Properties

Label 900.2.o.b.599.11
Level $900$
Weight $2$
Character 900.599
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(299,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.299"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,6,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 599.11
Character \(\chi\) \(=\) 900.599
Dual form 900.2.o.b.299.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.228922 - 1.39556i) q^{2} +(0.654027 + 1.60382i) q^{3} +(-1.89519 + 0.638951i) q^{4} +(2.08851 - 1.27989i) q^{6} +(-0.604565 - 1.04714i) q^{7} +(1.32555 + 2.49858i) q^{8} +(-2.14450 + 2.09789i) q^{9} +(-1.52161 - 2.63550i) q^{11} +(-2.26427 - 2.62166i) q^{12} +(-4.39869 - 2.53958i) q^{13} +(-1.32295 + 1.08342i) q^{14} +(3.18348 - 2.42186i) q^{16} +2.23944 q^{17} +(3.41866 + 2.51253i) q^{18} +2.53835i q^{19} +(1.28402 - 1.65447i) q^{21} +(-3.32968 + 2.72682i) q^{22} +(-6.02870 - 3.48067i) q^{23} +(-3.14035 + 3.76008i) q^{24} +(-2.53719 + 6.72001i) q^{26} +(-4.76720 - 2.06732i) q^{27} +(1.81484 + 1.59824i) q^{28} +(4.84407 - 2.79673i) q^{29} +(-2.83759 - 1.63828i) q^{31} +(-4.10863 - 3.88833i) q^{32} +(3.23171 - 4.16408i) q^{33} +(-0.512657 - 3.12527i) q^{34} +(2.72378 - 5.34612i) q^{36} -10.3514i q^{37} +(3.54243 - 0.581085i) q^{38} +(1.19618 - 8.71567i) q^{39} +(3.70208 + 2.13740i) q^{41} +(-2.60286 - 1.41319i) q^{42} +(-2.15991 - 3.74108i) q^{43} +(4.56769 + 4.02254i) q^{44} +(-3.47739 + 9.21023i) q^{46} +(-8.92129 + 5.15071i) q^{47} +(5.96633 + 3.52178i) q^{48} +(2.76900 - 4.79605i) q^{49} +(1.46465 + 3.59166i) q^{51} +(9.95902 + 2.00245i) q^{52} -9.42683 q^{53} +(-1.79375 + 7.12618i) q^{54} +(1.81498 - 2.89859i) q^{56} +(-4.07106 + 1.66015i) q^{57} +(-5.01192 - 6.11997i) q^{58} +(-4.46335 + 7.73074i) q^{59} +(1.32896 + 2.30183i) q^{61} +(-1.63674 + 4.33508i) q^{62} +(3.49327 + 0.977274i) q^{63} +(-4.48585 + 6.62398i) q^{64} +(-6.55104 - 3.55680i) q^{66} +(7.20867 - 12.4858i) q^{67} +(-4.24416 + 1.43089i) q^{68} +(1.63945 - 11.9454i) q^{69} -3.49303 q^{71} +(-8.08438 - 2.57736i) q^{72} -5.10052i q^{73} +(-14.4461 + 2.36967i) q^{74} +(-1.62188 - 4.81065i) q^{76} +(-1.83982 + 3.18667i) q^{77} +(-12.4371 + 0.325865i) q^{78} +(-3.26472 + 1.88488i) q^{79} +(0.197735 - 8.99783i) q^{81} +(2.13538 - 5.65579i) q^{82} +(0.495665 - 0.286172i) q^{83} +(-1.37634 + 3.95596i) q^{84} +(-4.72646 + 3.87071i) q^{86} +(7.65361 + 5.93990i) q^{87} +(4.56806 - 7.29535i) q^{88} +2.40129i q^{89} +6.14138i q^{91} +(13.6495 + 2.74449i) q^{92} +(0.771656 - 5.62248i) q^{93} +(9.23042 + 11.2711i) q^{94} +(3.54904 - 9.13260i) q^{96} +(-10.0902 + 5.82556i) q^{97} +(-7.32708 - 2.76639i) q^{98} +(8.79207 + 2.45966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{6} - 12 q^{8} - 4 q^{9} - 28 q^{12} + 30 q^{14} + 18 q^{18} - 4 q^{21} + 42 q^{22} + 28 q^{24} + 12 q^{29} + 48 q^{33} + 6 q^{34} + 42 q^{36} + 6 q^{38} - 60 q^{41} - 16 q^{42} - 12 q^{46} + 74 q^{48}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.228922 1.39556i −0.161872 0.986812i
\(3\) 0.654027 + 1.60382i 0.377603 + 0.925968i
\(4\) −1.89519 + 0.638951i −0.947595 + 0.319475i
\(5\) 0 0
\(6\) 2.08851 1.27989i 0.852632 0.522511i
\(7\) −0.604565 1.04714i −0.228504 0.395781i 0.728861 0.684662i \(-0.240050\pi\)
−0.957365 + 0.288881i \(0.906717\pi\)
\(8\) 1.32555 + 2.49858i 0.468651 + 0.883383i
\(9\) −2.14450 + 2.09789i −0.714832 + 0.699296i
\(10\) 0 0
\(11\) −1.52161 2.63550i −0.458782 0.794634i 0.540115 0.841591i \(-0.318381\pi\)
−0.998897 + 0.0469575i \(0.985047\pi\)
\(12\) −2.26427 2.62166i −0.653638 0.756807i
\(13\) −4.39869 2.53958i −1.21998 0.704354i −0.255064 0.966924i \(-0.582096\pi\)
−0.964913 + 0.262570i \(0.915430\pi\)
\(14\) −1.32295 + 1.08342i −0.353573 + 0.289557i
\(15\) 0 0
\(16\) 3.18348 2.42186i 0.795871 0.605466i
\(17\) 2.23944 0.543143 0.271572 0.962418i \(-0.412457\pi\)
0.271572 + 0.962418i \(0.412457\pi\)
\(18\) 3.41866 + 2.51253i 0.805785 + 0.592208i
\(19\) 2.53835i 0.582337i 0.956672 + 0.291169i \(0.0940441\pi\)
−0.956672 + 0.291169i \(0.905956\pi\)
\(20\) 0 0
\(21\) 1.28402 1.65447i 0.280197 0.361035i
\(22\) −3.32968 + 2.72682i −0.709890 + 0.581361i
\(23\) −6.02870 3.48067i −1.25707 0.725770i −0.284567 0.958656i \(-0.591850\pi\)
−0.972504 + 0.232886i \(0.925183\pi\)
\(24\) −3.14035 + 3.76008i −0.641020 + 0.767524i
\(25\) 0 0
\(26\) −2.53719 + 6.72001i −0.497584 + 1.31790i
\(27\) −4.76720 2.06732i −0.917448 0.397856i
\(28\) 1.81484 + 1.59824i 0.342972 + 0.302038i
\(29\) 4.84407 2.79673i 0.899521 0.519339i 0.0224766 0.999747i \(-0.492845\pi\)
0.877045 + 0.480408i \(0.159512\pi\)
\(30\) 0 0
\(31\) −2.83759 1.63828i −0.509647 0.294245i 0.223042 0.974809i \(-0.428401\pi\)
−0.732688 + 0.680564i \(0.761735\pi\)
\(32\) −4.10863 3.88833i −0.726311 0.687367i
\(33\) 3.23171 4.16408i 0.562568 0.724873i
\(34\) −0.512657 3.12527i −0.0879199 0.535980i
\(35\) 0 0
\(36\) 2.72378 5.34612i 0.453964 0.891020i
\(37\) 10.3514i 1.70176i −0.525356 0.850882i \(-0.676068\pi\)
0.525356 0.850882i \(-0.323932\pi\)
\(38\) 3.54243 0.581085i 0.574657 0.0942644i
\(39\) 1.19618 8.71567i 0.191542 1.39562i
\(40\) 0 0
\(41\) 3.70208 + 2.13740i 0.578168 + 0.333806i 0.760405 0.649449i \(-0.225000\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(42\) −2.60286 1.41319i −0.401630 0.218060i
\(43\) −2.15991 3.74108i −0.329384 0.570509i 0.653006 0.757353i \(-0.273508\pi\)
−0.982390 + 0.186844i \(0.940174\pi\)
\(44\) 4.56769 + 4.02254i 0.688605 + 0.606421i
\(45\) 0 0
\(46\) −3.47739 + 9.21023i −0.512713 + 1.35797i
\(47\) −8.92129 + 5.15071i −1.30130 + 0.751308i −0.980628 0.195880i \(-0.937244\pi\)
−0.320677 + 0.947189i \(0.603910\pi\)
\(48\) 5.96633 + 3.52178i 0.861165 + 0.508325i
\(49\) 2.76900 4.79605i 0.395572 0.685150i
\(50\) 0 0
\(51\) 1.46465 + 3.59166i 0.205092 + 0.502933i
\(52\) 9.95902 + 2.00245i 1.38107 + 0.277690i
\(53\) −9.42683 −1.29487 −0.647437 0.762119i \(-0.724159\pi\)
−0.647437 + 0.762119i \(0.724159\pi\)
\(54\) −1.79375 + 7.12618i −0.244099 + 0.969750i
\(55\) 0 0
\(56\) 1.81498 2.89859i 0.242537 0.387340i
\(57\) −4.07106 + 1.66015i −0.539226 + 0.219892i
\(58\) −5.01192 6.11997i −0.658098 0.803592i
\(59\) −4.46335 + 7.73074i −0.581078 + 1.00646i 0.414274 + 0.910152i \(0.364036\pi\)
−0.995352 + 0.0963045i \(0.969298\pi\)
\(60\) 0 0
\(61\) 1.32896 + 2.30183i 0.170156 + 0.294720i 0.938474 0.345349i \(-0.112239\pi\)
−0.768318 + 0.640068i \(0.778906\pi\)
\(62\) −1.63674 + 4.33508i −0.207866 + 0.550555i
\(63\) 3.49327 + 0.977274i 0.440110 + 0.123125i
\(64\) −4.48585 + 6.62398i −0.560732 + 0.827998i
\(65\) 0 0
\(66\) −6.55104 3.55680i −0.806378 0.437812i
\(67\) 7.20867 12.4858i 0.880679 1.52538i 0.0300911 0.999547i \(-0.490420\pi\)
0.850588 0.525833i \(-0.176246\pi\)
\(68\) −4.24416 + 1.43089i −0.514679 + 0.173521i
\(69\) 1.63945 11.9454i 0.197366 1.43806i
\(70\) 0 0
\(71\) −3.49303 −0.414546 −0.207273 0.978283i \(-0.566459\pi\)
−0.207273 + 0.978283i \(0.566459\pi\)
\(72\) −8.08438 2.57736i −0.952753 0.303745i
\(73\) 5.10052i 0.596970i −0.954414 0.298485i \(-0.903519\pi\)
0.954414 0.298485i \(-0.0964813\pi\)
\(74\) −14.4461 + 2.36967i −1.67932 + 0.275469i
\(75\) 0 0
\(76\) −1.62188 4.81065i −0.186042 0.551820i
\(77\) −1.83982 + 3.18667i −0.209667 + 0.363154i
\(78\) −12.4371 + 0.325865i −1.40822 + 0.0368970i
\(79\) −3.26472 + 1.88488i −0.367309 + 0.212066i −0.672282 0.740295i \(-0.734686\pi\)
0.304973 + 0.952361i \(0.401353\pi\)
\(80\) 0 0
\(81\) 0.197735 8.99783i 0.0219706 0.999759i
\(82\) 2.13538 5.65579i 0.235814 0.624577i
\(83\) 0.495665 0.286172i 0.0544063 0.0314115i −0.472550 0.881304i \(-0.656666\pi\)
0.526956 + 0.849892i \(0.323333\pi\)
\(84\) −1.37634 + 3.95596i −0.150171 + 0.431631i
\(85\) 0 0
\(86\) −4.72646 + 3.87071i −0.509667 + 0.417389i
\(87\) 7.65361 + 5.93990i 0.820553 + 0.636824i
\(88\) 4.56806 7.29535i 0.486957 0.777687i
\(89\) 2.40129i 0.254536i 0.991868 + 0.127268i \(0.0406208\pi\)
−0.991868 + 0.127268i \(0.959379\pi\)
\(90\) 0 0
\(91\) 6.14138i 0.643791i
\(92\) 13.6495 + 2.74449i 1.42306 + 0.286133i
\(93\) 0.771656 5.62248i 0.0800170 0.583024i
\(94\) 9.23042 + 11.2711i 0.952045 + 1.16253i
\(95\) 0 0
\(96\) 3.54904 9.13260i 0.362222 0.932092i
\(97\) −10.0902 + 5.82556i −1.02450 + 0.591496i −0.915404 0.402535i \(-0.868129\pi\)
−0.109096 + 0.994031i \(0.534796\pi\)
\(98\) −7.32708 2.76639i −0.740146 0.279448i
\(99\) 8.79207 + 2.45966i 0.883636 + 0.247206i
\(100\) 0 0
\(101\) −4.13758 + 2.38883i −0.411704 + 0.237698i −0.691522 0.722356i \(-0.743059\pi\)
0.279818 + 0.960053i \(0.409726\pi\)
\(102\) 4.67709 2.86622i 0.463101 0.283798i
\(103\) −4.72945 + 8.19166i −0.466007 + 0.807148i −0.999246 0.0388166i \(-0.987641\pi\)
0.533239 + 0.845964i \(0.320975\pi\)
\(104\) 0.514701 14.3568i 0.0504706 1.40780i
\(105\) 0 0
\(106\) 2.15801 + 13.1557i 0.209605 + 1.27780i
\(107\) 18.3014i 1.76926i 0.466294 + 0.884630i \(0.345589\pi\)
−0.466294 + 0.884630i \(0.654411\pi\)
\(108\) 10.3557 + 0.871955i 0.996474 + 0.0839039i
\(109\) 10.2589 0.982625 0.491312 0.870983i \(-0.336517\pi\)
0.491312 + 0.870983i \(0.336517\pi\)
\(110\) 0 0
\(111\) 16.6019 6.77012i 1.57578 0.642591i
\(112\) −4.46065 1.86937i −0.421492 0.176639i
\(113\) 3.06731 5.31273i 0.288548 0.499780i −0.684915 0.728623i \(-0.740161\pi\)
0.973463 + 0.228843i \(0.0734942\pi\)
\(114\) 3.24880 + 5.30138i 0.304278 + 0.496520i
\(115\) 0 0
\(116\) −7.39346 + 8.39545i −0.686466 + 0.779498i
\(117\) 14.7607 3.78182i 1.36463 0.349630i
\(118\) 11.8105 + 4.45914i 1.08724 + 0.410497i
\(119\) −1.35389 2.34500i −0.124110 0.214966i
\(120\) 0 0
\(121\) 0.869419 1.50588i 0.0790381 0.136898i
\(122\) 2.90812 2.38159i 0.263289 0.215619i
\(123\) −1.00675 + 7.33540i −0.0907753 + 0.661411i
\(124\) 6.42456 + 1.29178i 0.576942 + 0.116005i
\(125\) 0 0
\(126\) 0.564161 5.09879i 0.0502594 0.454236i
\(127\) 9.41213 0.835192 0.417596 0.908633i \(-0.362873\pi\)
0.417596 + 0.908633i \(0.362873\pi\)
\(128\) 10.2711 + 4.74391i 0.907845 + 0.419307i
\(129\) 4.58739 5.91088i 0.403897 0.520424i
\(130\) 0 0
\(131\) −1.06630 + 1.84689i −0.0931633 + 0.161364i −0.908841 0.417144i \(-0.863031\pi\)
0.815677 + 0.578507i \(0.196365\pi\)
\(132\) −3.46405 + 9.95662i −0.301507 + 0.866612i
\(133\) 2.65800 1.53460i 0.230478 0.133067i
\(134\) −19.0749 7.20187i −1.64782 0.622147i
\(135\) 0 0
\(136\) 2.96848 + 5.59542i 0.254545 + 0.479803i
\(137\) 8.24344 + 14.2781i 0.704285 + 1.21986i 0.966949 + 0.254969i \(0.0820654\pi\)
−0.262665 + 0.964887i \(0.584601\pi\)
\(138\) −17.0459 + 0.446620i −1.45104 + 0.0380188i
\(139\) −17.4077 10.0504i −1.47650 0.852460i −0.476856 0.878981i \(-0.658224\pi\)
−0.999648 + 0.0265213i \(0.991557\pi\)
\(140\) 0 0
\(141\) −14.0956 10.9395i −1.18706 0.921270i
\(142\) 0.799631 + 4.87474i 0.0671036 + 0.409079i
\(143\) 15.4570i 1.29258i
\(144\) −1.74617 + 11.8723i −0.145514 + 0.989356i
\(145\) 0 0
\(146\) −7.11809 + 1.16762i −0.589097 + 0.0966331i
\(147\) 9.50302 + 1.30424i 0.783796 + 0.107572i
\(148\) 6.61405 + 19.6179i 0.543672 + 1.61258i
\(149\) −1.63133 0.941851i −0.133644 0.0771594i 0.431687 0.902023i \(-0.357918\pi\)
−0.565331 + 0.824864i \(0.691252\pi\)
\(150\) 0 0
\(151\) −5.35919 + 3.09413i −0.436124 + 0.251796i −0.701952 0.712224i \(-0.747688\pi\)
0.265828 + 0.964020i \(0.414355\pi\)
\(152\) −6.34228 + 3.36470i −0.514427 + 0.272913i
\(153\) −4.80246 + 4.69809i −0.388256 + 0.379818i
\(154\) 4.86837 + 1.83809i 0.392304 + 0.148117i
\(155\) 0 0
\(156\) 3.30189 + 17.2822i 0.264363 + 1.38368i
\(157\) 1.90546 + 1.10012i 0.152073 + 0.0877991i 0.574105 0.818781i \(-0.305350\pi\)
−0.422033 + 0.906581i \(0.638683\pi\)
\(158\) 3.37784 + 4.12462i 0.268726 + 0.328137i
\(159\) −6.16540 15.1190i −0.488948 1.19901i
\(160\) 0 0
\(161\) 8.41717i 0.663366i
\(162\) −12.6023 + 1.78385i −0.990130 + 0.140153i
\(163\) 15.3649 1.20347 0.601737 0.798694i \(-0.294475\pi\)
0.601737 + 0.798694i \(0.294475\pi\)
\(164\) −8.38184 1.68533i −0.654512 0.131602i
\(165\) 0 0
\(166\) −0.512840 0.626220i −0.0398041 0.0486041i
\(167\) −19.2472 11.1124i −1.48939 0.859901i −0.489465 0.872023i \(-0.662808\pi\)
−0.999927 + 0.0121218i \(0.996141\pi\)
\(168\) 5.83587 + 1.01516i 0.450247 + 0.0783211i
\(169\) 6.39897 + 11.0833i 0.492229 + 0.852565i
\(170\) 0 0
\(171\) −5.32517 5.44348i −0.407226 0.416274i
\(172\) 6.48381 + 5.70997i 0.494386 + 0.435381i
\(173\) 7.70532 + 13.3460i 0.585825 + 1.01468i 0.994772 + 0.102120i \(0.0325627\pi\)
−0.408947 + 0.912558i \(0.634104\pi\)
\(174\) 6.53742 12.0409i 0.495600 0.912815i
\(175\) 0 0
\(176\) −11.2268 4.70495i −0.846255 0.354649i
\(177\) −15.3179 2.10230i −1.15136 0.158019i
\(178\) 3.35115 0.549708i 0.251179 0.0412024i
\(179\) 12.8229 0.958425 0.479212 0.877699i \(-0.340922\pi\)
0.479212 + 0.877699i \(0.340922\pi\)
\(180\) 0 0
\(181\) 17.3649 1.29072 0.645360 0.763879i \(-0.276707\pi\)
0.645360 + 0.763879i \(0.276707\pi\)
\(182\) 8.57068 1.40590i 0.635301 0.104212i
\(183\) −2.82255 + 3.63688i −0.208649 + 0.268846i
\(184\) 0.705432 19.6770i 0.0520052 1.45061i
\(185\) 0 0
\(186\) −8.02317 + 0.210216i −0.588287 + 0.0154137i
\(187\) −3.40754 5.90204i −0.249184 0.431600i
\(188\) 13.6165 15.4618i 0.993085 1.12767i
\(189\) 0.717316 + 6.24174i 0.0521771 + 0.454020i
\(190\) 0 0
\(191\) −8.91431 15.4400i −0.645017 1.11720i −0.984298 0.176516i \(-0.943517\pi\)
0.339281 0.940685i \(-0.389816\pi\)
\(192\) −13.5576 2.86225i −0.978433 0.206565i
\(193\) −4.22934 2.44181i −0.304434 0.175765i 0.339999 0.940426i \(-0.389573\pi\)
−0.644433 + 0.764661i \(0.722907\pi\)
\(194\) 10.4398 + 12.7479i 0.749533 + 0.915242i
\(195\) 0 0
\(196\) −2.18334 + 10.8587i −0.155953 + 0.775620i
\(197\) 16.8173 1.19818 0.599090 0.800682i \(-0.295529\pi\)
0.599090 + 0.800682i \(0.295529\pi\)
\(198\) 1.41991 12.8330i 0.100909 0.911998i
\(199\) 5.91492i 0.419297i 0.977777 + 0.209649i \(0.0672320\pi\)
−0.977777 + 0.209649i \(0.932768\pi\)
\(200\) 0 0
\(201\) 24.7396 + 3.39539i 1.74500 + 0.239492i
\(202\) 4.28095 + 5.22739i 0.301206 + 0.367798i
\(203\) −5.85712 3.38161i −0.411089 0.237342i
\(204\) −5.07069 5.87103i −0.355019 0.411055i
\(205\) 0 0
\(206\) 12.5146 + 4.72500i 0.871937 + 0.329206i
\(207\) 20.2306 5.18325i 1.40612 0.360260i
\(208\) −20.1537 + 2.56830i −1.39741 + 0.178080i
\(209\) 6.68983 3.86237i 0.462745 0.267166i
\(210\) 0 0
\(211\) 23.9485 + 13.8267i 1.64868 + 0.951868i 0.977596 + 0.210491i \(0.0675063\pi\)
0.671089 + 0.741377i \(0.265827\pi\)
\(212\) 17.8656 6.02328i 1.22702 0.413681i
\(213\) −2.28453 5.60220i −0.156534 0.383856i
\(214\) 25.5407 4.18959i 1.74593 0.286394i
\(215\) 0 0
\(216\) −1.15377 14.6516i −0.0785043 0.996914i
\(217\) 3.96180i 0.268945i
\(218\) −2.34849 14.3169i −0.159060 0.969665i
\(219\) 8.18033 3.33588i 0.552775 0.225418i
\(220\) 0 0
\(221\) −9.85058 5.68724i −0.662622 0.382565i
\(222\) −13.2487 21.6191i −0.889192 1.45098i
\(223\) −11.9737 20.7390i −0.801815 1.38878i −0.918420 0.395606i \(-0.870535\pi\)
0.116605 0.993178i \(-0.462799\pi\)
\(224\) −1.58768 + 6.65306i −0.106082 + 0.444526i
\(225\) 0 0
\(226\) −8.11643 3.06442i −0.539897 0.203842i
\(227\) −5.99253 + 3.45979i −0.397739 + 0.229634i −0.685508 0.728065i \(-0.740420\pi\)
0.287769 + 0.957700i \(0.407086\pi\)
\(228\) 6.65468 5.74751i 0.440717 0.380638i
\(229\) −7.65837 + 13.2647i −0.506080 + 0.876556i 0.493896 + 0.869521i \(0.335572\pi\)
−0.999975 + 0.00703439i \(0.997761\pi\)
\(230\) 0 0
\(231\) −6.31414 0.866584i −0.415440 0.0570170i
\(232\) 13.4089 + 8.39613i 0.880337 + 0.551233i
\(233\) −6.61050 −0.433068 −0.216534 0.976275i \(-0.569475\pi\)
−0.216534 + 0.976275i \(0.569475\pi\)
\(234\) −8.65683 19.7338i −0.565915 1.29004i
\(235\) 0 0
\(236\) 3.51932 17.5031i 0.229088 1.13935i
\(237\) −5.15823 4.00326i −0.335063 0.260040i
\(238\) −2.96266 + 2.42625i −0.192041 + 0.157271i
\(239\) 4.11060 7.11976i 0.265892 0.460539i −0.701905 0.712271i \(-0.747667\pi\)
0.967797 + 0.251732i \(0.0810001\pi\)
\(240\) 0 0
\(241\) −7.30777 12.6574i −0.470735 0.815337i 0.528705 0.848806i \(-0.322678\pi\)
−0.999440 + 0.0334691i \(0.989344\pi\)
\(242\) −2.30058 0.868600i −0.147887 0.0558357i
\(243\) 14.5602 5.56769i 0.934040 0.357168i
\(244\) −3.98940 3.51327i −0.255395 0.224914i
\(245\) 0 0
\(246\) 10.4675 0.274259i 0.667382 0.0174861i
\(247\) 6.44635 11.1654i 0.410172 0.710438i
\(248\) 0.332033 9.26159i 0.0210841 0.588111i
\(249\) 0.783148 + 0.607794i 0.0496300 + 0.0385174i
\(250\) 0 0
\(251\) −2.39191 −0.150976 −0.0754880 0.997147i \(-0.524051\pi\)
−0.0754880 + 0.997147i \(0.524051\pi\)
\(252\) −7.24483 + 0.379905i −0.456381 + 0.0239318i
\(253\) 21.1849i 1.33188i
\(254\) −2.15465 13.1352i −0.135195 0.824177i
\(255\) 0 0
\(256\) 4.26915 15.4199i 0.266822 0.963746i
\(257\) −4.22474 + 7.31747i −0.263532 + 0.456451i −0.967178 0.254100i \(-0.918221\pi\)
0.703646 + 0.710551i \(0.251554\pi\)
\(258\) −9.29916 5.04885i −0.578941 0.314328i
\(259\) −10.8394 + 6.25812i −0.673526 + 0.388860i
\(260\) 0 0
\(261\) −4.52088 + 16.1599i −0.279835 + 1.00027i
\(262\) 2.82155 + 1.06530i 0.174316 + 0.0658143i
\(263\) 5.59733 3.23162i 0.345146 0.199270i −0.317399 0.948292i \(-0.602810\pi\)
0.662545 + 0.749022i \(0.269476\pi\)
\(264\) 14.6881 + 2.55501i 0.903989 + 0.157250i
\(265\) 0 0
\(266\) −2.75010 3.35810i −0.168620 0.205899i
\(267\) −3.85124 + 1.57051i −0.235692 + 0.0961135i
\(268\) −5.68399 + 28.2689i −0.347205 + 1.72680i
\(269\) 6.14888i 0.374904i −0.982274 0.187452i \(-0.939977\pi\)
0.982274 0.187452i \(-0.0600229\pi\)
\(270\) 0 0
\(271\) 0.446839i 0.0271436i −0.999908 0.0135718i \(-0.995680\pi\)
0.999908 0.0135718i \(-0.00432016\pi\)
\(272\) 7.12921 5.42361i 0.432272 0.328855i
\(273\) −9.84968 + 4.01663i −0.596130 + 0.243097i
\(274\) 18.0388 14.7728i 1.08976 0.892457i
\(275\) 0 0
\(276\) 4.52547 + 23.6864i 0.272401 + 1.42575i
\(277\) 5.91710 3.41624i 0.355524 0.205262i −0.311592 0.950216i \(-0.600862\pi\)
0.667115 + 0.744954i \(0.267529\pi\)
\(278\) −10.0409 + 26.5943i −0.602212 + 1.59502i
\(279\) 9.52214 2.43965i 0.570076 0.146058i
\(280\) 0 0
\(281\) −2.85059 + 1.64579i −0.170052 + 0.0981794i −0.582610 0.812752i \(-0.697969\pi\)
0.412559 + 0.910931i \(0.364635\pi\)
\(282\) −12.0399 + 22.1756i −0.716967 + 1.32054i
\(283\) 11.7187 20.2974i 0.696603 1.20655i −0.273034 0.962004i \(-0.588027\pi\)
0.969637 0.244548i \(-0.0786395\pi\)
\(284\) 6.61994 2.23187i 0.392821 0.132437i
\(285\) 0 0
\(286\) 21.5712 3.53845i 1.27553 0.209233i
\(287\) 5.16879i 0.305104i
\(288\) 16.9682 0.280933i 0.999863 0.0165541i
\(289\) −11.9849 −0.704996
\(290\) 0 0
\(291\) −15.9424 12.3728i −0.934560 0.725304i
\(292\) 3.25898 + 9.66644i 0.190717 + 0.565686i
\(293\) 13.9565 24.1734i 0.815349 1.41223i −0.0937278 0.995598i \(-0.529878\pi\)
0.909077 0.416628i \(-0.136788\pi\)
\(294\) −0.355303 13.5606i −0.0207217 0.790872i
\(295\) 0 0
\(296\) 25.8639 13.7213i 1.50331 0.797535i
\(297\) 1.80539 + 15.7096i 0.104759 + 0.911564i
\(298\) −0.940963 + 2.49224i −0.0545085 + 0.144371i
\(299\) 17.6789 + 30.6208i 1.02240 + 1.77085i
\(300\) 0 0
\(301\) −2.61162 + 4.52345i −0.150531 + 0.260727i
\(302\) 5.54488 + 6.77076i 0.319072 + 0.389614i
\(303\) −6.53735 5.07358i −0.375561 0.291470i
\(304\) 6.14754 + 8.08080i 0.352586 + 0.463466i
\(305\) 0 0
\(306\) 7.65586 + 5.62664i 0.437657 + 0.321654i
\(307\) −22.5939 −1.28950 −0.644750 0.764393i \(-0.723039\pi\)
−0.644750 + 0.764393i \(0.723039\pi\)
\(308\) 1.45069 7.21489i 0.0826607 0.411107i
\(309\) −16.2312 2.22764i −0.923358 0.126726i
\(310\) 0 0
\(311\) −2.94543 + 5.10164i −0.167020 + 0.289287i −0.937371 0.348333i \(-0.886748\pi\)
0.770351 + 0.637620i \(0.220081\pi\)
\(312\) 23.3624 8.56427i 1.32264 0.484856i
\(313\) −6.72675 + 3.88369i −0.380218 + 0.219519i −0.677913 0.735142i \(-0.737115\pi\)
0.297695 + 0.954661i \(0.403782\pi\)
\(314\) 1.09908 2.91104i 0.0620249 0.164279i
\(315\) 0 0
\(316\) 4.98291 5.65820i 0.280310 0.318299i
\(317\) −5.88545 10.1939i −0.330560 0.572547i 0.652062 0.758166i \(-0.273904\pi\)
−0.982622 + 0.185619i \(0.940571\pi\)
\(318\) −19.6881 + 12.0653i −1.10405 + 0.676587i
\(319\) −14.7416 8.51104i −0.825369 0.476527i
\(320\) 0 0
\(321\) −29.3522 + 11.9696i −1.63828 + 0.668077i
\(322\) 11.7467 1.92688i 0.654618 0.107381i
\(323\) 5.68447i 0.316293i
\(324\) 5.37442 + 17.1789i 0.298579 + 0.954385i
\(325\) 0 0
\(326\) −3.51737 21.4427i −0.194809 1.18760i
\(327\) 6.70960 + 16.4535i 0.371042 + 0.909879i
\(328\) −0.433190 + 12.0832i −0.0239189 + 0.667183i
\(329\) 10.7870 + 6.22788i 0.594707 + 0.343354i
\(330\) 0 0
\(331\) 3.74464 2.16197i 0.205824 0.118833i −0.393545 0.919305i \(-0.628751\pi\)
0.599369 + 0.800473i \(0.295418\pi\)
\(332\) −0.756529 + 0.859056i −0.0415199 + 0.0471468i
\(333\) 21.7161 + 22.1986i 1.19004 + 1.21648i
\(334\) −11.1019 + 29.4045i −0.607469 + 1.60894i
\(335\) 0 0
\(336\) 0.0807555 8.37671i 0.00440557 0.456987i
\(337\) −6.72910 3.88505i −0.366558 0.211632i 0.305396 0.952225i \(-0.401211\pi\)
−0.671953 + 0.740593i \(0.734545\pi\)
\(338\) 14.0026 11.4674i 0.761643 0.623744i
\(339\) 10.5268 + 1.44475i 0.571737 + 0.0784679i
\(340\) 0 0
\(341\) 9.97131i 0.539977i
\(342\) −6.37767 + 8.67775i −0.344865 + 0.469239i
\(343\) −15.1601 −0.818568
\(344\) 6.48434 10.3557i 0.349612 0.558342i
\(345\) 0 0
\(346\) 16.8613 13.8085i 0.906468 0.742347i
\(347\) 9.75677 + 5.63307i 0.523771 + 0.302399i 0.738476 0.674280i \(-0.235546\pi\)
−0.214705 + 0.976679i \(0.568879\pi\)
\(348\) −18.3003 6.36696i −0.981001 0.341305i
\(349\) −11.1403 19.2956i −0.596326 1.03287i −0.993358 0.115063i \(-0.963293\pi\)
0.397032 0.917805i \(-0.370040\pi\)
\(350\) 0 0
\(351\) 15.7193 + 21.2002i 0.839034 + 1.13158i
\(352\) −3.99598 + 16.7448i −0.212986 + 0.892502i
\(353\) 11.0323 + 19.1084i 0.587188 + 1.01704i 0.994599 + 0.103794i \(0.0330983\pi\)
−0.407411 + 0.913245i \(0.633568\pi\)
\(354\) 0.572712 + 21.8583i 0.0304393 + 1.16176i
\(355\) 0 0
\(356\) −1.53431 4.55090i −0.0813180 0.241197i
\(357\) 2.87548 3.70509i 0.152187 0.196094i
\(358\) −2.93544 17.8951i −0.155143 0.945785i
\(359\) −1.70332 −0.0898978 −0.0449489 0.998989i \(-0.514313\pi\)
−0.0449489 + 0.998989i \(0.514313\pi\)
\(360\) 0 0
\(361\) 12.5568 0.660883
\(362\) −3.97520 24.2337i −0.208932 1.27370i
\(363\) 2.98379 + 0.409509i 0.156608 + 0.0214937i
\(364\) −3.92404 11.6391i −0.205675 0.610053i
\(365\) 0 0
\(366\) 5.72164 + 3.10649i 0.299075 + 0.162379i
\(367\) −4.71076 8.15927i −0.245900 0.425910i 0.716485 0.697603i \(-0.245750\pi\)
−0.962384 + 0.271692i \(0.912417\pi\)
\(368\) −27.6220 + 3.52003i −1.43990 + 0.183494i
\(369\) −12.4231 + 3.18291i −0.646722 + 0.165696i
\(370\) 0 0
\(371\) 5.69914 + 9.87119i 0.295884 + 0.512487i
\(372\) 2.13005 + 11.1487i 0.110438 + 0.578034i
\(373\) 12.6314 + 7.29277i 0.654031 + 0.377605i 0.789999 0.613108i \(-0.210081\pi\)
−0.135968 + 0.990713i \(0.543414\pi\)
\(374\) −7.45660 + 6.10655i −0.385572 + 0.315762i
\(375\) 0 0
\(376\) −24.6951 15.4631i −1.27355 0.797449i
\(377\) −28.4101 −1.46319
\(378\) 8.54654 2.42993i 0.439586 0.124982i
\(379\) 9.46065i 0.485961i −0.970031 0.242980i \(-0.921875\pi\)
0.970031 0.242980i \(-0.0781251\pi\)
\(380\) 0 0
\(381\) 6.15579 + 15.0954i 0.315371 + 0.773361i
\(382\) −19.5068 + 15.9750i −0.998057 + 0.817354i
\(383\) 5.94105 + 3.43007i 0.303573 + 0.175268i 0.644047 0.764986i \(-0.277254\pi\)
−0.340474 + 0.940254i \(0.610587\pi\)
\(384\) −0.890825 + 19.5757i −0.0454597 + 0.998966i
\(385\) 0 0
\(386\) −2.43951 + 6.46129i −0.124168 + 0.328871i
\(387\) 12.4803 + 3.49148i 0.634409 + 0.177482i
\(388\) 15.4005 17.4876i 0.781843 0.887801i
\(389\) −7.11643 + 4.10868i −0.360818 + 0.208318i −0.669439 0.742867i \(-0.733466\pi\)
0.308622 + 0.951185i \(0.400132\pi\)
\(390\) 0 0
\(391\) −13.5009 7.79474i −0.682769 0.394197i
\(392\) 15.6538 + 0.561197i 0.790635 + 0.0283447i
\(393\) −3.65948 0.502244i −0.184596 0.0253349i
\(394\) −3.84984 23.4695i −0.193952 1.18238i
\(395\) 0 0
\(396\) −18.2342 + 0.956169i −0.916305 + 0.0480493i
\(397\) 7.07936i 0.355303i −0.984093 0.177651i \(-0.943150\pi\)
0.984093 0.177651i \(-0.0568499\pi\)
\(398\) 8.25463 1.35406i 0.413767 0.0678727i
\(399\) 4.19963 + 3.25930i 0.210244 + 0.163169i
\(400\) 0 0
\(401\) −15.3220 8.84615i −0.765143 0.441755i 0.0659963 0.997820i \(-0.478977\pi\)
−0.831139 + 0.556064i \(0.812311\pi\)
\(402\) −0.924976 35.3030i −0.0461336 1.76075i
\(403\) 8.32112 + 14.4126i 0.414505 + 0.717943i
\(404\) 6.31514 7.17099i 0.314190 0.356770i
\(405\) 0 0
\(406\) −3.37842 + 8.94810i −0.167668 + 0.444087i
\(407\) −27.2812 + 15.7508i −1.35228 + 0.780739i
\(408\) −7.03260 + 8.42047i −0.348166 + 0.416875i
\(409\) −11.3542 + 19.6660i −0.561428 + 0.972422i 0.435944 + 0.899974i \(0.356415\pi\)
−0.997372 + 0.0724482i \(0.976919\pi\)
\(410\) 0 0
\(411\) −17.5080 + 22.5593i −0.863608 + 1.11277i
\(412\) 3.72915 18.5466i 0.183722 0.913727i
\(413\) 10.7935 0.531115
\(414\) −11.8648 27.0465i −0.583122 1.32926i
\(415\) 0 0
\(416\) 8.19785 + 27.5378i 0.401933 + 1.35015i
\(417\) 4.73387 34.4921i 0.231818 1.68909i
\(418\) −6.92163 8.45189i −0.338548 0.413395i
\(419\) −13.1805 + 22.8292i −0.643908 + 1.11528i 0.340645 + 0.940192i \(0.389355\pi\)
−0.984553 + 0.175089i \(0.943979\pi\)
\(420\) 0 0
\(421\) −8.57768 14.8570i −0.418050 0.724084i 0.577693 0.816254i \(-0.303953\pi\)
−0.995743 + 0.0921697i \(0.970620\pi\)
\(422\) 13.8137 36.5869i 0.672438 1.78102i
\(423\) 8.32607 29.7616i 0.404828 1.44706i
\(424\) −12.4957 23.5537i −0.606845 1.14387i
\(425\) 0 0
\(426\) −7.29523 + 4.47068i −0.353455 + 0.216605i
\(427\) 1.60689 2.78322i 0.0777629 0.134689i
\(428\) −11.6937 34.6846i −0.565235 1.67654i
\(429\) −24.7903 + 10.1093i −1.19689 + 0.488082i
\(430\) 0 0
\(431\) 12.5816 0.606037 0.303018 0.952985i \(-0.402006\pi\)
0.303018 + 0.952985i \(0.402006\pi\)
\(432\) −20.1831 + 4.96424i −0.971058 + 0.238842i
\(433\) 11.7433i 0.564346i 0.959364 + 0.282173i \(0.0910553\pi\)
−0.959364 + 0.282173i \(0.908945\pi\)
\(434\) 5.52894 0.906944i 0.265398 0.0435347i
\(435\) 0 0
\(436\) −19.4426 + 6.55493i −0.931130 + 0.313924i
\(437\) 8.83516 15.3030i 0.422643 0.732039i
\(438\) −6.52808 10.6525i −0.311924 0.508996i
\(439\) −1.45738 + 0.841421i −0.0695571 + 0.0401588i −0.534375 0.845247i \(-0.679453\pi\)
0.464818 + 0.885406i \(0.346120\pi\)
\(440\) 0 0
\(441\) 4.12346 + 16.0942i 0.196355 + 0.766389i
\(442\) −5.68188 + 15.0490i −0.270259 + 0.715810i
\(443\) −0.657331 + 0.379510i −0.0312307 + 0.0180311i −0.515534 0.856869i \(-0.672406\pi\)
0.484303 + 0.874900i \(0.339073\pi\)
\(444\) −27.1379 + 23.4384i −1.28791 + 1.11234i
\(445\) 0 0
\(446\) −26.2015 + 21.4576i −1.24068 + 1.01605i
\(447\) 0.443626 3.23237i 0.0209828 0.152886i
\(448\) 9.64821 + 0.692678i 0.455835 + 0.0327260i
\(449\) 17.4579i 0.823887i 0.911209 + 0.411943i \(0.135150\pi\)
−0.911209 + 0.411943i \(0.864850\pi\)
\(450\) 0 0
\(451\) 13.0091i 0.612576i
\(452\) −2.41856 + 12.0285i −0.113759 + 0.565773i
\(453\) −8.46749 6.57154i −0.397837 0.308758i
\(454\) 6.20018 + 7.57093i 0.290989 + 0.355322i
\(455\) 0 0
\(456\) −9.54441 7.97130i −0.446958 0.373290i
\(457\) −30.1929 + 17.4319i −1.41237 + 0.815430i −0.995611 0.0935884i \(-0.970166\pi\)
−0.416756 + 0.909019i \(0.636833\pi\)
\(458\) 20.2649 + 7.65116i 0.946916 + 0.357515i
\(459\) −10.6758 4.62963i −0.498306 0.216093i
\(460\) 0 0
\(461\) 27.0906 15.6407i 1.26173 0.728462i 0.288324 0.957533i \(-0.406902\pi\)
0.973410 + 0.229071i \(0.0735688\pi\)
\(462\) 0.236076 + 9.01016i 0.0109832 + 0.419191i
\(463\) −5.14137 + 8.90511i −0.238940 + 0.413856i −0.960410 0.278589i \(-0.910133\pi\)
0.721471 + 0.692445i \(0.243466\pi\)
\(464\) 8.64773 20.6350i 0.401461 0.957957i
\(465\) 0 0
\(466\) 1.51329 + 9.22537i 0.0701018 + 0.427357i
\(467\) 2.90585i 0.134467i −0.997737 0.0672333i \(-0.978583\pi\)
0.997737 0.0672333i \(-0.0214172\pi\)
\(468\) −25.5580 + 16.5987i −1.18142 + 0.767273i
\(469\) −17.4324 −0.804955
\(470\) 0 0
\(471\) −0.518173 + 3.77554i −0.0238761 + 0.173967i
\(472\) −25.2323 0.904592i −1.16141 0.0416372i
\(473\) −6.57308 + 11.3849i −0.302231 + 0.523479i
\(474\) −4.40597 + 8.11507i −0.202373 + 0.372738i
\(475\) 0 0
\(476\) 4.06421 + 3.57915i 0.186283 + 0.164050i
\(477\) 20.2158 19.7764i 0.925618 0.905501i
\(478\) −10.8771 4.10672i −0.497506 0.187837i
\(479\) 9.42773 + 16.3293i 0.430764 + 0.746105i 0.996939 0.0781799i \(-0.0249109\pi\)
−0.566175 + 0.824285i \(0.691578\pi\)
\(480\) 0 0
\(481\) −26.2883 + 45.5327i −1.19864 + 2.07611i
\(482\) −15.9913 + 13.0960i −0.728385 + 0.596507i
\(483\) −13.4997 + 5.50506i −0.614256 + 0.250489i
\(484\) −0.685532 + 3.40944i −0.0311605 + 0.154975i
\(485\) 0 0
\(486\) −11.1032 19.0452i −0.503653 0.863906i
\(487\) 11.5696 0.524268 0.262134 0.965031i \(-0.415574\pi\)
0.262134 + 0.965031i \(0.415574\pi\)
\(488\) −3.98972 + 6.37172i −0.180606 + 0.288434i
\(489\) 10.0491 + 24.6426i 0.454435 + 1.11438i
\(490\) 0 0
\(491\) 0.747617 1.29491i 0.0337395 0.0584385i −0.848663 0.528935i \(-0.822592\pi\)
0.882402 + 0.470496i \(0.155925\pi\)
\(492\) −2.77899 14.5452i −0.125286 0.655750i
\(493\) 10.8480 6.26309i 0.488569 0.282075i
\(494\) −17.0577 6.44028i −0.767464 0.289762i
\(495\) 0 0
\(496\) −13.0011 + 1.65681i −0.583768 + 0.0743930i
\(497\) 2.11176 + 3.65768i 0.0947255 + 0.164069i
\(498\) 0.668935 1.23207i 0.0299757 0.0552103i
\(499\) 27.2612 + 15.7393i 1.22038 + 0.704586i 0.964999 0.262254i \(-0.0844660\pi\)
0.255380 + 0.966841i \(0.417799\pi\)
\(500\) 0 0
\(501\) 5.23409 38.1369i 0.233842 1.70383i
\(502\) 0.547562 + 3.33806i 0.0244389 + 0.148985i
\(503\) 1.90449i 0.0849171i −0.999098 0.0424585i \(-0.986481\pi\)
0.999098 0.0424585i \(-0.0135190\pi\)
\(504\) 2.18868 + 10.0236i 0.0974917 + 0.446489i
\(505\) 0 0
\(506\) 29.5648 4.84969i 1.31432 0.215595i
\(507\) −13.5906 + 17.5116i −0.603581 + 0.777719i
\(508\) −17.8378 + 6.01389i −0.791423 + 0.266823i
\(509\) −27.2228 15.7171i −1.20663 0.696647i −0.244607 0.969622i \(-0.578659\pi\)
−0.962021 + 0.272975i \(0.911992\pi\)
\(510\) 0 0
\(511\) −5.34094 + 3.08360i −0.236269 + 0.136410i
\(512\) −22.4968 2.42789i −0.994227 0.107299i
\(513\) 5.24758 12.1008i 0.231686 0.534264i
\(514\) 11.1791 + 4.22076i 0.493090 + 0.186170i
\(515\) 0 0
\(516\) −4.91720 + 14.1334i −0.216468 + 0.622186i
\(517\) 27.1494 + 15.6747i 1.19403 + 0.689374i
\(518\) 11.2150 + 13.6944i 0.492757 + 0.601698i
\(519\) −16.3652 + 21.0866i −0.718350 + 0.925600i
\(520\) 0 0
\(521\) 23.2742i 1.01966i −0.860275 0.509831i \(-0.829708\pi\)
0.860275 0.509831i \(-0.170292\pi\)
\(522\) 23.5871 + 2.60981i 1.03238 + 0.114228i
\(523\) −10.8804 −0.475769 −0.237884 0.971293i \(-0.576454\pi\)
−0.237884 + 0.971293i \(0.576454\pi\)
\(524\) 0.840774 4.18152i 0.0367294 0.182671i
\(525\) 0 0
\(526\) −5.79128 7.07163i −0.252512 0.308338i
\(527\) −6.35461 3.66883i −0.276811 0.159817i
\(528\) 0.203250 21.0830i 0.00884534 0.917521i
\(529\) 12.7302 + 22.0493i 0.553485 + 0.958664i
\(530\) 0 0
\(531\) −6.64660 25.9422i −0.288438 1.12579i
\(532\) −4.05689 + 4.60669i −0.175888 + 0.199725i
\(533\) −10.8562 18.8035i −0.470235 0.814470i
\(534\) 3.07338 + 5.01513i 0.132998 + 0.217026i
\(535\) 0 0
\(536\) 40.7522 + 1.46099i 1.76023 + 0.0631052i
\(537\) 8.38649 + 20.5656i 0.361904 + 0.887471i
\(538\) −8.58115 + 1.40762i −0.369960 + 0.0606867i
\(539\) −16.8533 −0.725925
\(540\) 0 0
\(541\) −6.53795 −0.281088 −0.140544 0.990074i \(-0.544885\pi\)
−0.140544 + 0.990074i \(0.544885\pi\)
\(542\) −0.623592 + 0.102291i −0.0267856 + 0.00439379i
\(543\) 11.3571 + 27.8502i 0.487379 + 1.19516i
\(544\) −9.20102 8.70767i −0.394491 0.373338i
\(545\) 0 0
\(546\) 7.86027 + 12.8264i 0.336388 + 0.548917i
\(547\) −13.2886 23.0165i −0.568178 0.984113i −0.996746 0.0806034i \(-0.974315\pi\)
0.428569 0.903509i \(-0.359018\pi\)
\(548\) −24.7458 21.7925i −1.05709 0.930928i
\(549\) −7.67895 2.14826i −0.327729 0.0916854i
\(550\) 0 0
\(551\) 7.09907 + 12.2959i 0.302431 + 0.523825i
\(552\) 32.0198 11.7379i 1.36285 0.499599i
\(553\) 3.94747 + 2.27907i 0.167863 + 0.0969160i
\(554\) −6.12213 7.47562i −0.260104 0.317609i
\(555\) 0 0
\(556\) 39.4126 + 7.92465i 1.67147 + 0.336080i
\(557\) 8.68248 0.367889 0.183944 0.982937i \(-0.441113\pi\)
0.183944 + 0.982937i \(0.441113\pi\)
\(558\) −5.58452 12.7303i −0.236412 0.538915i
\(559\) 21.9411i 0.928010i
\(560\) 0 0
\(561\) 7.23720 9.32519i 0.305555 0.393710i
\(562\) 2.94936 + 3.60141i 0.124411 + 0.151916i
\(563\) −27.4226 15.8324i −1.15572 0.667257i −0.205448 0.978668i \(-0.565865\pi\)
−0.950275 + 0.311411i \(0.899199\pi\)
\(564\) 33.7036 + 11.7260i 1.41918 + 0.493753i
\(565\) 0 0
\(566\) −31.0089 11.7076i −1.30340 0.492109i
\(567\) −9.54151 + 5.23272i −0.400706 + 0.219754i
\(568\) −4.63017 8.72762i −0.194278 0.366203i
\(569\) −27.9697 + 16.1483i −1.17255 + 0.676973i −0.954280 0.298915i \(-0.903375\pi\)
−0.218272 + 0.975888i \(0.570042\pi\)
\(570\) 0 0
\(571\) −12.7245 7.34651i −0.532505 0.307442i 0.209531 0.977802i \(-0.432806\pi\)
−0.742036 + 0.670360i \(0.766140\pi\)
\(572\) −9.87626 29.2939i −0.412947 1.22484i
\(573\) 18.9329 24.3952i 0.790932 1.01912i
\(574\) −7.21337 + 1.18325i −0.301080 + 0.0493879i
\(575\) 0 0
\(576\) −4.27647 23.6159i −0.178186 0.983997i
\(577\) 22.4886i 0.936214i −0.883672 0.468107i \(-0.844936\pi\)
0.883672 0.468107i \(-0.155064\pi\)
\(578\) 2.74362 + 16.7257i 0.114119 + 0.695698i
\(579\) 1.15013 8.38012i 0.0477977 0.348266i
\(580\) 0 0
\(581\) −0.599324 0.346020i −0.0248641 0.0143553i
\(582\) −13.6174 + 25.0810i −0.564459 + 1.03964i
\(583\) 14.3439 + 24.8444i 0.594065 + 1.02895i
\(584\) 12.7441 6.76097i 0.527354 0.279771i
\(585\) 0 0
\(586\) −36.9305 13.9434i −1.52558 0.575996i
\(587\) 29.8752 17.2484i 1.23308 0.711919i 0.265409 0.964136i \(-0.414493\pi\)
0.967671 + 0.252217i \(0.0811597\pi\)
\(588\) −18.8434 + 3.60018i −0.777087 + 0.148469i
\(589\) 4.15854 7.20280i 0.171350 0.296786i
\(590\) 0 0
\(591\) 10.9989 + 26.9719i 0.452436 + 1.10948i
\(592\) −25.0698 32.9536i −1.03036 1.35439i
\(593\) −11.5133 −0.472794 −0.236397 0.971656i \(-0.575967\pi\)
−0.236397 + 0.971656i \(0.575967\pi\)
\(594\) 21.5105 6.11581i 0.882585 0.250935i
\(595\) 0 0
\(596\) 3.69348 + 0.742644i 0.151291 + 0.0304199i
\(597\) −9.48648 + 3.86852i −0.388256 + 0.158328i
\(598\) 38.6861 31.6818i 1.58199 1.29557i
\(599\) 17.8060 30.8410i 0.727535 1.26013i −0.230387 0.973099i \(-0.573999\pi\)
0.957922 0.287028i \(-0.0926674\pi\)
\(600\) 0 0
\(601\) −20.4137 35.3576i −0.832693 1.44227i −0.895895 0.444266i \(-0.853465\pi\)
0.0632021 0.998001i \(-0.479869\pi\)
\(602\) 6.91062 + 2.60916i 0.281656 + 0.106341i
\(603\) 10.7348 + 41.8987i 0.437155 + 1.70625i
\(604\) 8.17968 9.28821i 0.332826 0.377932i
\(605\) 0 0
\(606\) −5.58395 + 10.2847i −0.226833 + 0.417789i
\(607\) 1.09711 1.90026i 0.0445304 0.0771290i −0.842901 0.538069i \(-0.819154\pi\)
0.887432 + 0.460940i \(0.152487\pi\)
\(608\) 9.86995 10.4292i 0.400279 0.422958i
\(609\) 1.59279 11.6054i 0.0645430 0.470276i
\(610\) 0 0
\(611\) 52.3227 2.11675
\(612\) 6.09973 11.9723i 0.246567 0.483951i
\(613\) 38.7673i 1.56580i −0.622149 0.782899i \(-0.713740\pi\)
0.622149 0.782899i \(-0.286260\pi\)
\(614\) 5.17224 + 31.5312i 0.208735 + 1.27249i
\(615\) 0 0
\(616\) −10.4009 0.372879i −0.419065 0.0150237i
\(617\) 7.42778 12.8653i 0.299031 0.517937i −0.676884 0.736090i \(-0.736670\pi\)
0.975915 + 0.218153i \(0.0700033\pi\)
\(618\) 0.606857 + 23.1616i 0.0244114 + 0.931694i
\(619\) 12.3383 7.12352i 0.495918 0.286318i −0.231108 0.972928i \(-0.574235\pi\)
0.727026 + 0.686610i \(0.240902\pi\)
\(620\) 0 0
\(621\) 21.5444 + 29.0563i 0.864545 + 1.16599i
\(622\) 7.79393 + 2.94266i 0.312508 + 0.117990i
\(623\) 2.51448 1.45174i 0.100741 0.0581626i
\(624\) −17.3002 30.6432i −0.692561 1.22671i
\(625\) 0 0
\(626\) 6.95983 + 8.49853i 0.278171 + 0.339670i
\(627\) 10.5699 + 8.20320i 0.422121 + 0.327604i
\(628\) −4.31414 0.867439i −0.172153 0.0346146i
\(629\) 23.1814i 0.924302i
\(630\) 0 0
\(631\) 38.8200i 1.54540i −0.634772 0.772700i \(-0.718906\pi\)
0.634772 0.772700i \(-0.281094\pi\)
\(632\) −9.03707 5.65867i −0.359476 0.225090i
\(633\) −6.51258 + 47.4522i −0.258852 + 1.88606i
\(634\) −12.8789 + 10.5471i −0.511487 + 0.418880i
\(635\) 0 0
\(636\) 21.3449 + 24.7139i 0.846380 + 0.979971i
\(637\) −24.3599 + 14.0642i −0.965176 + 0.557245i
\(638\) −8.50302 + 22.5211i −0.336638 + 0.891620i
\(639\) 7.49078 7.32798i 0.296331 0.289890i
\(640\) 0 0
\(641\) 16.5595 9.56061i 0.654060 0.377621i −0.135950 0.990716i \(-0.543409\pi\)
0.790010 + 0.613094i \(0.210075\pi\)
\(642\) 23.4237 + 38.2227i 0.924459 + 1.50853i
\(643\) 3.28595 5.69143i 0.129585 0.224448i −0.793931 0.608008i \(-0.791969\pi\)
0.923516 + 0.383560i \(0.125302\pi\)
\(644\) −5.37816 15.9521i −0.211929 0.628602i
\(645\) 0 0
\(646\) 7.93304 1.30130i 0.312121 0.0511991i
\(647\) 12.7191i 0.500040i 0.968241 + 0.250020i \(0.0804373\pi\)
−0.968241 + 0.250020i \(0.919563\pi\)
\(648\) 22.7439 11.4330i 0.893466 0.449130i
\(649\) 27.1658 1.06635
\(650\) 0 0
\(651\) −6.35403 + 2.59112i −0.249034 + 0.101554i
\(652\) −29.1195 + 9.81743i −1.14041 + 0.384480i
\(653\) −22.0410 + 38.1762i −0.862532 + 1.49395i 0.00694441 + 0.999976i \(0.497790\pi\)
−0.869477 + 0.493974i \(0.835544\pi\)
\(654\) 21.4259 13.1302i 0.837817 0.513433i
\(655\) 0 0
\(656\) 16.9620 2.16157i 0.662256 0.0843951i
\(657\) 10.7003 + 10.9380i 0.417459 + 0.426734i
\(658\) 6.22201 16.4796i 0.242559 0.642444i
\(659\) −10.8929 18.8671i −0.424328 0.734957i 0.572030 0.820233i \(-0.306156\pi\)
−0.996357 + 0.0852757i \(0.972823\pi\)
\(660\) 0 0
\(661\) −10.2756 + 17.7979i −0.399676 + 0.692260i −0.993686 0.112198i \(-0.964211\pi\)
0.594009 + 0.804458i \(0.297544\pi\)
\(662\) −3.87439 4.73096i −0.150583 0.183874i
\(663\) 2.67877 19.5182i 0.104035 0.758024i
\(664\) 1.37205 + 0.859126i 0.0532460 + 0.0333406i
\(665\) 0 0
\(666\) 26.0082 35.3880i 1.00780 1.37126i
\(667\) −38.9379 −1.50768
\(668\) 43.5773 + 8.76204i 1.68606 + 0.339014i
\(669\) 25.4305 32.7675i 0.983202 1.26686i
\(670\) 0 0
\(671\) 4.04432 7.00497i 0.156129 0.270424i
\(672\) −11.7087 + 1.80492i −0.451673 + 0.0696262i
\(673\) 1.88576 1.08874i 0.0726906 0.0419680i −0.463214 0.886246i \(-0.653304\pi\)
0.535905 + 0.844278i \(0.319971\pi\)
\(674\) −3.88139 + 10.2803i −0.149505 + 0.395981i
\(675\) 0 0
\(676\) −19.2090 16.9164i −0.738807 0.650631i
\(677\) 1.11336 + 1.92840i 0.0427899 + 0.0741143i 0.886627 0.462485i \(-0.153042\pi\)
−0.843837 + 0.536599i \(0.819709\pi\)
\(678\) −0.393580 15.0215i −0.0151153 0.576898i
\(679\) 12.2003 + 7.04386i 0.468205 + 0.270319i
\(680\) 0 0
\(681\) −9.46817 7.34817i −0.362821 0.281582i
\(682\) 13.9156 2.28265i 0.532855 0.0874073i
\(683\) 12.9800i 0.496665i −0.968675 0.248333i \(-0.920117\pi\)
0.968675 0.248333i \(-0.0798826\pi\)
\(684\) 13.5703 + 6.91391i 0.518874 + 0.264360i
\(685\) 0 0
\(686\) 3.47048 + 21.1568i 0.132504 + 0.807772i
\(687\) −26.2830 3.60721i −1.00276 0.137624i
\(688\) −15.9364 6.67865i −0.607571 0.254621i
\(689\) 41.4657 + 23.9402i 1.57972 + 0.912050i
\(690\) 0 0
\(691\) 24.1859 13.9637i 0.920074 0.531205i 0.0364156 0.999337i \(-0.488406\pi\)
0.883659 + 0.468132i \(0.155073\pi\)
\(692\) −23.1305 20.3699i −0.879289 0.774347i
\(693\) −2.73977 10.6935i −0.104075 0.406214i
\(694\) 5.62776 14.9057i 0.213627 0.565813i
\(695\) 0 0
\(696\) −4.69613 + 26.9968i −0.178006 + 1.02331i
\(697\) 8.29058 + 4.78657i 0.314028 + 0.181304i
\(698\) −24.3779 + 19.9642i −0.922717 + 0.755655i
\(699\) −4.32345 10.6021i −0.163528 0.401007i
\(700\) 0 0
\(701\) 31.0643i 1.17328i 0.809847 + 0.586641i \(0.199550\pi\)
−0.809847 + 0.586641i \(0.800450\pi\)
\(702\) 25.9877 26.7905i 0.980842 1.01114i
\(703\) 26.2756 0.991001
\(704\) 24.2832 + 1.74338i 0.915208 + 0.0657060i
\(705\) 0 0
\(706\) 24.1415 19.7705i 0.908576 0.744074i
\(707\) 5.00287 + 2.88841i 0.188152 + 0.108630i
\(708\) 30.3736 5.80311i 1.14151 0.218094i
\(709\) −21.7239 37.6269i −0.815859 1.41311i −0.908710 0.417429i \(-0.862931\pi\)
0.0928511 0.995680i \(-0.470402\pi\)
\(710\) 0 0
\(711\) 3.04690 10.8911i 0.114268 0.408449i
\(712\) −5.99982 + 3.18302i −0.224853 + 0.119289i
\(713\) 11.4047 + 19.7535i 0.427108 + 0.739773i
\(714\) −5.82894 3.16474i −0.218143 0.118438i
\(715\) 0 0
\(716\) −24.3017 + 8.19317i −0.908198 + 0.306193i
\(717\) 14.1073 + 1.93615i 0.526846 + 0.0723069i
\(718\) 0.389928 + 2.37709i 0.0145520 + 0.0887122i
\(719\) 12.6495 0.471747 0.235874 0.971784i \(-0.424205\pi\)
0.235874 + 0.971784i \(0.424205\pi\)
\(720\) 0 0
\(721\) 11.4371 0.425938
\(722\) −2.87453 17.5238i −0.106979 0.652167i
\(723\) 15.5208 19.9987i 0.577225 0.743759i
\(724\) −32.9097 + 11.0953i −1.22308 + 0.412353i
\(725\) 0 0
\(726\) −0.111559 4.25780i −0.00414034 0.158022i
\(727\) 25.0590 + 43.4035i 0.929389 + 1.60975i 0.784347 + 0.620323i \(0.212998\pi\)
0.145042 + 0.989425i \(0.453668\pi\)
\(728\) −15.3448 + 8.14068i −0.568714 + 0.301714i
\(729\) 18.4524 + 19.7106i 0.683422 + 0.730024i
\(730\) 0 0
\(731\) −4.83699 8.37791i −0.178902 0.309868i
\(732\) 3.02549 8.69606i 0.111825 0.321415i
\(733\) −25.5178 14.7327i −0.942523 0.544166i −0.0517728 0.998659i \(-0.516487\pi\)
−0.890750 + 0.454493i \(0.849821\pi\)
\(734\) −10.3084 + 8.44199i −0.380489 + 0.311600i
\(735\) 0 0
\(736\) 11.2357 + 37.7424i 0.414154 + 1.39120i
\(737\) −43.8751 −1.61616
\(738\) 7.28588 + 16.6086i 0.268197 + 0.611372i
\(739\) 45.3131i 1.66687i −0.552618 0.833435i \(-0.686371\pi\)
0.552618 0.833435i \(-0.313629\pi\)
\(740\) 0 0
\(741\) 22.1234 + 3.03633i 0.812725 + 0.111542i
\(742\) 12.4712 10.2132i 0.457832 0.374940i
\(743\) 6.99366 + 4.03779i 0.256573 + 0.148132i 0.622770 0.782405i \(-0.286007\pi\)
−0.366197 + 0.930537i \(0.619341\pi\)
\(744\) 15.0711 5.52481i 0.552534 0.202549i
\(745\) 0 0
\(746\) 7.28589 19.2974i 0.266756 0.706530i
\(747\) −0.462595 + 1.65354i −0.0169255 + 0.0605000i
\(748\) 10.2291 + 9.00823i 0.374011 + 0.329373i
\(749\) 19.1641 11.0644i 0.700239 0.404283i
\(750\) 0 0
\(751\) 9.71367 + 5.60819i 0.354457 + 0.204646i 0.666646 0.745374i \(-0.267729\pi\)
−0.312190 + 0.950020i \(0.601062\pi\)
\(752\) −15.9265 + 38.0034i −0.580779 + 1.38584i
\(753\) −1.56437 3.83620i −0.0570090 0.139799i
\(754\) 6.50370 + 39.6480i 0.236851 + 1.44390i
\(755\) 0 0
\(756\) −5.34762 11.3710i −0.194491 0.413558i
\(757\) 26.9148i 0.978236i −0.872218 0.489118i \(-0.837319\pi\)
0.872218 0.489118i \(-0.162681\pi\)
\(758\) −13.2029 + 2.16575i −0.479552 + 0.0786637i
\(759\) −33.9768 + 13.8555i −1.23328 + 0.502922i
\(760\) 0 0
\(761\) 6.74550 + 3.89451i 0.244524 + 0.141176i 0.617254 0.786764i \(-0.288245\pi\)
−0.372730 + 0.927940i \(0.621578\pi\)
\(762\) 19.6574 12.0465i 0.712111 0.436397i
\(763\) −6.20218 10.7425i −0.224534 0.388904i
\(764\) 26.7597 + 23.5660i 0.968132 + 0.852587i
\(765\) 0 0
\(766\) 3.42683 9.07632i 0.123816 0.327941i
\(767\) 39.2657 22.6701i 1.41780 0.818569i
\(768\) 27.5230 3.23810i 0.993150 0.116845i
\(769\) 3.36491 5.82819i 0.121342 0.210170i −0.798955 0.601390i \(-0.794614\pi\)
0.920297 + 0.391220i \(0.127947\pi\)
\(770\) 0 0
\(771\) −14.4990 1.98992i −0.522170 0.0716651i
\(772\) 9.57559 + 1.92535i 0.344633 + 0.0692950i
\(773\) 16.5270 0.594435 0.297217 0.954810i \(-0.403941\pi\)
0.297217 + 0.954810i \(0.403941\pi\)
\(774\) 2.01556 18.2163i 0.0724478 0.654771i
\(775\) 0 0
\(776\) −27.9306 17.4891i −1.00265 0.627821i
\(777\) −17.1262 13.2915i −0.614398 0.476829i
\(778\) 7.36302 + 8.99086i 0.263977 + 0.322338i
\(779\) −5.42547 + 9.39719i −0.194388 + 0.336689i
\(780\) 0 0
\(781\) 5.31502 + 9.20588i 0.190186 + 0.329412i
\(782\) −7.78740 + 20.6257i −0.278477 + 0.737574i
\(783\) −28.8744 + 3.31831i −1.03189 + 0.118587i
\(784\) −2.80031 21.9743i −0.100011 0.784796i
\(785\) 0 0
\(786\) 0.136822 + 5.22200i 0.00488028 + 0.186263i
\(787\) −1.37971 + 2.38973i −0.0491814 + 0.0851847i −0.889568 0.456803i \(-0.848995\pi\)
0.840387 + 0.541987i \(0.182328\pi\)
\(788\) −31.8719 + 10.7454i −1.13539 + 0.382789i
\(789\) 8.84375 + 6.86356i 0.314846 + 0.244349i
\(790\) 0 0
\(791\) −7.41755 −0.263738
\(792\) 5.50862 + 25.2281i 0.195740 + 0.896443i
\(793\) 13.5001i 0.479401i
\(794\) −9.87968 + 1.62062i −0.350617 + 0.0575137i
\(795\) 0 0
\(796\) −3.77934 11.2099i −0.133955 0.397324i
\(797\) −2.62123 + 4.54011i −0.0928488 + 0.160819i −0.908709 0.417431i \(-0.862931\pi\)
0.815860 + 0.578250i \(0.196264\pi\)
\(798\) 3.58716 6.60697i 0.126984 0.233884i
\(799\) −19.9787 + 11.5347i −0.706794 + 0.408068i
\(800\) 0 0
\(801\) −5.03763 5.14956i −0.177996 0.181951i
\(802\) −8.83781 + 23.4079i −0.312074 + 0.826560i
\(803\) −13.4424 + 7.76099i −0.474373 + 0.273879i
\(804\) −49.0558 + 9.37250i −1.73006 + 0.330543i
\(805\) 0 0
\(806\) 18.2088 14.9120i 0.641378 0.525253i
\(807\) 9.86172 4.02154i 0.347149 0.141565i
\(808\) −11.4532 7.17158i −0.402924 0.252295i
\(809\) 47.1813i 1.65881i −0.558650 0.829403i \(-0.688681\pi\)
0.558650 0.829403i \(-0.311319\pi\)
\(810\) 0 0
\(811\) 18.8666i 0.662495i −0.943544 0.331247i \(-0.892531\pi\)
0.943544 0.331247i \(-0.107469\pi\)
\(812\) 13.2610 + 2.66638i 0.465371 + 0.0935715i
\(813\) 0.716651 0.292245i 0.0251341 0.0102495i
\(814\) 28.2265 + 34.4669i 0.989339 + 1.20807i
\(815\) 0 0
\(816\) 13.3612 + 7.88680i 0.467736 + 0.276093i
\(817\) 9.49617 5.48261i 0.332229 0.191812i
\(818\) 30.0444 + 11.3435i 1.05048 + 0.396615i
\(819\) −12.8839 13.1702i −0.450201 0.460203i
\(820\) 0 0
\(821\) 1.12399 0.648938i 0.0392277 0.0226481i −0.480258 0.877127i \(-0.659457\pi\)
0.519486 + 0.854479i \(0.326124\pi\)
\(822\) 35.4908 + 19.2693i 1.23788 + 0.672092i
\(823\) 3.33531 5.77693i 0.116262 0.201371i −0.802022 0.597295i \(-0.796242\pi\)
0.918283 + 0.395924i \(0.129576\pi\)
\(824\) −26.7367 0.958525i −0.931416 0.0333918i
\(825\) 0 0
\(826\) −2.47088 15.0631i −0.0859729 0.524111i
\(827\) 37.4924i 1.30374i −0.758331 0.651869i \(-0.773985\pi\)
0.758331 0.651869i \(-0.226015\pi\)
\(828\) −35.0290 + 22.7496i −1.21734 + 0.790602i
\(829\) 22.9261 0.796255 0.398127 0.917330i \(-0.369660\pi\)
0.398127 + 0.917330i \(0.369660\pi\)
\(830\) 0 0
\(831\) 9.34898 + 7.25566i 0.324313 + 0.251696i
\(832\) 36.5540 17.7446i 1.26728 0.615184i
\(833\) 6.20100 10.7405i 0.214852 0.372135i
\(834\) −49.2196 + 1.28961i −1.70434 + 0.0446554i
\(835\) 0 0
\(836\) −10.2106 + 11.5944i −0.353142 + 0.401001i
\(837\) 10.1405 + 13.6762i 0.350507 + 0.472720i
\(838\) 34.8769 + 13.1680i 1.20480 + 0.454882i
\(839\) −9.11048 15.7798i −0.314529 0.544780i 0.664808 0.747014i \(-0.268513\pi\)
−0.979337 + 0.202234i \(0.935180\pi\)
\(840\) 0 0
\(841\) 1.14335 1.98034i 0.0394259 0.0682877i
\(842\) −18.7702 + 15.3718i −0.646864 + 0.529746i
\(843\) −4.50391 3.49545i −0.155123 0.120390i
\(844\) −54.2216 10.9023i −1.86638 0.375271i
\(845\) 0 0
\(846\) −43.4401 4.80648i −1.49350 0.165250i
\(847\) −2.10248 −0.0722422
\(848\) −30.0102 + 22.8305i −1.03055 + 0.784003i
\(849\) 40.2177 + 5.51967i 1.38027 + 0.189435i
\(850\) 0 0
\(851\) −36.0299 + 62.4057i −1.23509 + 2.13924i
\(852\) 7.90915 + 9.15752i 0.270963 + 0.313731i
\(853\) 1.68958 0.975478i 0.0578500 0.0333997i −0.470796 0.882242i \(-0.656033\pi\)
0.528646 + 0.848842i \(0.322700\pi\)
\(854\) −4.25201 1.60538i −0.145501 0.0549349i
\(855\) 0 0
\(856\) −45.7275 + 24.2593i −1.56293 + 0.829166i
\(857\) 6.51166 + 11.2785i 0.222434 + 0.385267i 0.955546 0.294840i \(-0.0952665\pi\)
−0.733113 + 0.680107i \(0.761933\pi\)
\(858\) 19.7832 + 32.2822i 0.675388 + 1.10210i
\(859\) −3.50034 2.02092i −0.119430 0.0689530i 0.439095 0.898441i \(-0.355299\pi\)
−0.558525 + 0.829488i \(0.688633\pi\)
\(860\) 0 0
\(861\) 8.28982 3.38053i 0.282516 0.115208i
\(862\) −2.88022 17.5585i −0.0981006 0.598044i
\(863\) 10.6258i 0.361705i 0.983510 + 0.180853i \(0.0578857\pi\)
−0.983510 + 0.180853i \(0.942114\pi\)
\(864\) 11.5483 + 27.0303i 0.392880 + 0.919590i
\(865\) 0 0
\(866\) 16.3885 2.68830i 0.556903 0.0913521i
\(867\) −7.83847 19.2217i −0.266208 0.652803i
\(868\) −2.53139 7.50836i −0.0859211 0.254850i
\(869\) 9.93523 + 5.73611i 0.337030 + 0.194584i
\(870\) 0 0
\(871\) −63.4174 + 36.6140i −2.14882 + 1.24062i
\(872\) 13.5986 + 25.6327i 0.460508 + 0.868034i
\(873\) 9.41696 33.6609i 0.318716 1.13925i
\(874\) −23.3788 8.82684i −0.790799 0.298572i
\(875\) 0 0
\(876\) −13.3718 + 11.5489i −0.451791 + 0.390203i
\(877\) 45.9911 + 26.5530i 1.55301 + 0.896631i 0.997895 + 0.0648570i \(0.0206591\pi\)
0.555115 + 0.831774i \(0.312674\pi\)
\(878\) 1.50788 + 1.84125i 0.0508886 + 0.0621392i
\(879\) 47.8978 + 6.57373i 1.61555 + 0.221727i
\(880\) 0 0
\(881\) 10.8244i 0.364685i 0.983235 + 0.182342i \(0.0583679\pi\)
−0.983235 + 0.182342i \(0.941632\pi\)
\(882\) 21.5165 9.43886i 0.724497 0.317823i
\(883\) −21.6083 −0.727178 −0.363589 0.931559i \(-0.618449\pi\)
−0.363589 + 0.931559i \(0.618449\pi\)
\(884\) 22.3026 + 4.48435i 0.750117 + 0.150825i
\(885\) 0 0
\(886\) 0.680108 + 0.830468i 0.0228487 + 0.0279001i
\(887\) 0.457306 + 0.264026i 0.0153548 + 0.00886511i 0.507658 0.861559i \(-0.330511\pi\)
−0.492303 + 0.870424i \(0.663845\pi\)
\(888\) 38.9223 + 32.5071i 1.30615 + 1.09087i
\(889\) −5.69025 9.85580i −0.190845 0.330553i
\(890\) 0 0
\(891\) −24.0147 + 13.1700i −0.804522 + 0.441213i
\(892\) 35.9435 + 31.6537i 1.20348 + 1.05984i
\(893\) −13.0743 22.6454i −0.437515 0.757798i
\(894\) −4.61252 + 0.120853i −0.154266 + 0.00404193i
\(895\) 0 0
\(896\) −1.24201 13.6233i −0.0414928 0.455121i
\(897\) −37.5478 + 48.3807i −1.25369 + 1.61538i
\(898\) 24.3635 3.99649i 0.813021 0.133365i
\(899\) −18.3273 −0.611251
\(900\) 0 0
\(901\) −21.1108 −0.703302
\(902\) −18.1551 + 2.97808i −0.604497 + 0.0991592i
\(903\) −8.96289 1.23011i −0.298266 0.0409355i
\(904\) 17.3402 + 0.621656i 0.576726 + 0.0206760i
\(905\) 0 0
\(906\) −7.23260 + 13.3213i −0.240287 + 0.442570i
\(907\) 23.6647 + 40.9884i 0.785773 + 1.36100i 0.928536 + 0.371242i \(0.121068\pi\)
−0.142763 + 0.989757i \(0.545599\pi\)
\(908\) 9.14635 10.3859i 0.303532 0.344668i
\(909\) 3.86152 13.8030i 0.128079 0.457817i
\(910\) 0 0
\(911\) −18.8160 32.5902i −0.623401 1.07976i −0.988848 0.148930i \(-0.952417\pi\)
0.365447 0.930832i \(-0.380916\pi\)
\(912\) −8.93951 + 15.1446i −0.296017 + 0.501489i
\(913\) −1.50841 0.870884i −0.0499213 0.0288220i
\(914\) 31.2392 + 38.1456i 1.03330 + 1.26174i
\(915\) 0 0
\(916\) 6.03859 30.0324i 0.199520 0.992299i
\(917\) 2.57860 0.0851528
\(918\) −4.01700 + 15.9586i −0.132581 + 0.526713i
\(919\) 42.9157i 1.41566i −0.706383 0.707830i \(-0.749674\pi\)
0.706383 0.707830i \(-0.250326\pi\)
\(920\) 0 0
\(921\) −14.7770 36.2366i −0.486919 1.19404i
\(922\) −28.0293 34.2261i −0.923095 1.12718i
\(923\) 15.3647 + 8.87083i 0.505736 + 0.291987i
\(924\) 12.5202 2.39208i 0.411884 0.0786938i
\(925\) 0 0
\(926\) 13.6046 + 5.13652i 0.447075 + 0.168797i
\(927\) −7.04287 27.4888i −0.231318 0.902852i
\(928\) −30.7771 7.34464i −1.01031 0.241100i
\(929\) 25.1609 14.5267i 0.825503 0.476605i −0.0268072 0.999641i \(-0.508534\pi\)
0.852311 + 0.523036i \(0.175201\pi\)
\(930\) 0 0
\(931\) 12.1741 + 7.02870i 0.398989 + 0.230356i
\(932\) 12.5282 4.22378i 0.410373 0.138355i
\(933\) −10.1085 1.38734i −0.330938 0.0454196i
\(934\) −4.05529 + 0.665213i −0.132693 + 0.0217665i
\(935\) 0 0
\(936\) 29.0152 + 31.8680i 0.948393 + 1.04164i
\(937\) 51.0143i 1.66656i 0.552848 + 0.833282i \(0.313541\pi\)
−0.552848 + 0.833282i \(0.686459\pi\)
\(938\) 3.99067 + 24.3281i 0.130300 + 0.794339i
\(939\) −10.6282 8.24847i −0.346839 0.269179i
\(940\) 0 0
\(941\) 7.54730 + 4.35743i 0.246035 + 0.142048i 0.617947 0.786220i \(-0.287964\pi\)
−0.371912 + 0.928268i \(0.621298\pi\)
\(942\) 5.38762 0.141161i 0.175538 0.00459928i
\(943\) −14.8792 25.7715i −0.484532 0.839235i
\(944\) 4.51382 + 35.4203i 0.146912 + 1.15283i
\(945\) 0 0
\(946\) 17.3931 + 6.56689i 0.565498 + 0.213508i
\(947\) 33.0481 19.0803i 1.07392 0.620028i 0.144670 0.989480i \(-0.453788\pi\)
0.929250 + 0.369452i \(0.120455\pi\)
\(948\) 12.3337 + 4.29108i 0.400580 + 0.139368i
\(949\) −12.9532 + 22.4356i −0.420478 + 0.728290i
\(950\) 0 0
\(951\) 12.5000 16.1063i 0.405339 0.522283i
\(952\) 4.06454 6.49120i 0.131732 0.210381i
\(953\) −40.4395 −1.30996 −0.654982 0.755645i \(-0.727324\pi\)
−0.654982 + 0.755645i \(0.727324\pi\)
\(954\) −32.2271 23.6852i −1.04339 0.766835i
\(955\) 0 0
\(956\) −3.24118 + 16.1198i −0.104827 + 0.521350i
\(957\) 4.00883 29.2093i 0.129587 0.944202i
\(958\) 20.6303 16.8951i 0.666536 0.545857i
\(959\) 9.96739 17.2640i 0.321864 0.557485i
\(960\) 0 0
\(961\) −10.1320 17.5492i −0.326840 0.566104i
\(962\) 69.5617 + 26.2636i 2.24276 + 0.846771i
\(963\) −38.3942 39.2472i −1.23724 1.26472i
\(964\) 21.9371 + 19.3189i 0.706546 + 0.622220i
\(965\) 0 0
\(966\) 10.7730 + 17.5794i 0.346616 + 0.565607i
\(967\) −8.41511 + 14.5754i −0.270612 + 0.468713i −0.969019 0.246988i \(-0.920559\pi\)
0.698407 + 0.715701i \(0.253893\pi\)
\(968\) 4.91502 + 0.176206i 0.157975 + 0.00566349i
\(969\) −9.11689 + 3.71780i −0.292877 + 0.119433i
\(970\) 0 0
\(971\) −34.0951 −1.09416 −0.547082 0.837079i \(-0.684262\pi\)
−0.547082 + 0.837079i \(0.684262\pi\)
\(972\) −24.0369 + 19.8551i −0.770985 + 0.636853i
\(973\) 24.3044i 0.779163i
\(974\) −2.64854 16.1461i −0.0848646 0.517354i
\(975\) 0 0
\(976\) 9.80546 + 4.10928i 0.313865 + 0.131535i
\(977\) −0.431943 + 0.748148i −0.0138191 + 0.0239354i −0.872852 0.487985i \(-0.837732\pi\)
0.859033 + 0.511920i \(0.171066\pi\)
\(978\) 32.0899 19.6654i 1.02612 0.628829i
\(979\) 6.32860 3.65382i 0.202263 0.116777i
\(980\) 0 0
\(981\) −22.0002 + 21.5220i −0.702412 + 0.687145i
\(982\) −1.97828 0.746913i −0.0631293 0.0238349i
\(983\) 31.8882 18.4107i 1.01708 0.587209i 0.103821 0.994596i \(-0.466893\pi\)
0.913256 + 0.407387i \(0.133560\pi\)
\(984\) −19.6626 + 7.20798i −0.626821 + 0.229782i
\(985\) 0 0
\(986\) −11.2239 13.7053i −0.357441 0.436465i
\(987\) −2.93343 + 21.3737i −0.0933720 + 0.680331i
\(988\) −5.08291 + 25.2795i −0.161709 + 0.804247i
\(989\) 30.0718i 0.956227i
\(990\) 0 0
\(991\) 35.9773i 1.14286i 0.820652 + 0.571428i \(0.193610\pi\)
−0.820652 + 0.571428i \(0.806390\pi\)
\(992\) 5.28843 + 17.7646i 0.167908 + 0.564027i
\(993\) 5.91651 + 4.59175i 0.187755 + 0.145715i
\(994\) 4.62109 3.78442i 0.146572 0.120035i
\(995\) 0 0
\(996\) −1.87256 0.651492i −0.0593345 0.0206433i
\(997\) −28.9811 + 16.7322i −0.917840 + 0.529915i −0.882945 0.469476i \(-0.844443\pi\)
−0.0348944 + 0.999391i \(0.511109\pi\)
\(998\) 15.7244 41.6478i 0.497748 1.31834i
\(999\) −21.3997 + 49.3473i −0.677057 + 1.56128i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.o.b.599.11 48
4.3 odd 2 inner 900.2.o.b.599.6 48
5.2 odd 4 900.2.r.f.851.24 48
5.3 odd 4 180.2.q.a.131.1 yes 48
5.4 even 2 900.2.o.c.599.14 48
9.2 odd 6 900.2.o.c.299.19 48
15.8 even 4 540.2.q.a.71.24 48
20.3 even 4 180.2.q.a.131.8 yes 48
20.7 even 4 900.2.r.f.851.17 48
20.19 odd 2 900.2.o.c.599.19 48
36.11 even 6 900.2.o.c.299.14 48
45.2 even 12 900.2.r.f.551.17 48
45.13 odd 12 1620.2.e.b.971.31 48
45.23 even 12 1620.2.e.b.971.18 48
45.29 odd 6 inner 900.2.o.b.299.6 48
45.38 even 12 180.2.q.a.11.8 yes 48
45.43 odd 12 540.2.q.a.251.17 48
60.23 odd 4 540.2.q.a.71.17 48
180.23 odd 12 1620.2.e.b.971.32 48
180.43 even 12 540.2.q.a.251.24 48
180.47 odd 12 900.2.r.f.551.24 48
180.83 odd 12 180.2.q.a.11.1 48
180.103 even 12 1620.2.e.b.971.17 48
180.119 even 6 inner 900.2.o.b.299.11 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.1 48 180.83 odd 12
180.2.q.a.11.8 yes 48 45.38 even 12
180.2.q.a.131.1 yes 48 5.3 odd 4
180.2.q.a.131.8 yes 48 20.3 even 4
540.2.q.a.71.17 48 60.23 odd 4
540.2.q.a.71.24 48 15.8 even 4
540.2.q.a.251.17 48 45.43 odd 12
540.2.q.a.251.24 48 180.43 even 12
900.2.o.b.299.6 48 45.29 odd 6 inner
900.2.o.b.299.11 48 180.119 even 6 inner
900.2.o.b.599.6 48 4.3 odd 2 inner
900.2.o.b.599.11 48 1.1 even 1 trivial
900.2.o.c.299.14 48 36.11 even 6
900.2.o.c.299.19 48 9.2 odd 6
900.2.o.c.599.14 48 5.4 even 2
900.2.o.c.599.19 48 20.19 odd 2
900.2.r.f.551.17 48 45.2 even 12
900.2.r.f.551.24 48 180.47 odd 12
900.2.r.f.851.17 48 20.7 even 4
900.2.r.f.851.24 48 5.2 odd 4
1620.2.e.b.971.17 48 180.103 even 12
1620.2.e.b.971.18 48 45.23 even 12
1620.2.e.b.971.31 48 45.13 odd 12
1620.2.e.b.971.32 48 180.23 odd 12