
−0.685508 + 0.728065i \(0.740420\pi\)
\(228\) 4.86016 7.32786i 0.321872 0.485299i
\(229\) −7.65837 13.2647i −0.506080 0.876556i −0.999975 0.00703439i \(-0.997761\pi\)
0.493896 0.869521i \(-0.335572\pi\)
\(230\) 0 0
\(231\) 6.31414 0.866584i 0.415440 0.0570170i
\(232\) 0.566816 15.8105i 0.0372133 1.03801i
\(233\) 6.61050 0.433068 0.216534 0.976275i \(-0.430525\pi\)
0.216534 + 0.976275i \(0.430525\pi\)
\(234\) −19.5388 + 9.08830i −1.27729 + 0.594121i
\(235\) 0 0
\(236\) 16.9178 5.70371i 1.10125 0.371280i
\(237\) 5.15823 4.00326i 0.335063 0.260040i
\(238\) −0.619869 3.77886i −0.0401801 0.244947i
\(239\) −4.11060 7.11976i −0.265892 0.460539i 0.701905 0.712271i \(-0.252333\pi\)
−0.967797 + 0.251732i \(0.919000\pi\)
\(240\) 0 0
\(241\) −7.30777 + 12.6574i −0.470735 + 0.815337i −0.999440 0.0334691i \(-0.989344\pi\)
0.528705 + 0.848806i \(0.322678\pi\)
\(242\) 2.30058 + 0.868600i 0.147887 + 0.0558357i
\(243\) 14.5602 + 5.56769i 0.934040 + 0.357168i
\(244\) −3.98940 3.51327i −0.255395 0.224914i
\(245\) 0 0
\(246\) −7.67428 7.12382i −0.489294 0.454198i
\(247\) 6.44635 + 11.1654i 0.410172 + 0.710438i
\(248\) −7.85475 4.91834i −0.498777 0.312315i
\(249\) 0.783148 0.607794i 0.0496300 0.0385174i
\(250\) 0 0
\(251\) 2.39191 0.150976 0.0754880 0.997147i \(-0.475949\pi\)
0.0754880 + 0.997147i \(0.475949\pi\)
\(252\) −0.538987 7.23473i −0.0339530 0.455745i
\(253\) 21.1849i 1.33188i
\(254\) 10.2981 8.43359i 0.646161 0.529170i
\(255\) 0 0
\(256\) 11.2195 + 11.4072i 0.701218 + 0.712947i
\(257\) 4.22474 + 7.31747i 0.263532 + 0.456451i 0.967178 0.254100i \(-0.0817791\pi\)
−0.703646 + 0.710551i \(0.748446\pi\)
\(258\) 10.3156 + 2.35683i 0.642218 + 0.146730i
\(259\) 10.8394 + 6.25812i 0.673526 + 0.388860i
\(260\) 0 0
\(261\) −4.52088 16.1599i −0.279835 1.00027i
\(262\) 2.82155 + 1.06530i 0.174316 + 0.0658143i
\(263\) 5.59733 + 3.23162i 0.345146 + 0.199270i 0.662545 0.749022i \(-0.269476\pi\)
−0.317399 + 0.948292i \(0.602810\pi\)
\(264\) −6.12053 + 13.5944i −0.376693 + 0.836676i
\(265\) 0 0
\(266\) −4.28326 + 0.702607i −0.262623 + 0.0430796i
\(267\) −3.85124 1.57051i −0.235692 0.0961135i
\(268\) 27.3236 9.21196i 1.66905 0.562710i
\(269\) 6.14888i 0.374904i 0.982274 + 0.187452i \(0.0600229\pi\)
−0.982274 + 0.187452i \(0.939977\pi\)
\(270\) 0 0
\(271\) 0.446839i 0.0271436i −0.999908 0.0135718i \(-0.995680\pi\)
0.999908 0.0135718i \(-0.00432016\pi\)
\(272\) 8.26159 + 3.46227i 0.500932 + 0.209931i
\(273\) 9.84968 + 4.01663i 0.596130 + 0.243097i
\(274\) 3.77421 + 23.0085i 0.228009 + 1.38999i
\(275\) 0 0
\(276\) 24.0684 + 1.49489i 1.44875 + 0.0899818i
\(277\) −5.91710 3.41624i −0.355524 0.205262i 0.311592 0.950216i \(-0.399138\pi\)
−0.667115 + 0.744954i \(0.732471\pi\)
\(278\) 10.0409 26.5943i 0.602212 1.59502i
\(279\) −9.52214 2.43965i −0.570076 0.146058i
\(280\) 0 0
\(281\) −2.85059 1.64579i −0.170052 0.0981794i 0.412559 0.910931i \(-0.364635\pi\)
−0.582610 + 0.812752i \(0.697969\pi\)
\(282\) −5.62030 + 24.5993i −0.334684 + 1.46487i
\(283\) 11.7187 + 20.2974i 0.696603 + 1.20655i 0.969637 + 0.244548i \(0.0786395\pi\)
−0.273034 + 0.962004i \(0.588027\pi\)
\(284\) 1.37712 6.84898i 0.0817168 0.406412i
\(285\) 0 0
\(286\) −13.8500 16.9120i −0.818967 1.00003i
\(287\) 5.16879i 0.305104i
\(288\) 15.0129 + 7.91289i 0.884642 + 0.466272i
\(289\) −11.9849 −0.704996
\(290\) 0 0
\(291\) 15.9424 12.3728i 0.934560 0.725304i
\(292\) −10.0009 2.01086i −0.585257 0.117677i
\(293\) −13.9565 24.1734i −0.815349 1.41223i −0.909077 0.416628i \(-0.863212\pi\)
0.0937278 0.995598i \(-0.470122\pi\)
\(294\) 9.22891 9.94204i 0.538241 0.579831i
\(295\) 0 0
\(296\) −25.8639 + 13.7213i −1.50331 + 0.797535i
\(297\) −1.80539 + 15.7096i −0.104759 + 0.911564i
\(298\) −0.940963 + 2.49224i −0.0545085 + 0.144371i
\(299\) −17.6789 + 30.6208i −1.02240 + 1.77085i
\(300\) 0 0
\(301\) −2.61162 4.52345i −0.150531 0.260727i
\(302\) 8.63610 1.41663i 0.496951 0.0815178i
\(303\) −6.53735 + 5.07358i −0.375561 + 0.291470i
\(304\) 3.92441 9.36432i 0.225080 0.537081i
\(305\) 0 0
\(306\) 9.46417 + 0.837153i 0.541031 + 0.0478569i
\(307\) −22.5939 −1.28950 −0.644750 0.764393i \(-0.723039\pi\)
−0.644750 + 0.764393i \(0.723039\pi\)
\(308\) 6.97362 2.35111i 0.397359 0.133967i
\(309\) −16.2312 + 2.22764i −0.923358 + 0.126726i
\(310\) 0 0
\(311\) 2.94543 + 5.10164i 0.167020 + 0.289287i 0.937371 0.348333i \(-0.113252\pi\)
−0.770351 + 0.637620i \(0.779919\pi\)
\(312\) −20.1913 + 14.5418i −1.14310 + 0.823267i
\(313\) 6.72675 + 3.88369i 0.380218 + 0.219519i 0.677913 0.735142i \(-0.262885\pi\)
−0.297695 + 0.954661i \(0.596218\pi\)
\(314\) −1.09908 + 2.91104i −0.0620249 + 0.164279i
\(315\) 0 0
\(316\) 4.98291 5.65820i 0.280310 0.318299i
\(317\) 5.88545 10.1939i 0.330560 0.572547i −0.652062 0.758166i \(-0.726096\pi\)
0.982622 + 0.185619i \(0.0594291\pi\)
\(318\) −6.80134 22.0665i −0.381400 1.23743i
\(319\) 14.7416 8.51104i 0.825369 0.476527i
\(320\) 0 0
\(321\) −29.3522 11.9696i −1.63828 0.668077i
\(322\) −7.54207 9.20949i −0.420303 0.513225i
\(323\) 5.68447i 0.316293i
\(324\) 17.7205 + 3.15966i 0.984473 + 0.175537i
\(325\) 0 0
\(326\) 16.8113 13.7675i 0.931089 0.762511i
\(327\) 6.70960 16.4535i 0.371042 0.909879i
\(328\) −10.2478 6.41675i −0.565838 0.354306i
\(329\) 10.7870 6.22788i 0.594707 0.343354i
\(330\) 0 0
\(331\) −3.74464 2.16197i −0.205824 0.118833i 0.393545 0.919305i \(-0.371249\pi\)
−0.599369 + 0.800473i \(0.704582\pi\)
\(332\) 0.756529 0.859056i 0.0415199 0.0471468i
\(333\) −21.7161 + 22.1986i −1.19004 + 1.21648i
\(334\) −11.1019 + 29.4045i −0.607469 + 1.60894i
\(335\) 0 0
\(336\) −2.17904 8.08873i −0.118877 0.441277i
\(337\) 6.72910 3.88505i 0.366558 0.211632i −0.305396 0.952225i \(-0.598789\pi\)
0.671953 + 0.740593i \(0.265455\pi\)
\(338\) −2.92973 17.8603i −0.159357 0.971474i
\(339\) −10.5268 + 1.44475i −0.571737 + 0.0784679i
\(340\) 0 0
\(341\) 9.97131i 0.539977i
\(342\) 0.948894 10.7274i 0.0513103 0.580073i
\(343\) −15.1601 −0.818568
\(344\) 12.2105 + 0.437752i 0.658344 + 0.0236020i
\(345\) 0 0
\(346\) 3.52784 + 21.5065i 0.189658 + 1.15620i
\(347\) 9.75677 5.63307i 0.523771 0.302399i −0.214705 0.976679i \(-0.568879\pi\)
0.738476 + 0.674280i \(0.235546\pi\)
\(348\) −8.62929 17.3487i −0.462578 0.929986i
\(349\) −11.1403 + 19.2956i −0.596326 + 1.03287i 0.397032 + 0.917805i \(0.370040\pi\)
−0.993358 + 0.115063i \(0.963293\pi\)
\(350\) 0 0
\(351\) −15.7193 + 21.2002i −0.839034 + 1.13158i
\(352\) −3.99598 + 16.7448i −0.212986 + 0.892502i
\(353\) −11.0323 + 19.1084i −0.587188 + 1.01704i 0.407411 + 0.913245i \(0.366432\pi\)
−0.994599 + 0.103794i \(0.966902\pi\)
\(354\) 14.8761 16.0255i 0.790653 0.851748i
\(355\) 0 0
\(356\) −4.70835 0.946702i −0.249542 0.0501751i
\(357\) −2.87548 3.70509i −0.152187 0.196094i
\(358\) −14.0299 + 11.4897i −0.741502 + 0.607250i
\(359\) 1.70332 0.0898978 0.0449489 0.998989i \(-0.485687\pi\)
0.0449489 + 0.998989i \(0.485687\pi\)
\(360\) 0 0
\(361\) 12.5568 0.660883
\(362\) 18.9994 15.5595i 0.998588 0.817789i
\(363\) 2.98379 0.409509i 0.156608 0.0214937i
\(364\) 12.0418 + 2.42122i 0.631159 + 0.126906i
\(365\) 0 0
\(366\) −6.34702 1.45013i −0.331764 0.0757993i
\(367\) −4.71076 + 8.15927i −0.245900 + 0.425910i −0.962384 0.271692i \(-0.912417\pi\)
0.716485 + 0.697603i \(0.245750\pi\)
\(368\) 27.6220 3.52003i 1.43990 0.183494i
\(369\) −12.4231 3.18291i −0.646722 0.165696i
\(370\) 0 0
\(371\) −5.69914 + 9.87119i −0.295884 + 0.512487i
\(372\) −11.3285 0.703615i −0.587357 0.0364808i
\(373\) −12.6314 + 7.29277i −0.654031 + 0.377605i −0.789999 0.613108i \(-0.789919\pi\)
0.135968 + 0.990713i \(0.456586\pi\)
\(374\) 1.56013 + 9.51088i 0.0806721 + 0.491796i
\(375\) 0 0
\(376\) −1.04390 + 29.1181i −0.0538351 + 1.50165i
\(377\) 28.4101 1.46319
\(378\) −4.80798 7.47203i −0.247296 0.384320i
\(379\) 9.46065i 0.485961i −0.970031 0.242980i \(-0.921875\pi\)
0.970031 0.242980i \(-0.0781251\pi\)
\(380\) 0 0
\(381\) 6.15579 15.0954i 0.315371 0.773361i
\(382\) −4.08137 24.8809i −0.208821 1.27302i
\(383\) 5.94105 3.43007i 0.303573 0.175268i −0.340474 0.940254i \(-0.610587\pi\)
0.644047 + 0.764986i \(0.277254\pi\)
\(384\) 18.7421 + 5.72147i 0.956427 + 0.291973i
\(385\) 0 0
\(386\) 2.43951 6.46129i 0.124168 0.328871i
\(387\) 12.4803 3.49148i 0.634409 0.177482i
\(388\) 15.4005 17.4876i 0.781843 0.887801i
\(389\) −7.11643 4.10868i −0.360818 0.208318i 0.308622 0.951185i \(-0.400132\pi\)
−0.669439 + 0.742867i \(0.733466\pi\)
\(390\) 0 0
\(391\) 13.5009 7.79474i 0.682769 0.394197i
\(392\) 8.31290 13.2760i 0.419865 0.670538i
\(393\) 3.65948 0.502244i 0.184596 0.0253349i
\(394\) −18.4003 + 15.0688i −0.926993 + 0.759157i
\(395\) 0 0
\(396\) 1.35656 + 18.2088i 0.0681695 + 0.915028i
\(397\) 7.07936i 0.355303i −0.984093 0.177651i \(-0.943150\pi\)
0.984093 0.177651i \(-0.0568499\pi\)
\(398\) 5.29996 + 6.47170i 0.265663 + 0.324397i
\(399\) −4.19963 + 3.25930i −0.210244 + 0.163169i
\(400\) 0 0
\(401\) −15.3220 + 8.84615i −0.765143 + 0.441755i −0.831139 0.556064i \(-0.812311\pi\)
0.0659963 + 0.997820i \(0.478977\pi\)
\(402\) 24.0260 25.8826i 1.19831 1.29090i
\(403\) 8.32112 14.4126i 0.414505 0.717943i
\(404\) −6.31514 + 7.17099i −0.314190 + 0.356770i
\(405\) 0 0
\(406\) −3.37842 + 8.94810i −0.167668 + 0.444087i
\(407\) −27.2812 15.7508i −1.35228 0.780739i
\(408\) 10.9155 1.10135i 0.540399 0.0545251i
\(409\) −11.3542 19.6660i −0.561428 0.972422i −0.997372 0.0724482i \(-0.976919\pi\)
0.435944 0.899974i \(-0.356415\pi\)
\(410\) 0 0
\(411\) 17.5080 + 22.5593i 0.863608 + 1.11277i
\(412\) −17.9264 + 6.04377i −0.883171 + 0.297755i
\(413\) −10.7935 −0.531115
\(414\) 26.7793 12.4561i 1.31613 0.612186i
\(415\) 0 0
\(416\) −19.7495 + 20.8684i −0.968299 + 1.02316i
\(417\) −4.73387 34.4921i −0.231818 1.68909i
\(418\) 10.7804 1.76837i 0.527285 0.0864936i
\(419\) 13.1805 + 22.8292i 0.643908 + 1.11528i 0.984553 + 0.175089i \(0.0560212\pi\)
−0.340645 + 0.940192i \(0.610645\pi\)
\(420\) 0 0
\(421\) −8.57768 + 14.8570i −0.418050 + 0.724084i −0.995743 0.0921697i \(-0.970620\pi\)
0.577693 + 0.816254i \(0.303953\pi\)
\(422\) −13.8137 + 36.5869i −0.672438 + 1.78102i
\(423\) 8.32607 + 29.7616i 0.404828 + 1.44706i
\(424\) −12.4957 23.5537i −0.606845 1.14387i
\(425\) 0 0
\(426\) −2.52018 8.17656i −0.122103 0.396156i
\(427\) 1.60689 + 2.78322i 0.0777629 + 0.134689i
\(428\) −35.8845 7.21526i −1.73454 0.348763i
\(429\) −24.7903 10.1093i −1.19689 0.488082i
\(430\) 0 0
\(431\) −12.5816 −0.606037 −0.303018 0.952985i \(-0.597994\pi\)
−0.303018 + 0.952985i \(0.597994\pi\)
\(432\) 20.7830 0.256313i 0.999924 0.0123319i
\(433\) 11.7433i 0.564346i 0.959364 + 0.282173i \(0.0910553\pi\)
−0.959364 + 0.282173i \(0.908945\pi\)
\(434\) 3.54991 + 4.33473i 0.170401 + 0.208074i
\(435\) 0 0
\(436\) 4.04454 20.1152i 0.193698 0.963344i
\(437\) −8.83516 15.3030i −0.422643 0.732039i
\(438\) −11.9394 + 3.67996i −0.570487 + 0.175835i
\(439\) 1.45738 + 0.841421i 0.0695571 + 0.0401588i 0.534375 0.845247i \(-0.320547\pi\)
−0.464818 + 0.885406i \(0.653880\pi\)
\(440\) 0 0
\(441\) 4.12346 16.0942i 0.196355 0.766389i
\(442\) −5.68188 + 15.0490i −0.270259 + 0.715810i
\(443\) −0.657331 0.379510i −0.0312307 0.0180311i 0.484303 0.874900i \(-0.339073\pi\)
−0.515534 + 0.856869i \(0.672406\pi\)
\(444\) −19.8198 + 29.8831i −0.940606 + 1.41819i
\(445\) 0 0
\(446\) 5.48207 + 33.4200i 0.259584 + 1.58248i
\(447\) 0.443626 + 3.23237i 0.0209828 + 0.152886i
\(448\) −4.22423 8.70194i −0.199576 0.411128i
\(449\) 17.4579i 0.823887i −0.911209 0.411943i \(-0.864850\pi\)
0.911209 0.411943i \(-0.135150\pi\)
\(450\) 0 0
\(451\) 13.0091i 0.612576i
\(452\) −11.6263 + 3.91972i −0.546853 + 0.184368i
\(453\) 8.46749 6.57154i 0.397837 0.308758i
\(454\) −9.65671 + 1.58405i −0.453212 + 0.0743430i
\(455\) 0 0
\(456\) −1.24836 12.3725i −0.0584598 0.579396i
\(457\) 30.1929 + 17.4319i 1.41237 + 0.815430i 0.995611 0.0935884i \(-0.0298338\pi\)
0.416756 + 0.909019i \(0.363167\pi\)
\(458\) −20.2649 7.65116i −0.946916 0.357515i
\(459\) 10.6758 4.62963i 0.498306 0.216093i
\(460\) 0 0
\(461\) 27.0906 + 15.6407i 1.26173 + 0.728462i 0.973410 0.229071i \(-0.0735688\pi\)
0.288324 + 0.957533i \(0.406902\pi\)
\(462\) 6.13201 6.60584i 0.285287 0.307332i
\(463\) −5.14137 8.90511i −0.238940 0.413856i 0.721471 0.692445i \(-0.243466\pi\)
−0.960410 + 0.278589i \(0.910133\pi\)
\(464\) −13.5466 17.8067i −0.628884 0.826654i
\(465\) 0 0
\(466\) 7.23276 5.92323i 0.335051 0.274388i
\(467\) 2.90585i 0.134467i 0.997737 + 0.0672333i \(0.0214172\pi\)
−0.997737 + 0.0672333i \(0.978583\pi\)
\(468\) −13.2346 + 27.4512i −0.611770 + 1.26893i
\(469\) −17.4324 −0.804955
\(470\) 0 0
\(471\) 0.518173 + 3.77554i 0.0238761 + 0.173967i
\(472\) 13.3995 21.3995i 0.616764 0.984992i
\(473\) 6.57308 + 11.3849i 0.302231 + 0.523479i
\(474\) 2.05673 9.00204i 0.0944687 0.413478i
\(475\) 0 0
\(476\) −4.06421 3.57915i −0.186283 0.164050i
\(477\) −20.2158 19.7764i −0.925618 0.905501i
\(478\) −10.8771 4.10672i −0.497506 0.187837i
\(479\) −9.42773 + 16.3293i −0.430764 + 0.746105i −0.996939 0.0781799i \(-0.975089\pi\)
0.566175 + 0.824285i \(0.308422\pi\)
\(480\) 0 0
\(481\) −26.2883 45.5327i −1.19864 2.07611i
\(482\) 3.34582 + 20.3969i 0.152398 + 0.929053i
\(483\) −13.4997 5.50506i −0.614256 0.250489i
\(484\) 3.29543 1.11103i 0.149792 0.0505014i
\(485\) 0 0
\(486\) 20.9197 6.95469i 0.948935 0.315471i
\(487\) 11.5696 0.524268 0.262134 0.965031i \(-0.415574\pi\)
0.262134 + 0.965031i \(0.415574\pi\)
\(488\) −7.51293 0.269343i −0.340094 0.0121926i
\(489\) 10.0491 24.6426i 0.454435 1.11438i
\(490\) 0 0
\(491\) −0.747617 1.29491i −0.0337395 0.0584385i 0.848663 0.528935i \(-0.177408\pi\)
−0.882402 + 0.470496i \(0.844075\pi\)
\(492\) −14.7799 0.917977i −0.666327 0.0413856i
\(493\) −10.8480 6.26309i −0.488569 0.282075i
\(494\) 17.0577 + 6.44028i 0.767464 + 0.289762i
\(495\) 0 0
\(496\) −13.0011 + 1.65681i −0.583768 + 0.0743930i
\(497\) −2.11176 + 3.65768i −0.0947255 + 0.164069i
\(498\) 0.312263 1.36673i 0.0139928 0.0612448i
\(499\) −27.2612 + 15.7393i −1.22038 + 0.704586i −0.964999 0.262254i \(-0.915534\pi\)
−0.255380 + 0.966841i \(0.582201\pi\)
\(500\) 0 0
\(501\) 5.23409 + 38.1369i 0.233842 + 1.70383i
\(502\) 2.61706 2.14323i 0.116805 0.0956571i
\(503\) 1.90449i 0.0849171i 0.999098 + 0.0424585i \(0.0135190\pi\)
−0.999098 + 0.0424585i \(0.986481\pi\)
\(504\) −7.07229 7.43280i −0.315025 0.331083i
\(505\) 0 0
\(506\) 18.9824 + 23.1790i 0.843869 + 1.03043i
\(507\) −13.5906 17.5116i −0.603581 0.777719i
\(508\) 3.71071 18.4549i 0.164636 0.818804i
\(509\) −27.2228 + 15.7171i −1.20663 + 0.696647i −0.962021 0.272975i \(-0.911992\pi\)
−0.244607 + 0.969622i \(0.578659\pi\)
\(510\) 0 0
\(511\) 5.34094 + 3.08360i 0.236269 + 0.136410i
\(512\) 22.4968 + 2.42789i 0.994227 + 0.107299i
\(513\) −5.24758 12.1008i −0.231686 0.534264i
\(514\) 11.1791 + 4.22076i 0.493090 + 0.186170i
\(515\) 0 0
\(516\) 13.3984 6.66440i 0.589831 0.293384i
\(517\) −27.1494 + 15.6747i −1.19403 + 0.689374i
\(518\) 17.4672 2.86524i 0.767464 0.125892i
\(519\) 16.3652 + 21.0866i 0.718350 + 0.925600i
\(520\) 0 0
\(521\) 23.2742i 1.01966i 0.860275 + 0.509831i \(0.170292\pi\)
−0.860275 + 0.509831i \(0.829708\pi\)
\(522\) −19.4262 13.6302i −0.850263 0.596577i
\(523\) −10.8804 −0.475769 −0.237884 0.971293i \(-0.576454\pi\)
−0.237884 + 0.971293i \(0.576454\pi\)
\(524\) 4.04169 1.36263i 0.176562 0.0595267i
\(525\) 0 0
\(526\) 9.01985 1.47958i 0.393284 0.0645127i
\(527\) −6.35461 + 3.66883i −0.276811 + 0.159817i
\(528\) 5.48435 + 20.3582i 0.238676 + 0.885978i
\(529\) 12.7302 22.0493i 0.553485 0.958664i
\(530\) 0 0
\(531\) 6.64660 25.9422i 0.288438 1.12579i
\(532\) −4.05689 + 4.60669i −0.175888 + 0.199725i
\(533\) 10.8562 18.8035i 0.470235 0.814470i
\(534\) −5.62099 + 1.73250i −0.243244 + 0.0749727i
\(535\) 0 0
\(536\) 21.6414 34.5619i 0.934764 1.49285i
\(537\) −8.38649 + 20.5656i −0.361904 + 0.887471i
\(538\) 5.50961 + 6.72769i 0.237536 + 0.290051i
\(539\) 16.8533 0.725925
\(540\) 0 0
\(541\) −6.53795 −0.281088 −0.140544 0.990074i \(-0.544885\pi\)
−0.140544 + 0.990074i \(0.544885\pi\)
\(542\) −0.400383 0.488901i −0.0171979 0.0210001i
\(543\) 11.3571 27.8502i 0.487379 1.19516i
\(544\) 12.1416 3.61448i 0.520566 0.154970i
\(545\) 0 0
\(546\) 14.3759 4.43093i 0.615231 0.189626i
\(547\) −13.2886 + 23.0165i −0.568178 + 0.984113i 0.428569 + 0.903509i \(0.359018\pi\)
−0.996746 + 0.0806034i \(0.974315\pi\)
\(548\) 24.7458 + 21.7925i 1.05709 + 0.930928i
\(549\) −7.67895 + 2.14826i −0.327729 + 0.0916854i
\(550\) 0 0
\(551\) −7.09907 + 12.2959i −0.302431 + 0.523825i
\(552\) 27.6735 19.9305i 1.17786 0.848299i
\(553\) −3.94747 + 2.27907i −0.167863 + 0.0969160i
\(554\) −9.53514 + 1.56411i −0.405109 + 0.0664525i
\(555\) 0 0
\(556\) −12.8434 38.0947i −0.544680 1.61557i
\(557\) −8.68248 −0.367889 −0.183944 0.982937i \(-0.558887\pi\)
−0.183944 + 0.982937i \(0.558887\pi\)
\(558\) −12.6045 + 5.86286i −0.533591 + 0.248195i
\(559\) 21.9411i 0.928010i
\(560\) 0 0
\(561\) 7.23720 + 9.32519i 0.305555 + 0.393710i
\(562\) −4.59360 + 0.753514i −0.193769 + 0.0317851i
\(563\) −27.4226 + 15.8324i −1.15572 + 0.667257i −0.950275 0.311411i \(-0.899199\pi\)
−0.205448 + 0.978668i \(0.565865\pi\)
\(564\) 15.8925 + 31.9509i 0.669195 + 1.34538i
\(565\) 0 0
\(566\) 31.0089 + 11.7076i 1.30340 + 0.492109i
\(567\) −9.54151 5.23272i −0.400706 0.219754i
\(568\) −4.63017 8.72762i −0.194278 0.366203i
\(569\) −27.9697 16.1483i −1.17255 0.676973i −0.218272 0.975888i \(-0.570042\pi\)
−0.954280 + 0.298915i \(0.903375\pi\)
\(570\) 0 0
\(571\) 12.7245 7.34651i 0.532505 0.307442i −0.209531 0.977802i \(-0.567194\pi\)
0.742036 + 0.670360i \(0.233860\pi\)
\(572\) −30.3074 6.09388i −1.26722 0.254798i
\(573\) −18.9329 24.3952i −0.790932 1.01912i
\(574\) 4.63141 + 5.65534i 0.193311 + 0.236049i
\(575\) 0 0
\(576\) 23.5163 4.79429i 0.979844 0.199762i
\(577\) 22.4886i 0.936214i −0.883672 0.468107i \(-0.844936\pi\)
0.883672 0.468107i \(-0.155064\pi\)
\(578\) −13.1131 + 10.7389i −0.545432 + 0.446679i
\(579\) −1.15013 8.38012i −0.0477977 0.348266i
\(580\) 0 0
\(581\) −0.599324 + 0.346020i −0.0248641 + 0.0143553i
\(582\) 6.35667 27.8224i 0.263493 1.15327i
\(583\) 14.3439 24.8444i 0.594065 1.02895i
\(584\) −12.7441 + 6.76097i −0.527354 + 0.279771i
\(585\) 0 0
\(586\) −36.9305 13.9434i −1.52558 0.575996i
\(587\) 29.8752 + 17.2484i 1.23308 + 0.711919i 0.967671 0.252217i \(-0.0811597\pi\)
0.265409 + 0.964136i \(0.414493\pi\)
\(588\) 1.18924 19.1473i 0.0490434 0.789622i
\(589\) 4.15854 + 7.20280i 0.171350 + 0.296786i
\(590\) 0 0
\(591\) −10.9989 + 26.9719i −0.452436 + 1.10948i
\(592\) −16.0038 + 38.1879i −0.657752 + 1.56951i
\(593\) 11.5133 0.472794 0.236397 0.971656i \(-0.424033\pi\)
0.236397 + 0.971656i \(0.424033\pi\)
\(594\) 12.1010 + 18.8061i 0.496511 + 0.771622i
\(595\) 0 0
\(596\) 1.20359 + 3.56997i 0.0493011 + 0.146232i
\(597\) 9.48648 + 3.86852i 0.388256 + 0.158328i
\(598\) 8.09419 + 49.3441i 0.330996 + 2.01783i
\(599\) −17.8060 30.8410i −0.727535 1.26013i −0.957922 0.287028i \(-0.907333\pi\)
0.230387 0.973099i \(-0.426001\pi\)
\(600\) 0 0
\(601\) −20.4137 + 35.3576i −0.832693 + 1.44227i 0.0632021 + 0.998001i \(0.479869\pi\)
−0.895895 + 0.444266i \(0.853465\pi\)
\(602\) −6.91062 2.60916i −0.281656 0.106341i
\(603\) 10.7348 41.8987i 0.437155 1.70625i
\(604\) 8.17968 9.28821i 0.332826 0.377932i
\(605\) 0 0
\(606\) −2.60662 + 11.4088i −0.105887 + 0.463453i
\(607\) 1.09711 + 1.90026i 0.0445304 + 0.0771290i 0.887432 0.460940i \(-0.152487\pi\)
−0.842901 + 0.538069i \(0.819154\pi\)
\(608\) −4.09693 13.7622i −0.166153 0.558131i
\(609\) 1.59279 + 11.6054i 0.0645430 + 0.470276i
\(610\) 0 0
\(611\) −52.3227 −2.11675
\(612\) 11.1052 7.56426i 0.448900 0.305767i
\(613\) 38.7673i 1.56580i −0.622149 0.782899i \(-0.713740\pi\)
0.622149 0.782899i \(-0.286260\pi\)
\(614\) −24.7207 + 20.2449i −0.997645 + 0.817017i
\(615\) 0 0
\(616\) 5.52339 8.82103i 0.222544 0.355409i
\(617\) −7.42778 12.8653i −0.299031 0.517937i 0.676884 0.736090i \(-0.263330\pi\)
−0.975915 + 0.218153i \(0.929997\pi\)
\(618\) −15.7630 + 16.9810i −0.634080 + 0.683076i
\(619\) −12.3383 7.12352i −0.495918 0.286318i 0.231108 0.972928i \(-0.425765\pi\)
−0.727026 + 0.686610i \(0.759098\pi\)
\(620\) 0 0
\(621\) 21.5444 29.0563i 0.864545 1.16599i
\(622\) 7.79393 + 2.94266i 0.312508 + 0.117990i
\(623\) 2.51448 + 1.45174i 0.100741 + 0.0581626i
\(624\) −9.06196 + 34.0027i −0.362769 + 1.36120i
\(625\) 0 0
\(626\) 10.8399 1.77813i 0.433248 0.0710682i
\(627\) 10.5699 8.20320i 0.422121 0.327604i
\(628\) 1.40584 + 4.16987i 0.0560993 + 0.166396i
\(629\) 23.1814i 0.924302i
\(630\) 0 0
\(631\) 38.8200i 1.54540i −0.634772 0.772700i \(-0.718906\pi\)
0.634772 0.772700i \(-0.281094\pi\)
\(632\) 0.382012 10.6557i 0.0151956 0.423860i
\(633\) 6.51258 + 47.4522i 0.258852 + 1.88606i
\(634\) −2.69462 16.4270i −0.107017 0.652401i
\(635\) 0 0
\(636\) −27.2139 18.0495i −1.07910 0.715708i
\(637\) 24.3599 + 14.0642i 0.965176 + 0.557245i
\(638\) 8.50302 22.5211i 0.336638 0.891620i
\(639\) −7.49078 7.32798i −0.296331 0.289890i
\(640\) 0 0
\(641\) 16.5595 + 9.56061i 0.654060 + 0.377621i 0.790010 0.613094i \(-0.210075\pi\)
−0.135950 + 0.990716i \(0.543409\pi\)
\(642\) −42.8403 + 13.2042i −1.69077 + 0.521129i
\(643\) 3.28595 + 5.69143i 0.129585 + 0.224448i 0.923516 0.383560i \(-0.125302\pi\)
−0.793931 + 0.608008i \(0.791969\pi\)
\(644\) −16.5040 3.31845i −0.650350 0.130765i
\(645\) 0 0
\(646\) −5.09348 6.21956i −0.200400 0.244705i
\(647\) 12.7191i 0.500040i −0.968241 0.250020i \(-0.919563\pi\)
0.968241 0.250020i \(-0.0804373\pi\)
\(648\) 22.2197 12.4211i 0.872873 0.487947i
\(649\) 27.1658 1.06635
\(650\) 0 0
\(651\) 6.35403 + 2.59112i 0.249034 + 0.101554i
\(652\) 6.05758 30.1269i 0.237233 1.17986i
\(653\) 22.0410 + 38.1762i 0.862532 + 1.49395i 0.869477 + 0.493974i \(0.164456\pi\)
−0.00694441 + 0.999976i \(0.502210\pi\)
\(654\) −7.40167 24.0143i −0.289428 0.939033i
\(655\) 0 0
\(656\) −16.9620 + 2.16157i −0.662256 + 0.0843951i
\(657\) −10.7003 + 10.9380i −0.417459 + 0.426734i
\(658\) 6.22201 16.4796i 0.242559 0.642444i
\(659\) 10.8929 18.8671i 0.424328 0.734957i −0.572030 0.820233i \(-0.693844\pi\)
0.996357 + 0.0852757i \(0.0271771\pi\)
\(660\) 0 0
\(661\) −10.2756 17.7979i −0.399676 0.692260i 0.594009 0.804458i \(-0.297544\pi\)
−0.993686 + 0.112198i \(0.964211\pi\)
\(662\) −6.03433 + 0.989845i −0.234531 + 0.0384714i
\(663\) 2.67877 + 19.5182i 0.104035 + 0.758024i
\(664\) 0.0579989 1.61780i 0.00225079 0.0627826i
\(665\) 0 0
\(666\) −3.86960 + 43.7466i −0.149944 + 1.69515i
\(667\) −38.9379 −1.50768
\(668\) 14.2005 + 42.1201i 0.549434 + 1.62967i
\(669\) 25.4305 + 32.7675i 0.983202 + 1.26686i
\(670\) 0 0
\(671\) −4.04432 7.00497i −0.156129 0.270424i
\(672\) −9.63194 6.89764i −0.371560 0.266082i
\(673\) −1.88576 1.08874i −0.0726906 0.0419680i 0.463214 0.886246i \(-0.346696\pi\)
−0.535905 + 0.844278i \(0.680029\pi\)
\(674\) 3.88139 10.2803i 0.149505 0.395981i
\(675\) 0 0
\(676\) −19.2090 16.9164i −0.738807 0.650631i
\(677\) −1.11336 + 1.92840i −0.0427899 + 0.0741143i −0.886627 0.462485i \(-0.846958\pi\)
0.843837 + 0.536599i \(0.180291\pi\)
\(678\) −10.2231 + 11.0131i −0.392618 + 0.422956i
\(679\) −12.2003 + 7.04386i −0.468205 + 0.270319i
\(680\) 0 0
\(681\) −9.46817 + 7.34817i −0.362821 + 0.281582i
\(682\) −8.93463 10.9099i −0.342125 0.417762i
\(683\) 12.9800i 0.496665i 0.968675 + 0.248333i \(0.0798826\pi\)
−0.968675 + 0.248333i \(0.920117\pi\)
\(684\) −8.57392 12.5875i −0.327832 0.481293i
\(685\) 0 0
\(686\) −16.5871 + 13.5839i −0.633299 + 0.518637i
\(687\) −26.2830 + 3.60721i −1.00276 + 0.137624i
\(688\) 13.7521 10.4620i 0.524294 0.398861i
\(689\) 41.4657 23.9402i 1.57972 0.912050i
\(690\) 0 0
\(691\) −24.1859 13.9637i −0.920074 0.531205i −0.0364156 0.999337i \(-0.511594\pi\)
−0.883659 + 0.468132i \(0.844927\pi\)
\(692\) 23.1305 + 20.3699i 0.879289 + 0.774347i
\(693\) 2.73977 10.6935i 0.104075 0.406214i
\(694\) 5.62776 14.9057i 0.213627 0.565813i
\(695\) 0 0
\(696\) −24.9866 11.2496i −0.947113 0.426414i
\(697\) −8.29058 + 4.78657i −0.314028 + 0.181304i
\(698\) 5.10052 + 31.0940i 0.193058 + 1.17692i
\(699\) 4.32345 10.6021i 0.163528 0.401007i
\(700\) 0 0
\(701\) 31.0643i 1.17328i −0.809847 0.586641i \(-0.800450\pi\)
0.809847 0.586641i \(-0.199550\pi\)
\(702\) 1.79711 + 37.2808i 0.0678276 + 1.40707i
\(703\) 26.2756 0.991001
\(704\) 10.6318 + 21.9016i 0.400701 + 0.825447i
\(705\) 0 0
\(706\) 5.05106 + 30.7924i 0.190099 + 1.15889i
\(707\) 5.00287 2.88841i 0.188152 0.108630i
\(708\) 1.91693 30.8635i 0.0720427 1.15992i
\(709\) −21.7239 + 37.6269i −0.815859 + 1.41311i 0.0928511 + 0.995680i \(0.470402\pi\)
−0.908710 + 0.417429i \(0.862931\pi\)
\(710\) 0 0
\(711\) −3.04690 10.8911i −0.114268 0.408449i
\(712\) −5.99982 + 3.18302i −0.224853 + 0.119289i
\(713\) −11.4047 + 19.7535i −0.427108 + 0.739773i
\(714\) −6.46604 1.47732i −0.241985 0.0552873i
\(715\) 0 0
\(716\) −5.05537 + 25.1425i −0.188928 + 0.939619i
\(717\) −14.1073 + 1.93615i −0.526846 + 0.0723069i
\(718\) 1.86366 1.52623i 0.0695510 0.0569585i
\(719\) −12.6495 −0.471747 −0.235874 0.971784i \(-0.575795\pi\)
−0.235874 + 0.971784i \(0.575795\pi\)
\(720\) 0 0
\(721\) 11.4371 0.425938
\(722\) 13.7388 11.2513i 0.511304 0.418730i
\(723\) 15.5208 + 19.9987i 0.577225 + 0.743759i
\(724\) 6.84605 34.0483i 0.254431 1.26539i
\(725\) 0 0
\(726\) 2.89772 3.12163i 0.107544 0.115855i
\(727\) 25.0590 43.4035i 0.929389 1.60975i 0.145042 0.989425i \(-0.453668\pi\)
0.784347 0.620323i \(-0.212998\pi\)
\(728\) 15.3448 8.14068i 0.568714 0.301714i
\(729\) 18.4524 19.7106i 0.683422 0.730024i
\(730\) 0 0
\(731\) 4.83699 8.37791i 0.178902 0.309868i
\(732\) −8.24383 + 4.10051i −0.304701 + 0.151559i
\(733\) 25.5178 14.7327i 0.942523 0.544166i 0.0517728 0.998659i \(-0.483513\pi\)
0.890750 + 0.454493i \(0.150179\pi\)
\(734\) 2.15679 + 13.1483i 0.0796087 + 0.485313i
\(735\) 0 0
\(736\) 27.0680 28.6016i 0.997740 1.05427i
\(737\) 43.8751 1.61616
\(738\) −16.4445 + 7.64902i −0.605332 + 0.281564i
\(739\) 45.3131i 1.66687i −0.552618 0.833435i \(-0.686371\pi\)
0.552618 0.833435i \(-0.313629\pi\)
\(740\) 0 0
\(741\) 22.1234 3.03633i 0.812725 0.111542i
\(742\) 2.60932 + 15.9070i 0.0957911 + 0.583964i
\(743\) 6.99366 4.03779i 0.256573 0.148132i −0.366197 0.930537i \(-0.619341\pi\)
0.622770 + 0.782405i \(0.286007\pi\)
\(744\) −13.0254 + 9.38090i −0.477533 + 0.343921i
\(745\) 0 0
\(746\) −7.28589 + 19.2974i −0.266756 + 0.706530i
\(747\) −0.462595 1.65354i −0.0169255 0.0605000i
\(748\) 10.2291 + 9.00823i 0.374011 + 0.329373i
\(749\) 19.1641 + 11.0644i 0.700239 + 0.404283i
\(750\) 0 0
\(751\) −9.71367 + 5.60819i −0.354457 + 0.204646i −0.666646 0.745374i \(-0.732271\pi\)
0.312190 + 0.950020i \(0.398938\pi\)
\(752\) 24.9486 + 32.7944i 0.909784 + 1.19589i
\(753\) 1.56437 3.83620i 0.0570090 0.139799i
\(754\) 31.0844 25.4564i 1.13203 0.927067i
\(755\) 0 0
\(756\) −11.9557 3.86727i −0.434826 0.140651i
\(757\) 26.9148i 0.978236i −0.872218 0.489118i \(-0.837319\pi\)
0.872218 0.489118i \(-0.162681\pi\)
\(758\) −8.47706 10.3512i −0.307901 0.375972i
\(759\) 33.9768 + 13.8555i 1.23328 + 0.502922i
\(760\) 0 0
\(761\) 6.74550 3.89451i 0.244524 0.141176i −0.372730 0.927940i \(-0.621578\pi\)
0.617254 + 0.786764i \(0.288245\pi\)
\(762\) −6.79074 22.0321i −0.246003 0.798140i
\(763\) −6.20218 + 10.7425i −0.224534 + 0.388904i
\(764\) −26.7597 23.5660i −0.968132 0.852587i
\(765\) 0 0
\(766\) 3.42683 9.07632i 0.123816 0.327941i
\(767\) 39.2657 + 22.6701i 1.41780 + 0.818569i
\(768\) 25.6329 10.5335i 0.924948 0.380094i
\(769\) 3.36491 + 5.82819i 0.121342 + 0.210170i 0.920297 0.391220i \(-0.127947\pi\)
−0.798955 + 0.601390i \(0.794614\pi\)
\(770\) 0 0
\(771\) 14.4990 1.98992i 0.522170 0.0716651i
\(772\) −3.12039 9.25538i −0.112305 0.333108i
\(773\) −16.5270 −0.594435 −0.297217 0.954810i \(-0.596059\pi\)
−0.297217 + 0.954810i \(0.596059\pi\)
\(774\) 10.5266 15.0029i 0.378371 0.539268i
\(775\) 0 0
\(776\) 1.18067 32.9332i 0.0423837 1.18223i
\(777\) 17.1262 13.2915i 0.614398 0.476829i
\(778\) −11.4678 + 1.88113i −0.411141 + 0.0674419i
\(779\) 5.42547 + 9.39719i 0.194388 + 0.336689i
\(780\) 0 0
\(781\) 5.31502 9.20588i 0.190186 0.329412i
\(782\) 7.78740 20.6257i 0.278477 0.737574i
\(783\) −28.8744 3.31831i −1.03189 0.118587i
\(784\) −2.80031 21.9743i −0.100011 0.784796i
\(785\) 0 0
\(786\) 3.55392 3.82853i 0.126764 0.136559i
\(787\) −1.37971 2.38973i −0.0491814 0.0851847i 0.840387 0.541987i \(-0.182328\pi\)
−0.889568 + 0.456803i \(0.848995\pi\)
\(788\) −6.63016 + 32.9746i −0.236190 + 1.17467i
\(789\) 8.84375 6.86356i 0.314846 0.244349i
\(790\) 0 0
\(791\) 7.41755 0.263738
\(792\) 17.8000 + 18.7073i 0.632495 + 0.664736i
\(793\) 13.5001i 0.479401i
\(794\) −6.34334 7.74575i −0.225117 0.274886i
\(795\) 0 0
\(796\) 11.5977 + 2.33194i 0.411070 + 0.0826534i
\(797\) 2.62123 + 4.54011i 0.0928488 + 0.160819i 0.908709 0.417431i \(-0.137069\pi\)
−0.815860 + 0.578250i \(0.803736\pi\)
\(798\) −1.67451 + 7.32911i −0.0592769 + 0.259448i
\(799\) 19.9787 + 11.5347i 0.706794 + 0.408068i
\(800\) 0 0
\(801\) −5.03763 + 5.14956i −0.177996 + 0.181951i
\(802\) −8.83781 + 23.4079i −0.312074 + 0.826560i
\(803\) −13.4424 7.76099i −0.474373 0.273879i
\(804\) 3.09600 49.8471i 0.109187 1.75797i
\(805\) 0 0
\(806\) −3.80978 23.2253i −0.134194 0.818076i
\(807\) 9.86172 + 4.02154i 0.347149 + 0.141565i
\(808\) −0.484147 + 13.5046i −0.0170322 + 0.475090i
\(809\) 47.1813i 1.65881i 0.558650 + 0.829403i \(0.311319\pi\)
−0.558650 + 0.829403i \(0.688681\pi\)
\(810\) 0 0
\(811\) 18.8666i 0.662495i −0.943544 0.331247i \(-0.892531\pi\)
0.943544 0.331247i \(-0.107469\pi\)
\(812\) 4.32136 + 12.8176i 0.151650 + 0.449809i
\(813\) −0.716651 0.292245i −0.0251341 0.0102495i
\(814\) −43.9625 + 7.21143i −1.54089 + 0.252760i
\(815\) 0 0
\(816\) 10.9562 10.9857i 0.383543 0.384577i
\(817\) −9.49617 5.48261i −0.332229 0.191812i
\(818\) −30.0444 11.3435i −1.05048 0.396615i
\(819\) 12.8839 13.1702i 0.450201 0.460203i
\(820\) 0 0
\(821\) 1.12399 + 0.648938i 0.0392277 + 0.0226481i 0.519486 0.854479i \(-0.326124\pi\)
−0.480258 + 0.877127i \(0.659457\pi\)
\(822\) 39.3699 + 8.99499i 1.37318 + 0.313736i
\(823\) 3.33531 + 5.77693i 0.116262 + 0.201371i 0.918283 0.395924i \(-0.129576\pi\)
−0.802022 + 0.597295i \(0.796242\pi\)
\(824\) −14.1984 + 22.6754i −0.494626 + 0.789934i
\(825\) 0 0
\(826\) −11.8095 + 9.67137i −0.410907 + 0.336510i
\(827\) 37.4924i 1.30374i 0.758331 + 0.651869i \(0.226015\pi\)
−0.758331 + 0.651869i \(0.773985\pi\)
\(828\) 18.1389 37.6238i 0.630372 1.30752i
\(829\) 22.9261 0.796255 0.398127 0.917330i \(-0.369660\pi\)
0.398127 + 0.917330i \(0.369660\pi\)
\(830\) 0 0
\(831\) −9.34898 + 7.25566i −0.324313 + 0.251696i
\(832\) −2.90972 + 40.5290i −0.100876 + 1.40509i
\(833\) −6.20100 10.7405i −0.214852 0.372135i
\(834\) −36.0856 33.4972i −1.24954 1.15991i
\(835\) 0 0
\(836\) 10.2106 11.5944i 0.353142 0.401001i
\(837\) −10.1405 + 13.6762i −0.350507 + 0.472720i
\(838\) 34.8769 + 13.1680i 1.20480 + 0.454882i
\(839\) 9.11048 15.7798i 0.314529 0.544780i −0.664808 0.747014i \(-0.731487\pi\)
0.979337 + 0.202234i \(0.0648202\pi\)
\(840\) 0 0
\(841\) 1.14335 + 1.98034i 0.0394259 + 0.0682877i
\(842\) 3.92724 + 23.9414i 0.135342 + 0.825074i
\(843\) −4.50391 + 3.49545i −0.155123 + 0.120390i
\(844\) 17.6691 + 52.4084i 0.608197 + 1.80397i
\(845\) 0 0
\(846\) 35.7772 + 25.1026i 1.23004 + 0.863046i
\(847\) −2.10248 −0.0722422
\(848\) −34.7769 14.5743i −1.19424 0.500484i
\(849\) 40.2177 5.51967i 1.38027 0.189435i
\(850\) 0 0
\(851\) 36.0299 + 62.4057i 1.23509 + 2.13924i
\(852\) −10.0839 6.68807i −0.345468 0.229129i
\(853\) −1.68958 0.975478i −0.0578500 0.0333997i 0.470796 0.882242i \(-0.343967\pi\)
−0.528646 + 0.848842i \(0.677300\pi\)
\(854\) 4.25201 + 1.60538i 0.145501 + 0.0549349i
\(855\) 0 0
\(856\) −45.7275 + 24.2593i −1.56293 + 0.829166i
\(857\) −6.51166 + 11.2785i −0.222434 + 0.385267i −0.955546 0.294840i \(-0.904733\pi\)
0.733113 + 0.680107i \(0.238067\pi\)
\(858\) −36.1821 + 11.1520i −1.23524 + 0.380724i
\(859\) 3.50034 2.02092i 0.119430 0.0689530i −0.439095 0.898441i \(-0.644701\pi\)
0.558525 + 0.829488i \(0.311367\pi\)
\(860\) 0 0
\(861\) 8.28982 + 3.38053i 0.282516 + 0.115208i
\(862\) −13.7660 + 11.2736i −0.468871 + 0.383980i
\(863\) 10.6258i 0.361705i −0.983510 0.180853i \(-0.942114\pi\)
0.983510 0.180853i \(-0.0578857\pi\)
\(864\) 22.5097 18.9027i 0.765796 0.643084i
\(865\) 0 0
\(866\) 10.5224 + 12.8487i 0.357565 + 0.436616i
\(867\) −7.83847 + 19.2217i −0.266208 + 0.652803i
\(868\) 7.76813 + 1.56193i 0.263667 + 0.0530153i
\(869\) 9.93523 5.73611i 0.337030 0.194584i
\(870\) 0 0
\(871\) 63.4174 + 36.6140i 2.14882 + 1.24062i
\(872\) −13.5986 25.6327i −0.460508 0.868034i
\(873\) −9.41696 33.6609i −0.318716 1.13925i
\(874\) −23.3788 8.82684i −0.790799 0.298572i
\(875\) 0 0
\(876\) −9.76591 + 14.7245i −0.329960 + 0.497494i
\(877\) −45.9911 + 26.5530i −1.55301 + 0.896631i −0.555115 + 0.831774i \(0.687326\pi\)
−0.997895 + 0.0648570i \(0.979341\pi\)
\(878\) 2.34851 0.385240i 0.0792584 0.0130012i
\(879\) −47.8978 + 6.57373i −1.61555 + 0.221727i
\(880\) 0 0
\(881\) 10.8244i 0.364685i −0.983235 0.182342i \(-0.941632\pi\)
0.983235 0.182342i \(-0.0583679\pi\)
\(882\) −9.90931 21.3039i −0.333664 0.717340i
\(883\) −21.6083 −0.727178 −0.363589 0.931559i \(-0.618449\pi\)
−0.363589 + 0.931559i \(0.618449\pi\)
\(884\) 7.26773 + 21.5568i 0.244440 + 0.725033i
\(885\) 0 0
\(886\) −1.05926 + 0.173757i −0.0355865 + 0.00583747i
\(887\) 0.457306 0.264026i 0.0153548 0.00886511i −0.492303 0.870424i \(-0.663845\pi\)
0.507658 + 0.861559i \(0.330511\pi\)
\(888\) 5.09083 + 50.4553i 0.170837 + 1.69317i
\(889\) −5.69025 + 9.85580i −0.190845 + 0.330553i
\(890\) 0 0
\(891\) 24.0147 + 13.1700i 0.804522 + 0.441213i
\(892\) 35.9435 + 31.6537i 1.20348 + 1.05984i
\(893\) 13.0743 22.6454i 0.437515 0.757798i
\(894\) 3.38169 + 3.13913i 0.113101 + 0.104988i
\(895\) 0 0
\(896\) −12.4191 5.73601i −0.414893 0.191627i
\(897\) 37.5478 + 48.3807i 1.25369 + 1.61538i
\(898\) −15.6428 19.1012i −0.522008 0.637415i
\(899\) 18.3273 0.611251
\(900\) 0 0
\(901\) −21.1108 −0.703302
\(902\) −11.6566 14.2337i −0.388123 0.473930i
\(903\) −8.96289 + 1.23011i −0.298266 + 0.0409355i
\(904\) −9.20846 + 14.7062i −0.306269 + 0.489121i
\(905\) 0 0
\(906\) 3.37622 14.7773i 0.112167 0.490942i
\(907\) 23.6647 40.9884i 0.785773 1.36100i −0.142763 0.989757i \(-0.545599\pi\)
0.928536 0.371242i \(-0.121068\pi\)
\(908\) −9.14635 + 10.3859i −0.303532 + 0.344668i
\(909\) 3.86152 + 13.8030i 0.128079 + 0.457817i
\(910\) 0 0
\(911\) 18.8160 32.5902i 0.623401 1.07976i −0.365447 0.930832i \(-0.619084\pi\)
0.988848 0.148930i \(-0.0475829\pi\)
\(912\) −12.4521 12.4186i −0.412329 0.411220i
\(913\) 1.50841 0.870884i 0.0499213 0.0288220i
\(914\) 48.6546 7.98110i 1.60935 0.263991i
\(915\) 0 0
\(916\) −29.0281 + 9.78664i −0.959117 + 0.323360i
\(917\) −2.57860 −0.0851528
\(918\) 7.53247 14.6313i 0.248609 0.482906i
\(919\) 42.9157i 1.41566i −0.706383 0.707830i \(-0.749674\pi\)
0.706383 0.707830i \(-0.250326\pi\)
\(920\) 0 0
\(921\) −14.7770 + 36.2366i −0.486919 + 1.19404i
\(922\) 43.6553 7.16103i 1.43771 0.235836i
\(923\) 15.3647 8.87083i 0.505736 0.291987i
\(924\) 0.790173 12.7222i 0.0259948 0.418528i
\(925\) 0 0
\(926\) −13.6046 5.13652i −0.447075 0.168797i
\(927\) −7.04287 + 27.4888i −0.231318 + 0.902852i
\(928\) −30.7771 7.34464i −1.01031 0.241100i
\(929\) 25.1609 + 14.5267i 0.825503 + 0.476605i 0.852311 0.523036i \(-0.175201\pi\)
−0.0268072 + 0.999641i \(0.508534\pi\)
\(930\) 0 0
\(931\) −12.1741 + 7.02870i −0.398989 + 0.230356i
\(932\) 2.60617 12.9616i 0.0853680 0.424571i
\(933\) 10.1085 1.38734i 0.330938 0.0454196i
\(934\) 2.60374 + 3.17938i 0.0851969 + 0.104033i
\(935\) 0 0
\(936\) 10.1168 + 41.8939i 0.330679 + 1.36935i
\(937\) 51.0143i 1.66656i 0.552848 + 0.833282i \(0.313541\pi\)
−0.552848 + 0.833282i \(0.686459\pi\)
\(938\) −19.0734 + 15.6201i −0.622768 + 0.510013i
\(939\) 10.6282 8.24847i 0.346839 0.269179i
\(940\) 0 0
\(941\) 7.54730 4.35743i 0.246035 0.142048i −0.371912 0.928268i \(-0.621298\pi\)
0.617947 + 0.786220i \(0.287964\pi\)
\(942\) 3.94996 + 3.66663i 0.128697 + 0.119465i
\(943\) −14.8792 + 25.7715i −0.484532 + 0.839235i
\(944\) −4.51382 35.4203i −0.146912 1.15283i
\(945\) 0 0
\(946\) 17.3931 + 6.56689i 0.565498 + 0.213508i
\(947\) 33.0481 + 19.0803i 1.07392 + 0.620028i 0.929250 0.369452i \(-0.120455\pi\)
0.144670 + 0.989480i \(0.453788\pi\)
\(948\) −5.81580 11.6923i −0.188888 0.379749i
\(949\) −12.9532 22.4356i −0.420478 0.728290i
\(950\) 0 0
\(951\) −12.5000 16.1063i −0.405339 0.522283i
\(952\) −7.65382 0.274394i −0.248062 0.00889315i
\(953\) 40.4395 1.30996 0.654982 0.755645i \(-0.272676\pi\)
0.654982 + 0.755645i \(0.272676\pi\)
\(954\) −39.8391 3.52397i −1.28984 0.114093i
\(955\) 0 0
\(956\) −15.5807 + 5.25293i −0.503916 + 0.169892i
\(957\) −4.00883 29.2093i −0.129587 0.944202i
\(958\) 4.31643 + 26.3140i 0.139458 + 0.850166i
\(959\) −9.96739 17.2640i −0.321864 0.557485i
\(960\) 0 0
\(961\) −10.1320 + 17.5492i −0.326840 + 0.566104i
\(962\) −69.5617 26.2636i −2.24276 0.846771i
\(963\) −38.3942 + 39.2472i −1.23724 + 1.26472i
\(964\) 21.9371 + 19.3189i 0.706546 + 0.622220i
\(965\) 0 0
\(966\) −19.7031 + 6.07289i −0.633938 + 0.195392i
\(967\) −8.41511 14.5754i −0.270612 0.468713i 0.698407 0.715701i \(-0.253893\pi\)
−0.969019 + 0.246988i \(0.920559\pi\)
\(968\) 2.61011 4.16843i 0.0838921 0.133978i
\(969\) −9.11689 3.71780i −0.292877 0.119433i
\(970\) 0 0
\(971\) 34.0951 1.09416 0.547082 0.837079i \(-0.315738\pi\)
0.547082 + 0.837079i \(0.315738\pi\)
\(972\) 16.6572 26.3541i 0.534281 0.845307i
\(973\) 24.3044i 0.779163i
\(974\) 12.6587 10.3667i 0.405609 0.332172i
\(975\) 0 0
\(976\) −8.46147 + 6.43714i −0.270845 + 0.206048i
\(977\) 0.431943 + 0.748148i 0.0138191 + 0.0239354i 0.872852 0.487985i \(-0.162268\pi\)
−0.859033 + 0.511920i \(0.828934\pi\)
\(978\) −11.0856 35.9666i −0.354479 1.15008i
\(979\) −6.32860 3.65382i −0.202263 0.116777i
\(980\) 0 0
\(981\) −22.0002 21.5220i −0.702412 0.687145i
\(982\) −1.97828 0.746913i −0.0631293 0.0238349i
\(983\) 31.8882 + 18.4107i 1.01708 + 0.587209i 0.913256 0.407387i \(-0.133560\pi\)
0.103821 + 0.994596i \(0.466893\pi\)
\(984\) −16.9936 + 12.2389i −0.541738 + 0.390161i
\(985\) 0 0
\(986\) −17.4811 + 2.86752i −0.556711 + 0.0913205i
\(987\) −2.93343 21.3737i −0.0933720 0.680331i
\(988\) 24.4341 8.23780i 0.777353 0.262079i
\(989\) 30.0718i 0.956227i
\(990\) 0 0
\(991\) 35.9773i 1.14286i 0.820652 + 0.571428i \(0.193610\pi\)
−0.820652 + 0.571428i \(0.806390\pi\)
\(992\) −12.7404 + 13.4622i −0.404508 + 0.427426i
\(993\) −5.91651 + 4.59175i −0.187755 + 0.145715i
\(994\) 0.966859 + 5.89419i 0.0306669 + 0.186952i
\(995\) 0 0
\(996\) −0.882983 1.77518i −0.0279784 0.0562489i
\(997\) 28.9811 + 16.7322i 0.917840 + 0.529915i 0.882945 0.469476i \(-0.155557\pi\)
0.0348944 + 0.999391i \(0.488891\pi\)
\(998\) −15.7244 + 41.6478i −0.497748 + 1.31834i
\(999\) 21.3997 + 49.3473i 0.677057 + 1.56128i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.o.c.299.19 48
4.3 odd 2 inner 900.2.o.c.299.14 48
5.2 odd 4 900.2.r.f.551.17 48
5.3 odd 4 180.2.q.a.11.8 yes 48
5.4 even 2 900.2.o.b.299.6 48
9.5 odd 6 900.2.o.b.599.11 48
15.8 even 4 540.2.q.a.251.17 48
20.3 even 4 180.2.q.a.11.1 48
20.7 even 4 900.2.r.f.551.24 48
20.19 odd 2 900.2.o.b.299.11 48
36.23 even 6 900.2.o.b.599.6 48
45.13 odd 12 540.2.q.a.71.24 48
45.14 odd 6 inner 900.2.o.c.599.14 48
45.23 even 12 180.2.q.a.131.1 yes 48
45.32 even 12 900.2.r.f.851.24 48
45.38 even 12 1620.2.e.b.971.31 48
45.43 odd 12 1620.2.e.b.971.18 48
60.23 odd 4 540.2.q.a.251.24 48
180.23 odd 12 180.2.q.a.131.8 yes 48
180.43 even 12 1620.2.e.b.971.32 48
180.59 even 6 inner 900.2.o.c.599.19 48
180.83 odd 12 1620.2.e.b.971.17 48
180.103 even 12 540.2.q.a.71.17 48
180.167 odd 12 900.2.r.f.851.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.1 48 20.3 even 4
180.2.q.a.11.8 yes 48 5.3 odd 4
180.2.q.a.131.1 yes 48 45.23 even 12
180.2.q.a.131.8 yes 48 180.23 odd 12
540.2.q.a.71.17 48 180.103 even 12
540.2.q.a.71.24 48 45.13 odd 12
540.2.q.a.251.17 48 15.8 even 4
540.2.q.a.251.24 48 60.23 odd 4
900.2.o.b.299.6 48 5.4 even 2
900.2.o.b.299.11 48 20.19 odd 2
900.2.o.b.599.6 48 36.23 even 6
900.2.o.b.599.11 48 9.5 odd 6
900.2.o.c.299.14 48 4.3 odd 2 inner
900.2.o.c.299.19 48 1.1 even 1 trivial
900.2.o.c.599.14 48 45.14 odd 6 inner
900.2.o.c.599.19 48 180.59 even 6 inner
900.2.r.f.551.17 48 5.2 odd 4
900.2.r.f.551.24 48 20.7 even 4
900.2.r.f.851.17 48 180.167 odd 12
900.2.r.f.851.24 48 45.32 even 12
1620.2.e.b.971.17 48 180.83 odd 12
1620.2.e.b.971.18 48 45.43 odd 12
1620.2.e.b.971.31 48 45.38 even 12
1620.2.e.b.971.32 48 180.43 even 12