Properties

Label 540.2.q.a.251.24
Level $540$
Weight $2$
Character 540.251
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(71,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 251.24
Character \(\chi\) \(=\) 540.251
Dual form 540.2.q.a.71.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39556 + 0.228922i) q^{2} +(1.89519 + 0.638951i) q^{4} +(0.866025 - 0.500000i) q^{5} +(-1.04714 - 0.604565i) q^{7} +(2.49858 + 1.32555i) q^{8} +(1.32305 - 0.499529i) q^{10} +(1.52161 - 2.63550i) q^{11} +(2.53958 + 4.39869i) q^{13} +(-1.32295 - 1.08342i) q^{14} +(3.18348 + 2.42186i) q^{16} -2.23944i q^{17} +2.53835i q^{19} +(1.96076 - 0.394247i) q^{20} +(2.72682 - 3.32968i) q^{22} +(-3.48067 - 6.02870i) q^{23} +(0.500000 - 0.866025i) q^{25} +(2.53719 + 6.72001i) q^{26} +(-1.59824 - 1.81484i) q^{28} +(4.84407 + 2.79673i) q^{29} +(-2.83759 + 1.63828i) q^{31} +(3.88833 + 4.10863i) q^{32} +(0.512657 - 3.12527i) q^{34} -1.20913 q^{35} -10.3514 q^{37} +(-0.581085 + 3.54243i) q^{38} +(2.82661 - 0.101336i) q^{40} +(-3.70208 + 2.13740i) q^{41} +(3.74108 + 2.15991i) q^{43} +(4.56769 - 4.02254i) q^{44} +(-3.47739 - 9.21023i) q^{46} +(-5.15071 + 8.92129i) q^{47} +(-2.76900 - 4.79605i) q^{49} +(0.896034 - 1.09413i) q^{50} +(2.00245 + 9.95902i) q^{52} -9.42683i q^{53} -3.04322i q^{55} +(-1.81498 - 2.89859i) q^{56} +(6.11997 + 5.01192i) q^{58} +(-4.46335 - 7.73074i) q^{59} +(1.32896 - 2.30183i) q^{61} +(-4.33508 + 1.63674i) q^{62} +(4.48585 + 6.62398i) q^{64} +(4.39869 + 2.53958i) q^{65} +(-12.4858 + 7.20867i) q^{67} +(1.43089 - 4.24416i) q^{68} +(-1.68742 - 0.276797i) q^{70} +3.49303 q^{71} +5.10052 q^{73} +(-14.4461 - 2.36967i) q^{74} +(-1.62188 + 4.81065i) q^{76} +(-3.18667 + 1.83982i) q^{77} +(3.26472 + 1.88488i) q^{79} +(3.96791 + 0.505654i) q^{80} +(-5.65579 + 2.13538i) q^{82} +(-0.286172 + 0.495665i) q^{83} +(-1.11972 - 1.93941i) q^{85} +(4.72646 + 3.87071i) q^{86} +(7.29535 - 4.56806i) q^{88} -2.40129i q^{89} -6.14138i q^{91} +(-2.74449 - 13.6495i) q^{92} +(-9.23042 + 11.2711i) q^{94} +(1.26918 + 2.19828i) q^{95} +(5.82556 - 10.0902i) q^{97} +(-2.76639 - 7.32708i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 30 q^{14} + 24 q^{25} + 12 q^{29} - 6 q^{34} - 60 q^{38} - 6 q^{40} + 60 q^{41} - 12 q^{46} + 24 q^{49} - 18 q^{52} + 42 q^{56} - 18 q^{58} - 48 q^{64} - 48 q^{68} - 24 q^{73} - 84 q^{74} + 6 q^{76}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39556 + 0.228922i 0.986812 + 0.161872i
\(3\) 0 0
\(4\) 1.89519 + 0.638951i 0.947595 + 0.319475i
\(5\) 0.866025 0.500000i 0.387298 0.223607i
\(6\) 0 0
\(7\) −1.04714 0.604565i −0.395781 0.228504i 0.288881 0.957365i \(-0.406717\pi\)
−0.684662 + 0.728861i \(0.740050\pi\)
\(8\) 2.49858 + 1.32555i 0.883383 + 0.468651i
\(9\) 0 0
\(10\) 1.32305 0.499529i 0.418386 0.157965i
\(11\) 1.52161 2.63550i 0.458782 0.794634i −0.540115 0.841591i \(-0.681619\pi\)
0.998897 + 0.0469575i \(0.0149525\pi\)
\(12\) 0 0
\(13\) 2.53958 + 4.39869i 0.704354 + 1.21998i 0.966924 + 0.255064i \(0.0820965\pi\)
−0.262570 + 0.964913i \(0.584570\pi\)
\(14\) −1.32295 1.08342i −0.353573 0.289557i
\(15\) 0 0
\(16\) 3.18348 + 2.42186i 0.795871 + 0.605466i
\(17\) 2.23944i 0.543143i −0.962418 0.271572i \(-0.912457\pi\)
0.962418 0.271572i \(-0.0875434\pi\)
\(18\) 0 0
\(19\) 2.53835i 0.582337i 0.956672 + 0.291169i \(0.0940441\pi\)
−0.956672 + 0.291169i \(0.905956\pi\)
\(20\) 1.96076 0.394247i 0.438439 0.0881564i
\(21\) 0 0
\(22\) 2.72682 3.32968i 0.581361 0.709890i
\(23\) −3.48067 6.02870i −0.725770 1.25707i −0.958656 0.284567i \(-0.908150\pi\)
0.232886 0.972504i \(-0.425183\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 2.53719 + 6.72001i 0.497584 + 1.31790i
\(27\) 0 0
\(28\) −1.59824 1.81484i −0.302038 0.342972i
\(29\) 4.84407 + 2.79673i 0.899521 + 0.519339i 0.877045 0.480408i \(-0.159512\pi\)
0.0224766 + 0.999747i \(0.492845\pi\)
\(30\) 0 0
\(31\) −2.83759 + 1.63828i −0.509647 + 0.294245i −0.732688 0.680564i \(-0.761735\pi\)
0.223042 + 0.974809i \(0.428401\pi\)
\(32\) 3.88833 + 4.10863i 0.687367 + 0.726311i
\(33\) 0 0
\(34\) 0.512657 3.12527i 0.0879199 0.535980i
\(35\) −1.20913 −0.204380
\(36\) 0 0
\(37\) −10.3514 −1.70176 −0.850882 0.525356i \(-0.823932\pi\)
−0.850882 + 0.525356i \(0.823932\pi\)
\(38\) −0.581085 + 3.54243i −0.0942644 + 0.574657i
\(39\) 0 0
\(40\) 2.82661 0.101336i 0.446926 0.0160226i
\(41\) −3.70208 + 2.13740i −0.578168 + 0.333806i −0.760405 0.649449i \(-0.775000\pi\)
0.182237 + 0.983255i \(0.441666\pi\)
\(42\) 0 0
\(43\) 3.74108 + 2.15991i 0.570509 + 0.329384i 0.757353 0.653006i \(-0.226492\pi\)
−0.186844 + 0.982390i \(0.559826\pi\)
\(44\) 4.56769 4.02254i 0.688605 0.606421i
\(45\) 0 0
\(46\) −3.47739 9.21023i −0.512713 1.35797i
\(47\) −5.15071 + 8.92129i −0.751308 + 1.30130i 0.195880 + 0.980628i \(0.437244\pi\)
−0.947189 + 0.320677i \(0.896090\pi\)
\(48\) 0 0
\(49\) −2.76900 4.79605i −0.395572 0.685150i
\(50\) 0.896034 1.09413i 0.126718 0.154734i
\(51\) 0 0
\(52\) 2.00245 + 9.95902i 0.277690 + 1.38107i
\(53\) 9.42683i 1.29487i −0.762119 0.647437i \(-0.775841\pi\)
0.762119 0.647437i \(-0.224159\pi\)
\(54\) 0 0
\(55\) 3.04322i 0.410347i
\(56\) −1.81498 2.89859i −0.242537 0.387340i
\(57\) 0 0
\(58\) 6.11997 + 5.01192i 0.803592 + 0.658098i
\(59\) −4.46335 7.73074i −0.581078 1.00646i −0.995352 0.0963045i \(-0.969298\pi\)
0.414274 0.910152i \(-0.364036\pi\)
\(60\) 0 0
\(61\) 1.32896 2.30183i 0.170156 0.294720i −0.768318 0.640068i \(-0.778906\pi\)
0.938474 + 0.345349i \(0.112239\pi\)
\(62\) −4.33508 + 1.63674i −0.550555 + 0.207866i
\(63\) 0 0
\(64\) 4.48585 + 6.62398i 0.560732 + 0.827998i
\(65\) 4.39869 + 2.53958i 0.545590 + 0.314997i
\(66\) 0 0
\(67\) −12.4858 + 7.20867i −1.52538 + 0.880679i −0.525833 + 0.850588i \(0.676246\pi\)
−0.999547 + 0.0300911i \(0.990420\pi\)
\(68\) 1.43089 4.24416i 0.173521 0.514679i
\(69\) 0 0
\(70\) −1.68742 0.276797i −0.201685 0.0330836i
\(71\) 3.49303 0.414546 0.207273 0.978283i \(-0.433541\pi\)
0.207273 + 0.978283i \(0.433541\pi\)
\(72\) 0 0
\(73\) 5.10052 0.596970 0.298485 0.954414i \(-0.403519\pi\)
0.298485 + 0.954414i \(0.403519\pi\)
\(74\) −14.4461 2.36967i −1.67932 0.275469i
\(75\) 0 0
\(76\) −1.62188 + 4.81065i −0.186042 + 0.551820i
\(77\) −3.18667 + 1.83982i −0.363154 + 0.209667i
\(78\) 0 0
\(79\) 3.26472 + 1.88488i 0.367309 + 0.212066i 0.672282 0.740295i \(-0.265314\pi\)
−0.304973 + 0.952361i \(0.598647\pi\)
\(80\) 3.96791 + 0.505654i 0.443626 + 0.0565338i
\(81\) 0 0
\(82\) −5.65579 + 2.13538i −0.624577 + 0.235814i
\(83\) −0.286172 + 0.495665i −0.0314115 + 0.0544063i −0.881304 0.472550i \(-0.843334\pi\)
0.849892 + 0.526956i \(0.176667\pi\)
\(84\) 0 0
\(85\) −1.11972 1.93941i −0.121450 0.210358i
\(86\) 4.72646 + 3.87071i 0.509667 + 0.417389i
\(87\) 0 0
\(88\) 7.29535 4.56806i 0.777687 0.486957i
\(89\) 2.40129i 0.254536i −0.991868 0.127268i \(-0.959379\pi\)
0.991868 0.127268i \(-0.0406208\pi\)
\(90\) 0 0
\(91\) 6.14138i 0.643791i
\(92\) −2.74449 13.6495i −0.286133 1.42306i
\(93\) 0 0
\(94\) −9.23042 + 11.2711i −0.952045 + 1.16253i
\(95\) 1.26918 + 2.19828i 0.130215 + 0.225538i
\(96\) 0 0
\(97\) 5.82556 10.0902i 0.591496 1.02450i −0.402535 0.915404i \(-0.631871\pi\)
0.994031 0.109096i \(-0.0347957\pi\)
\(98\) −2.76639 7.32708i −0.279448 0.740146i
\(99\) 0 0
\(100\) 1.50094 1.32181i 0.150094 0.132181i
\(101\) 4.13758 + 2.38883i 0.411704 + 0.237698i 0.691522 0.722356i \(-0.256941\pi\)
−0.279818 + 0.960053i \(0.590274\pi\)
\(102\) 0 0
\(103\) −8.19166 + 4.72945i −0.807148 + 0.466007i −0.845964 0.533239i \(-0.820975\pi\)
0.0388166 + 0.999246i \(0.487641\pi\)
\(104\) 0.514701 + 14.3568i 0.0504706 + 1.40780i
\(105\) 0 0
\(106\) 2.15801 13.1557i 0.209605 1.27780i
\(107\) −18.3014 −1.76926 −0.884630 0.466294i \(-0.845589\pi\)
−0.884630 + 0.466294i \(0.845589\pi\)
\(108\) 0 0
\(109\) −10.2589 −0.982625 −0.491312 0.870983i \(-0.663483\pi\)
−0.491312 + 0.870983i \(0.663483\pi\)
\(110\) 0.696660 4.24700i 0.0664239 0.404935i
\(111\) 0 0
\(112\) −1.86937 4.46065i −0.176639 0.421492i
\(113\) −5.31273 + 3.06731i −0.499780 + 0.288548i −0.728623 0.684915i \(-0.759839\pi\)
0.228843 + 0.973463i \(0.426506\pi\)
\(114\) 0 0
\(115\) −6.02870 3.48067i −0.562179 0.324574i
\(116\) 7.39346 + 8.39545i 0.686466 + 0.779498i
\(117\) 0 0
\(118\) −4.45914 11.8105i −0.410497 1.08724i
\(119\) −1.35389 + 2.34500i −0.124110 + 0.214966i
\(120\) 0 0
\(121\) 0.869419 + 1.50588i 0.0790381 + 0.136898i
\(122\) 2.38159 2.90812i 0.215619 0.263289i
\(123\) 0 0
\(124\) −6.42456 + 1.29178i −0.576942 + 0.116005i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 9.41213i 0.835192i 0.908633 + 0.417596i \(0.137127\pi\)
−0.908633 + 0.417596i \(0.862873\pi\)
\(128\) 4.74391 + 10.2711i 0.419307 + 0.907845i
\(129\) 0 0
\(130\) 5.55728 + 4.55111i 0.487405 + 0.399158i
\(131\) 1.06630 + 1.84689i 0.0931633 + 0.161364i 0.908841 0.417144i \(-0.136969\pi\)
−0.815677 + 0.578507i \(0.803635\pi\)
\(132\) 0 0
\(133\) 1.53460 2.65800i 0.133067 0.230478i
\(134\) −19.0749 + 7.20187i −1.64782 + 0.622147i
\(135\) 0 0
\(136\) 2.96848 5.59542i 0.254545 0.479803i
\(137\) −14.2781 8.24344i −1.21986 0.704285i −0.254969 0.966949i \(-0.582065\pi\)
−0.964887 + 0.262665i \(0.915399\pi\)
\(138\) 0 0
\(139\) 17.4077 10.0504i 1.47650 0.852460i 0.476856 0.878981i \(-0.341776\pi\)
0.999648 + 0.0265213i \(0.00844298\pi\)
\(140\) −2.29153 0.772575i −0.193670 0.0652945i
\(141\) 0 0
\(142\) 4.87474 + 0.799631i 0.409079 + 0.0671036i
\(143\) 15.4570 1.29258
\(144\) 0 0
\(145\) 5.59345 0.464511
\(146\) 7.11809 + 1.16762i 0.589097 + 0.0966331i
\(147\) 0 0
\(148\) −19.6179 6.61405i −1.61258 0.543672i
\(149\) −1.63133 + 0.941851i −0.133644 + 0.0771594i −0.565331 0.824864i \(-0.691252\pi\)
0.431687 + 0.902023i \(0.357918\pi\)
\(150\) 0 0
\(151\) −5.35919 3.09413i −0.436124 0.251796i 0.265828 0.964020i \(-0.414355\pi\)
−0.701952 + 0.712224i \(0.747688\pi\)
\(152\) −3.36470 + 6.34228i −0.272913 + 0.514427i
\(153\) 0 0
\(154\) −4.86837 + 1.83809i −0.392304 + 0.148117i
\(155\) −1.63828 + 2.83759i −0.131590 + 0.227921i
\(156\) 0 0
\(157\) 1.10012 + 1.90546i 0.0877991 + 0.152073i 0.906581 0.422033i \(-0.138683\pi\)
−0.818781 + 0.574105i \(0.805350\pi\)
\(158\) 4.12462 + 3.37784i 0.328137 + 0.268726i
\(159\) 0 0
\(160\) 5.42171 + 1.61401i 0.428624 + 0.127599i
\(161\) 8.41717i 0.663366i
\(162\) 0 0
\(163\) 15.3649i 1.20347i −0.798694 0.601737i \(-0.794475\pi\)
0.798694 0.601737i \(-0.205525\pi\)
\(164\) −8.38184 + 1.68533i −0.654512 + 0.131602i
\(165\) 0 0
\(166\) −0.512840 + 0.626220i −0.0398041 + 0.0486041i
\(167\) 11.1124 + 19.2472i 0.859901 + 1.48939i 0.872023 + 0.489465i \(0.162808\pi\)
−0.0121218 + 0.999927i \(0.503859\pi\)
\(168\) 0 0
\(169\) −6.39897 + 11.0833i −0.492229 + 0.852565i
\(170\) −1.11866 2.96289i −0.0857975 0.227244i
\(171\) 0 0
\(172\) 5.70997 + 6.48381i 0.435381 + 0.494386i
\(173\) 13.3460 + 7.70532i 1.01468 + 0.585825i 0.912558 0.408947i \(-0.134104\pi\)
0.102120 + 0.994772i \(0.467437\pi\)
\(174\) 0 0
\(175\) −1.04714 + 0.604565i −0.0791562 + 0.0457008i
\(176\) 11.2268 4.70495i 0.846255 0.354649i
\(177\) 0 0
\(178\) 0.549708 3.35115i 0.0412024 0.251179i
\(179\) 12.8229 0.958425 0.479212 0.877699i \(-0.340922\pi\)
0.479212 + 0.877699i \(0.340922\pi\)
\(180\) 0 0
\(181\) 17.3649 1.29072 0.645360 0.763879i \(-0.276707\pi\)
0.645360 + 0.763879i \(0.276707\pi\)
\(182\) 1.40590 8.57068i 0.104212 0.635301i
\(183\) 0 0
\(184\) −0.705432 19.6770i −0.0520052 1.45061i
\(185\) −8.96460 + 5.17572i −0.659091 + 0.380526i
\(186\) 0 0
\(187\) −5.90204 3.40754i −0.431600 0.249184i
\(188\) −15.4618 + 13.6165i −1.12767 + 0.993085i
\(189\) 0 0
\(190\) 1.26798 + 3.35837i 0.0919889 + 0.243642i
\(191\) 8.91431 15.4400i 0.645017 1.11720i −0.339281 0.940685i \(-0.610184\pi\)
0.984298 0.176516i \(-0.0564829\pi\)
\(192\) 0 0
\(193\) 2.44181 + 4.22934i 0.175765 + 0.304434i 0.940426 0.339999i \(-0.110427\pi\)
−0.764661 + 0.644433i \(0.777093\pi\)
\(194\) 10.4398 12.7479i 0.749533 0.915242i
\(195\) 0 0
\(196\) −2.18334 10.8587i −0.155953 0.775620i
\(197\) 16.8173i 1.19818i −0.800682 0.599090i \(-0.795529\pi\)
0.800682 0.599090i \(-0.204471\pi\)
\(198\) 0 0
\(199\) 5.91492i 0.419297i 0.977777 + 0.209649i \(0.0672320\pi\)
−0.977777 + 0.209649i \(0.932768\pi\)
\(200\) 2.39725 1.50106i 0.169511 0.106141i
\(201\) 0 0
\(202\) 5.22739 + 4.28095i 0.367798 + 0.301206i
\(203\) −3.38161 5.85712i −0.237342 0.411089i
\(204\) 0 0
\(205\) −2.13740 + 3.70208i −0.149282 + 0.258565i
\(206\) −12.5146 + 4.72500i −0.871937 + 0.329206i
\(207\) 0 0
\(208\) −2.56830 + 20.1537i −0.178080 + 1.39741i
\(209\) 6.68983 + 3.86237i 0.462745 + 0.267166i
\(210\) 0 0
\(211\) 23.9485 13.8267i 1.64868 0.951868i 0.671089 0.741377i \(-0.265827\pi\)
0.977596 0.210491i \(-0.0675063\pi\)
\(212\) 6.02328 17.8656i 0.413681 1.22702i
\(213\) 0 0
\(214\) −25.5407 4.18959i −1.74593 0.286394i
\(215\) 4.31983 0.294610
\(216\) 0 0
\(217\) 3.96180 0.268945
\(218\) −14.3169 2.34849i −0.969665 0.159060i
\(219\) 0 0
\(220\) 1.94446 5.76747i 0.131096 0.388843i
\(221\) 9.85058 5.68724i 0.662622 0.382565i
\(222\) 0 0
\(223\) 20.7390 + 11.9737i 1.38878 + 0.801815i 0.993178 0.116605i \(-0.0372013\pi\)
0.395606 + 0.918420i \(0.370535\pi\)
\(224\) −1.58768 6.65306i −0.106082 0.444526i
\(225\) 0 0
\(226\) −8.11643 + 3.06442i −0.539897 + 0.203842i
\(227\) −3.45979 + 5.99253i −0.229634 + 0.397739i −0.957700 0.287769i \(-0.907086\pi\)
0.728065 + 0.685508i \(0.240420\pi\)
\(228\) 0 0
\(229\) 7.65837 + 13.2647i 0.506080 + 0.876556i 0.999975 + 0.00703439i \(0.00223914\pi\)
−0.493896 + 0.869521i \(0.664428\pi\)
\(230\) −7.61662 6.23760i −0.502225 0.411295i
\(231\) 0 0
\(232\) 8.39613 + 13.4089i 0.551233 + 0.880337i
\(233\) 6.61050i 0.433068i −0.976275 0.216534i \(-0.930525\pi\)
0.976275 0.216534i \(-0.0694753\pi\)
\(234\) 0 0
\(235\) 10.3014i 0.671991i
\(236\) −3.51932 17.5031i −0.229088 1.13935i
\(237\) 0 0
\(238\) −2.42625 + 2.96266i −0.157271 + 0.192041i
\(239\) 4.11060 + 7.11976i 0.265892 + 0.460539i 0.967797 0.251732i \(-0.0810001\pi\)
−0.701905 + 0.712271i \(0.747667\pi\)
\(240\) 0 0
\(241\) −7.30777 + 12.6574i −0.470735 + 0.815337i −0.999440 0.0334691i \(-0.989344\pi\)
0.528705 + 0.848806i \(0.322678\pi\)
\(242\) 0.868600 + 2.30058i 0.0558357 + 0.147887i
\(243\) 0 0
\(244\) 3.98940 3.51327i 0.255395 0.224914i
\(245\) −4.79605 2.76900i −0.306408 0.176905i
\(246\) 0 0
\(247\) −11.1654 + 6.44635i −0.710438 + 0.410172i
\(248\) −9.26159 + 0.332033i −0.588111 + 0.0210841i
\(249\) 0 0
\(250\) 0.228922 1.39556i 0.0144783 0.0882631i
\(251\) 2.39191 0.150976 0.0754880 0.997147i \(-0.475949\pi\)
0.0754880 + 0.997147i \(0.475949\pi\)
\(252\) 0 0
\(253\) −21.1849 −1.33188
\(254\) −2.15465 + 13.1352i −0.135195 + 0.824177i
\(255\) 0 0
\(256\) 4.26915 + 15.4199i 0.266822 + 0.963746i
\(257\) −7.31747 + 4.22474i −0.456451 + 0.263532i −0.710551 0.703646i \(-0.751554\pi\)
0.254100 + 0.967178i \(0.418221\pi\)
\(258\) 0 0
\(259\) 10.8394 + 6.25812i 0.673526 + 0.388860i
\(260\) 6.71368 + 7.62354i 0.416365 + 0.472792i
\(261\) 0 0
\(262\) 1.06530 + 2.82155i 0.0658143 + 0.174316i
\(263\) −3.23162 + 5.59733i −0.199270 + 0.345146i −0.948292 0.317399i \(-0.897190\pi\)
0.749022 + 0.662545i \(0.230524\pi\)
\(264\) 0 0
\(265\) −4.71342 8.16388i −0.289543 0.501503i
\(266\) 2.75010 3.35810i 0.168620 0.205899i
\(267\) 0 0
\(268\) −28.2689 + 5.68399i −1.72680 + 0.347205i
\(269\) 6.14888i 0.374904i 0.982274 + 0.187452i \(0.0600229\pi\)
−0.982274 + 0.187452i \(0.939977\pi\)
\(270\) 0 0
\(271\) 0.446839i 0.0271436i 0.999908 + 0.0135718i \(0.00432016\pi\)
−0.999908 + 0.0135718i \(0.995680\pi\)
\(272\) 5.42361 7.12921i 0.328855 0.432272i
\(273\) 0 0
\(274\) −18.0388 14.7728i −1.08976 0.892457i
\(275\) −1.52161 2.63550i −0.0917564 0.158927i
\(276\) 0 0
\(277\) −3.41624 + 5.91710i −0.205262 + 0.355524i −0.950216 0.311592i \(-0.899138\pi\)
0.744954 + 0.667115i \(0.232471\pi\)
\(278\) 26.5943 10.0409i 1.59502 0.602212i
\(279\) 0 0
\(280\) −3.02112 1.60276i −0.180546 0.0957832i
\(281\) 2.85059 + 1.64579i 0.170052 + 0.0981794i 0.582610 0.812752i \(-0.302031\pi\)
−0.412559 + 0.910931i \(0.635365\pi\)
\(282\) 0 0
\(283\) 20.2974 11.7187i 1.20655 0.696603i 0.244548 0.969637i \(-0.421360\pi\)
0.962004 + 0.273034i \(0.0880271\pi\)
\(284\) 6.61994 + 2.23187i 0.392821 + 0.132437i
\(285\) 0 0
\(286\) 21.5712 + 3.53845i 1.27553 + 0.209233i
\(287\) 5.16879 0.305104
\(288\) 0 0
\(289\) 11.9849 0.704996
\(290\) 7.80601 + 1.28047i 0.458385 + 0.0751915i
\(291\) 0 0
\(292\) 9.66644 + 3.25898i 0.565686 + 0.190717i
\(293\) −24.1734 + 13.9565i −1.41223 + 0.815349i −0.995598 0.0937278i \(-0.970122\pi\)
−0.416628 + 0.909077i \(0.636788\pi\)
\(294\) 0 0
\(295\) −7.73074 4.46335i −0.450101 0.259866i
\(296\) −25.8639 13.7213i −1.50331 0.797535i
\(297\) 0 0
\(298\) −2.49224 + 0.940963i −0.144371 + 0.0545085i
\(299\) 17.6789 30.6208i 1.02240 1.77085i
\(300\) 0 0
\(301\) −2.61162 4.52345i −0.150531 0.260727i
\(302\) −6.77076 5.54488i −0.389614 0.319072i
\(303\) 0 0
\(304\) −6.14754 + 8.08080i −0.352586 + 0.463466i
\(305\) 2.65793i 0.152193i
\(306\) 0 0
\(307\) 22.5939i 1.28950i −0.764393 0.644750i \(-0.776961\pi\)
0.764393 0.644750i \(-0.223039\pi\)
\(308\) −7.21489 + 1.45069i −0.411107 + 0.0826607i
\(309\) 0 0
\(310\) −2.93592 + 3.58500i −0.166749 + 0.203614i
\(311\) 2.94543 + 5.10164i 0.167020 + 0.289287i 0.937371 0.348333i \(-0.113252\pi\)
−0.770351 + 0.637620i \(0.779919\pi\)
\(312\) 0 0
\(313\) −3.88369 + 6.72675i −0.219519 + 0.380218i −0.954661 0.297695i \(-0.903782\pi\)
0.735142 + 0.677913i \(0.237115\pi\)
\(314\) 1.09908 + 2.91104i 0.0620249 + 0.164279i
\(315\) 0 0
\(316\) 4.98291 + 5.65820i 0.280310 + 0.318299i
\(317\) 10.1939 + 5.88545i 0.572547 + 0.330560i 0.758166 0.652062i \(-0.226096\pi\)
−0.185619 + 0.982622i \(0.559429\pi\)
\(318\) 0 0
\(319\) 14.7416 8.51104i 0.825369 0.476527i
\(320\) 7.19685 + 3.49361i 0.402316 + 0.195299i
\(321\) 0 0
\(322\) −1.92688 + 11.7467i −0.107381 + 0.654618i
\(323\) 5.68447 0.316293
\(324\) 0 0
\(325\) 5.07917 0.281742
\(326\) 3.51737 21.4427i 0.194809 1.18760i
\(327\) 0 0
\(328\) −12.0832 + 0.433190i −0.667183 + 0.0239189i
\(329\) 10.7870 6.22788i 0.594707 0.343354i
\(330\) 0 0
\(331\) 3.74464 + 2.16197i 0.205824 + 0.118833i 0.599369 0.800473i \(-0.295418\pi\)
−0.393545 + 0.919305i \(0.628751\pi\)
\(332\) −0.859056 + 0.756529i −0.0471468 + 0.0415199i
\(333\) 0 0
\(334\) 11.1019 + 29.4045i 0.607469 + 1.60894i
\(335\) −7.20867 + 12.4858i −0.393852 + 0.682171i
\(336\) 0 0
\(337\) −3.88505 6.72910i −0.211632 0.366558i 0.740593 0.671953i \(-0.234545\pi\)
−0.952225 + 0.305396i \(0.901211\pi\)
\(338\) −11.4674 + 14.0026i −0.623744 + 0.761643i
\(339\) 0 0
\(340\) −0.882891 4.39099i −0.0478815 0.238135i
\(341\) 9.97131i 0.539977i
\(342\) 0 0
\(343\) 15.1601i 0.818568i
\(344\) 6.48434 + 10.3557i 0.349612 + 0.558342i
\(345\) 0 0
\(346\) 16.8613 + 13.8085i 0.906468 + 0.742347i
\(347\) −5.63307 9.75677i −0.302399 0.523771i 0.674280 0.738476i \(-0.264454\pi\)
−0.976679 + 0.214705i \(0.931121\pi\)
\(348\) 0 0
\(349\) 11.1403 19.2956i 0.596326 1.03287i −0.397032 0.917805i \(-0.629960\pi\)
0.993358 0.115063i \(-0.0367069\pi\)
\(350\) −1.59974 + 0.603996i −0.0855100 + 0.0322849i
\(351\) 0 0
\(352\) 16.7448 3.99598i 0.892502 0.212986i
\(353\) 19.1084 + 11.0323i 1.01704 + 0.587188i 0.913245 0.407411i \(-0.133568\pi\)
0.103794 + 0.994599i \(0.466902\pi\)
\(354\) 0 0
\(355\) 3.02505 1.74651i 0.160553 0.0926953i
\(356\) 1.53431 4.55090i 0.0813180 0.241197i
\(357\) 0 0
\(358\) 17.8951 + 2.93544i 0.945785 + 0.155143i
\(359\) −1.70332 −0.0898978 −0.0449489 0.998989i \(-0.514313\pi\)
−0.0449489 + 0.998989i \(0.514313\pi\)
\(360\) 0 0
\(361\) 12.5568 0.660883
\(362\) 24.2337 + 3.97520i 1.27370 + 0.208932i
\(363\) 0 0
\(364\) 3.92404 11.6391i 0.205675 0.610053i
\(365\) 4.41718 2.55026i 0.231206 0.133487i
\(366\) 0 0
\(367\) −8.15927 4.71076i −0.425910 0.245900i 0.271692 0.962384i \(-0.412417\pi\)
−0.697603 + 0.716485i \(0.745750\pi\)
\(368\) 3.52003 27.6220i 0.183494 1.43990i
\(369\) 0 0
\(370\) −13.6955 + 5.17084i −0.711995 + 0.268819i
\(371\) −5.69914 + 9.87119i −0.295884 + 0.512487i
\(372\) 0 0
\(373\) −7.29277 12.6314i −0.377605 0.654031i 0.613108 0.789999i \(-0.289919\pi\)
−0.990713 + 0.135968i \(0.956586\pi\)
\(374\) −7.45660 6.10655i −0.385572 0.315762i
\(375\) 0 0
\(376\) −24.6951 + 15.4631i −1.27355 + 0.797449i
\(377\) 28.4101i 1.46319i
\(378\) 0 0
\(379\) 9.46065i 0.485961i −0.970031 0.242980i \(-0.921875\pi\)
0.970031 0.242980i \(-0.0781251\pi\)
\(380\) 1.00074 + 4.97709i 0.0513367 + 0.255319i
\(381\) 0 0
\(382\) 15.9750 19.5068i 0.817354 0.998057i
\(383\) 3.43007 + 5.94105i 0.175268 + 0.303573i 0.940254 0.340474i \(-0.110587\pi\)
−0.764986 + 0.644047i \(0.777254\pi\)
\(384\) 0 0
\(385\) −1.83982 + 3.18667i −0.0937661 + 0.162408i
\(386\) 2.43951 + 6.46129i 0.124168 + 0.328871i
\(387\) 0 0
\(388\) 17.4876 15.4005i 0.887801 0.781843i
\(389\) −7.11643 4.10868i −0.360818 0.208318i 0.308622 0.951185i \(-0.400132\pi\)
−0.669439 + 0.742867i \(0.733466\pi\)
\(390\) 0 0
\(391\) −13.5009 + 7.79474i −0.682769 + 0.394197i
\(392\) −0.561197 15.6538i −0.0283447 0.790635i
\(393\) 0 0
\(394\) 3.84984 23.4695i 0.193952 1.18238i
\(395\) 3.76977 0.189678
\(396\) 0 0
\(397\) −7.07936 −0.355303 −0.177651 0.984093i \(-0.556850\pi\)
−0.177651 + 0.984093i \(0.556850\pi\)
\(398\) −1.35406 + 8.25463i −0.0678727 + 0.413767i
\(399\) 0 0
\(400\) 3.68914 1.54605i 0.184457 0.0773023i
\(401\) 15.3220 8.84615i 0.765143 0.441755i −0.0659963 0.997820i \(-0.521023\pi\)
0.831139 + 0.556064i \(0.187689\pi\)
\(402\) 0 0
\(403\) −14.4126 8.32112i −0.717943 0.414505i
\(404\) 6.31514 + 7.17099i 0.314190 + 0.356770i
\(405\) 0 0
\(406\) −3.37842 8.94810i −0.167668 0.444087i
\(407\) −15.7508 + 27.2812i −0.780739 + 1.35228i
\(408\) 0 0
\(409\) 11.3542 + 19.6660i 0.561428 + 0.972422i 0.997372 + 0.0724482i \(0.0230812\pi\)
−0.435944 + 0.899974i \(0.643585\pi\)
\(410\) −3.83036 + 4.67719i −0.189168 + 0.230990i
\(411\) 0 0
\(412\) −18.5466 + 3.72915i −0.913727 + 0.183722i
\(413\) 10.7935i 0.531115i
\(414\) 0 0
\(415\) 0.572344i 0.0280953i
\(416\) −8.19785 + 27.5378i −0.401933 + 1.35015i
\(417\) 0 0
\(418\) 8.45189 + 6.92163i 0.413395 + 0.338548i
\(419\) −13.1805 22.8292i −0.643908 1.11528i −0.984553 0.175089i \(-0.943979\pi\)
0.340645 0.940192i \(-0.389355\pi\)
\(420\) 0 0
\(421\) −8.57768 + 14.8570i −0.418050 + 0.724084i −0.995743 0.0921697i \(-0.970620\pi\)
0.577693 + 0.816254i \(0.303953\pi\)
\(422\) 36.5869 13.8137i 1.78102 0.672438i
\(423\) 0 0
\(424\) 12.4957 23.5537i 0.606845 1.14387i
\(425\) −1.93941 1.11972i −0.0940751 0.0543143i
\(426\) 0 0
\(427\) −2.78322 + 1.60689i −0.134689 + 0.0777629i
\(428\) −34.6846 11.6937i −1.67654 0.565235i
\(429\) 0 0
\(430\) 6.02859 + 0.988904i 0.290724 + 0.0476892i
\(431\) −12.5816 −0.606037 −0.303018 0.952985i \(-0.597994\pi\)
−0.303018 + 0.952985i \(0.597994\pi\)
\(432\) 0 0
\(433\) −11.7433 −0.564346 −0.282173 0.959364i \(-0.591055\pi\)
−0.282173 + 0.959364i \(0.591055\pi\)
\(434\) 5.52894 + 0.906944i 0.265398 + 0.0435347i
\(435\) 0 0
\(436\) −19.4426 6.55493i −0.931130 0.313924i
\(437\) 15.3030 8.83516i 0.732039 0.422643i
\(438\) 0 0
\(439\) 1.45738 + 0.841421i 0.0695571 + 0.0401588i 0.534375 0.845247i \(-0.320547\pi\)
−0.464818 + 0.885406i \(0.653880\pi\)
\(440\) 4.03392 7.60373i 0.192310 0.362494i
\(441\) 0 0
\(442\) 15.0490 5.68188i 0.715810 0.270259i
\(443\) 0.379510 0.657331i 0.0180311 0.0312307i −0.856869 0.515534i \(-0.827594\pi\)
0.874900 + 0.484303i \(0.160927\pi\)
\(444\) 0 0
\(445\) −1.20064 2.07958i −0.0569160 0.0985814i
\(446\) 26.2015 + 21.4576i 1.24068 + 1.01605i
\(447\) 0 0
\(448\) −0.692678 9.64821i −0.0327260 0.455835i
\(449\) 17.4579i 0.823887i −0.911209 0.411943i \(-0.864850\pi\)
0.911209 0.411943i \(-0.135150\pi\)
\(450\) 0 0
\(451\) 13.0091i 0.612576i
\(452\) −12.0285 + 2.41856i −0.565773 + 0.113759i
\(453\) 0 0
\(454\) −6.20018 + 7.57093i −0.290989 + 0.355322i
\(455\) −3.07069 5.31859i −0.143956 0.249339i
\(456\) 0 0
\(457\) 17.4319 30.1929i 0.815430 1.41237i −0.0935884 0.995611i \(-0.529834\pi\)
0.909019 0.416756i \(-0.136833\pi\)
\(458\) 7.65116 + 20.2649i 0.357515 + 0.946916i
\(459\) 0 0
\(460\) −9.20155 10.4486i −0.429025 0.487167i
\(461\) −27.0906 15.6407i −1.26173 0.728462i −0.288324 0.957533i \(-0.593098\pi\)
−0.973410 + 0.229071i \(0.926431\pi\)
\(462\) 0 0
\(463\) −8.90511 + 5.14137i −0.413856 + 0.238940i −0.692445 0.721471i \(-0.743466\pi\)
0.278589 + 0.960410i \(0.410133\pi\)
\(464\) 8.64773 + 20.6350i 0.401461 + 0.957957i
\(465\) 0 0
\(466\) 1.51329 9.22537i 0.0701018 0.427357i
\(467\) 2.90585 0.134467 0.0672333 0.997737i \(-0.478583\pi\)
0.0672333 + 0.997737i \(0.478583\pi\)
\(468\) 0 0
\(469\) 17.4324 0.804955
\(470\) −2.35822 + 14.3763i −0.108777 + 0.663128i
\(471\) 0 0
\(472\) −0.904592 25.2323i −0.0416372 1.16141i
\(473\) 11.3849 6.57308i 0.523479 0.302231i
\(474\) 0 0
\(475\) 2.19828 + 1.26918i 0.100864 + 0.0582337i
\(476\) −4.06421 + 3.57915i −0.186283 + 0.164050i
\(477\) 0 0
\(478\) 4.10672 + 10.8771i 0.187837 + 0.497506i
\(479\) 9.42773 16.3293i 0.430764 0.746105i −0.566175 0.824285i \(-0.691578\pi\)
0.996939 + 0.0781799i \(0.0249109\pi\)
\(480\) 0 0
\(481\) −26.2883 45.5327i −1.19864 2.07611i
\(482\) −13.0960 + 15.9913i −0.596507 + 0.728385i
\(483\) 0 0
\(484\) 0.685532 + 3.40944i 0.0311605 + 0.154975i
\(485\) 11.6511i 0.529050i
\(486\) 0 0
\(487\) 11.5696i 0.524268i 0.965031 + 0.262134i \(0.0844263\pi\)
−0.965031 + 0.262134i \(0.915574\pi\)
\(488\) 6.37172 3.98972i 0.288434 0.180606i
\(489\) 0 0
\(490\) −6.05930 4.96224i −0.273731 0.224171i
\(491\) −0.747617 1.29491i −0.0337395 0.0584385i 0.848663 0.528935i \(-0.177408\pi\)
−0.882402 + 0.470496i \(0.844075\pi\)
\(492\) 0 0
\(493\) 6.26309 10.8480i 0.282075 0.488569i
\(494\) −17.0577 + 6.44028i −0.767464 + 0.289762i
\(495\) 0 0
\(496\) −13.0011 1.65681i −0.583768 0.0743930i
\(497\) −3.65768 2.11176i −0.164069 0.0947255i
\(498\) 0 0
\(499\) −27.2612 + 15.7393i −1.22038 + 0.704586i −0.964999 0.262254i \(-0.915534\pi\)
−0.255380 + 0.966841i \(0.582201\pi\)
\(500\) 0.638951 1.89519i 0.0285747 0.0847554i
\(501\) 0 0
\(502\) 3.33806 + 0.547562i 0.148985 + 0.0244389i
\(503\) −1.90449 −0.0849171 −0.0424585 0.999098i \(-0.513519\pi\)
−0.0424585 + 0.999098i \(0.513519\pi\)
\(504\) 0 0
\(505\) 4.77766 0.212603
\(506\) −29.5648 4.84969i −1.31432 0.215595i
\(507\) 0 0
\(508\) −6.01389 + 17.8378i −0.266823 + 0.791423i
\(509\) −27.2228 + 15.7171i −1.20663 + 0.696647i −0.962021 0.272975i \(-0.911992\pi\)
−0.244607 + 0.969622i \(0.578659\pi\)
\(510\) 0 0
\(511\) −5.34094 3.08360i −0.236269 0.136410i
\(512\) 2.42789 + 22.4968i 0.107299 + 0.994227i
\(513\) 0 0
\(514\) −11.1791 + 4.22076i −0.493090 + 0.186170i
\(515\) −4.72945 + 8.19166i −0.208405 + 0.360967i
\(516\) 0 0
\(517\) 15.6747 + 27.1494i 0.689374 + 1.19403i
\(518\) 13.6944 + 11.2150i 0.601698 + 0.492757i
\(519\) 0 0
\(520\) 7.62416 + 12.1760i 0.334342 + 0.533954i
\(521\) 23.2742i 1.01966i −0.860275 0.509831i \(-0.829708\pi\)
0.860275 0.509831i \(-0.170292\pi\)
\(522\) 0 0
\(523\) 10.8804i 0.475769i 0.971293 + 0.237884i \(0.0764539\pi\)
−0.971293 + 0.237884i \(0.923546\pi\)
\(524\) 0.840774 + 4.18152i 0.0367294 + 0.182671i
\(525\) 0 0
\(526\) −5.79128 + 7.07163i −0.252512 + 0.308338i
\(527\) 3.66883 + 6.35461i 0.159817 + 0.276811i
\(528\) 0 0
\(529\) −12.7302 + 22.0493i −0.553485 + 0.958664i
\(530\) −4.70897 12.4722i −0.204545 0.541758i
\(531\) 0 0
\(532\) 4.60669 4.05689i 0.199725 0.175888i
\(533\) −18.8035 10.8562i −0.814470 0.470235i
\(534\) 0 0
\(535\) −15.8495 + 9.15068i −0.685231 + 0.395619i
\(536\) −40.7522 + 1.46099i −1.76023 + 0.0631052i
\(537\) 0 0
\(538\) −1.40762 + 8.58115i −0.0606867 + 0.369960i
\(539\) −16.8533 −0.725925
\(540\) 0 0
\(541\) −6.53795 −0.281088 −0.140544 0.990074i \(-0.544885\pi\)
−0.140544 + 0.990074i \(0.544885\pi\)
\(542\) −0.102291 + 0.623592i −0.00439379 + 0.0267856i
\(543\) 0 0
\(544\) 9.20102 8.70767i 0.394491 0.373338i
\(545\) −8.88447 + 5.12945i −0.380569 + 0.219722i
\(546\) 0 0
\(547\) −23.0165 13.2886i −0.984113 0.568178i −0.0806034 0.996746i \(-0.525685\pi\)
−0.903509 + 0.428569i \(0.859018\pi\)
\(548\) −21.7925 24.7458i −0.930928 1.05709i
\(549\) 0 0
\(550\) −1.52017 4.02634i −0.0648204 0.171684i
\(551\) −7.09907 + 12.2959i −0.302431 + 0.523825i
\(552\) 0 0
\(553\) −2.27907 3.94747i −0.0969160 0.167863i
\(554\) −6.12213 + 7.47562i −0.260104 + 0.317609i
\(555\) 0 0
\(556\) 39.4126 7.92465i 1.67147 0.336080i
\(557\) 8.68248i 0.367889i −0.982937 0.183944i \(-0.941113\pi\)
0.982937 0.183944i \(-0.0588866\pi\)
\(558\) 0 0
\(559\) 21.9411i 0.928010i
\(560\) −3.84925 2.92835i −0.162660 0.123745i
\(561\) 0 0
\(562\) 3.60141 + 2.94936i 0.151916 + 0.124411i
\(563\) −15.8324 27.4226i −0.667257 1.15572i −0.978668 0.205448i \(-0.934135\pi\)
0.311411 0.950275i \(-0.399199\pi\)
\(564\) 0 0
\(565\) −3.06731 + 5.31273i −0.129043 + 0.223508i
\(566\) 31.0089 11.7076i 1.30340 0.492109i
\(567\) 0 0
\(568\) 8.72762 + 4.63017i 0.366203 + 0.194278i
\(569\) −27.9697 16.1483i −1.17255 0.676973i −0.218272 0.975888i \(-0.570042\pi\)
−0.954280 + 0.298915i \(0.903375\pi\)
\(570\) 0 0
\(571\) −12.7245 + 7.34651i −0.532505 + 0.307442i −0.742036 0.670360i \(-0.766140\pi\)
0.209531 + 0.977802i \(0.432806\pi\)
\(572\) 29.2939 + 9.87626i 1.22484 + 0.412947i
\(573\) 0 0
\(574\) 7.21337 + 1.18325i 0.301080 + 0.0493879i
\(575\) −6.96134 −0.290308
\(576\) 0 0
\(577\) −22.4886 −0.936214 −0.468107 0.883672i \(-0.655064\pi\)
−0.468107 + 0.883672i \(0.655064\pi\)
\(578\) 16.7257 + 2.74362i 0.695698 + 0.114119i
\(579\) 0 0
\(580\) 10.6006 + 3.57394i 0.440168 + 0.148400i
\(581\) 0.599324 0.346020i 0.0248641 0.0143553i
\(582\) 0 0
\(583\) −24.8444 14.3439i −1.02895 0.594065i
\(584\) 12.7441 + 6.76097i 0.527354 + 0.279771i
\(585\) 0 0
\(586\) −36.9305 + 13.9434i −1.52558 + 0.575996i
\(587\) 17.2484 29.8752i 0.711919 1.23308i −0.252217 0.967671i \(-0.581160\pi\)
0.964136 0.265409i \(-0.0855069\pi\)
\(588\) 0 0
\(589\) −4.15854 7.20280i −0.171350 0.296786i
\(590\) −9.76697 7.99862i −0.402100 0.329298i
\(591\) 0 0
\(592\) −32.9536 25.0698i −1.35439 1.03036i
\(593\) 11.5133i 0.472794i −0.971656 0.236397i \(-0.924033\pi\)
0.971656 0.236397i \(-0.0759667\pi\)
\(594\) 0 0
\(595\) 2.70777i 0.111008i
\(596\) −3.69348 + 0.742644i −0.151291 + 0.0304199i
\(597\) 0 0
\(598\) 31.6818 38.6861i 1.29557 1.58199i
\(599\) 17.8060 + 30.8410i 0.727535 + 1.26013i 0.957922 + 0.287028i \(0.0926674\pi\)
−0.230387 + 0.973099i \(0.573999\pi\)
\(600\) 0 0
\(601\) −20.4137 + 35.3576i −0.832693 + 1.44227i 0.0632021 + 0.998001i \(0.479869\pi\)
−0.895895 + 0.444266i \(0.853465\pi\)
\(602\) −2.60916 6.91062i −0.106341 0.281656i
\(603\) 0 0
\(604\) −8.17968 9.28821i −0.332826 0.377932i
\(605\) 1.50588 + 0.869419i 0.0612226 + 0.0353469i
\(606\) 0 0
\(607\) −1.90026 + 1.09711i −0.0771290 + 0.0445304i −0.538069 0.842901i \(-0.680846\pi\)
0.460940 + 0.887432i \(0.347513\pi\)
\(608\) −10.4292 + 9.86995i −0.422958 + 0.400279i
\(609\) 0 0
\(610\) 0.608459 3.70930i 0.0246358 0.150185i
\(611\) −52.3227 −2.11675
\(612\) 0 0
\(613\) 38.7673 1.56580 0.782899 0.622149i \(-0.213740\pi\)
0.782899 + 0.622149i \(0.213740\pi\)
\(614\) 5.17224 31.5312i 0.208735 1.27249i
\(615\) 0 0
\(616\) −10.4009 + 0.372879i −0.419065 + 0.0150237i
\(617\) 12.8653 7.42778i 0.517937 0.299031i −0.218153 0.975915i \(-0.570003\pi\)
0.736090 + 0.676884i \(0.236670\pi\)
\(618\) 0 0
\(619\) −12.3383 7.12352i −0.495918 0.286318i 0.231108 0.972928i \(-0.425765\pi\)
−0.727026 + 0.686610i \(0.759098\pi\)
\(620\) −4.91794 + 4.33099i −0.197509 + 0.173937i
\(621\) 0 0
\(622\) 2.94266 + 7.79393i 0.117990 + 0.312508i
\(623\) −1.45174 + 2.51448i −0.0581626 + 0.100741i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −6.95983 + 8.49853i −0.278171 + 0.339670i
\(627\) 0 0
\(628\) 0.867439 + 4.31414i 0.0346146 + 0.172153i
\(629\) 23.1814i 0.924302i
\(630\) 0 0
\(631\) 38.8200i 1.54540i 0.634772 + 0.772700i \(0.281094\pi\)
−0.634772 + 0.772700i \(0.718906\pi\)
\(632\) 5.65867 + 9.03707i 0.225090 + 0.359476i
\(633\) 0 0
\(634\) 12.8789 + 10.5471i 0.511487 + 0.418880i
\(635\) 4.70607 + 8.15115i 0.186755 + 0.323468i
\(636\) 0 0
\(637\) 14.0642 24.3599i 0.557245 0.965176i
\(638\) 22.5211 8.50302i 0.891620 0.336638i
\(639\) 0 0
\(640\) 9.24389 + 6.52307i 0.365397 + 0.257847i
\(641\) −16.5595 9.56061i −0.654060 0.377621i 0.135950 0.990716i \(-0.456591\pi\)
−0.790010 + 0.613094i \(0.789925\pi\)
\(642\) 0 0
\(643\) 5.69143 3.28595i 0.224448 0.129585i −0.383560 0.923516i \(-0.625302\pi\)
0.608008 + 0.793931i \(0.291969\pi\)
\(644\) −5.37816 + 15.9521i −0.211929 + 0.628602i
\(645\) 0 0
\(646\) 7.93304 + 1.30130i 0.312121 + 0.0511991i
\(647\) −12.7191 −0.500040 −0.250020 0.968241i \(-0.580437\pi\)
−0.250020 + 0.968241i \(0.580437\pi\)
\(648\) 0 0
\(649\) −27.1658 −1.06635
\(650\) 7.08830 + 1.16273i 0.278026 + 0.0456062i
\(651\) 0 0
\(652\) 9.81743 29.1195i 0.384480 1.14041i
\(653\) 38.1762 22.0410i 1.49395 0.862532i 0.493974 0.869477i \(-0.335544\pi\)
0.999976 + 0.00694441i \(0.00221049\pi\)
\(654\) 0 0
\(655\) 1.84689 + 1.06630i 0.0721640 + 0.0416639i
\(656\) −16.9620 2.16157i −0.662256 0.0843951i
\(657\) 0 0
\(658\) 16.4796 6.22201i 0.642444 0.242559i
\(659\) −10.8929 + 18.8671i −0.424328 + 0.734957i −0.996357 0.0852757i \(-0.972823\pi\)
0.572030 + 0.820233i \(0.306156\pi\)
\(660\) 0 0
\(661\) −10.2756 17.7979i −0.399676 0.692260i 0.594009 0.804458i \(-0.297544\pi\)
−0.993686 + 0.112198i \(0.964211\pi\)
\(662\) 4.73096 + 3.87439i 0.183874 + 0.150583i
\(663\) 0 0
\(664\) −1.37205 + 0.859126i −0.0532460 + 0.0333406i
\(665\) 3.06920i 0.119018i
\(666\) 0 0
\(667\) 38.9379i 1.50768i
\(668\) 8.76204 + 43.5773i 0.339014 + 1.68606i
\(669\) 0 0
\(670\) −12.9184 + 15.7745i −0.499082 + 0.609420i
\(671\) −4.04432 7.00497i −0.156129 0.270424i
\(672\) 0 0
\(673\) 1.08874 1.88576i 0.0419680 0.0726906i −0.844278 0.535905i \(-0.819971\pi\)
0.886246 + 0.463214i \(0.153304\pi\)
\(674\) −3.88139 10.2803i −0.149505 0.395981i
\(675\) 0 0
\(676\) −19.2090 + 16.9164i −0.738807 + 0.650631i
\(677\) −1.92840 1.11336i −0.0741143 0.0427899i 0.462485 0.886627i \(-0.346958\pi\)
−0.536599 + 0.843837i \(0.680291\pi\)
\(678\) 0 0
\(679\) −12.2003 + 7.04386i −0.468205 + 0.270319i
\(680\) −0.226935 6.33002i −0.00870255 0.242745i
\(681\) 0 0
\(682\) −2.28265 + 13.9156i −0.0874073 + 0.532855i
\(683\) −12.9800 −0.496665 −0.248333 0.968675i \(-0.579883\pi\)
−0.248333 + 0.968675i \(0.579883\pi\)
\(684\) 0 0
\(685\) −16.4869 −0.629931
\(686\) −3.47048 + 21.1568i −0.132504 + 0.807772i
\(687\) 0 0
\(688\) 6.67865 + 15.9364i 0.254621 + 0.607571i
\(689\) 41.4657 23.9402i 1.57972 0.912050i
\(690\) 0 0
\(691\) 24.1859 + 13.9637i 0.920074 + 0.531205i 0.883659 0.468132i \(-0.155073\pi\)
0.0364156 + 0.999337i \(0.488406\pi\)
\(692\) 20.3699 + 23.1305i 0.774347 + 0.879289i
\(693\) 0 0
\(694\) −5.62776 14.9057i −0.213627 0.565813i
\(695\) 10.0504 17.4077i 0.381232 0.660313i
\(696\) 0 0
\(697\) 4.78657 + 8.29058i 0.181304 + 0.314028i
\(698\) 19.9642 24.3779i 0.755655 0.922717i
\(699\) 0 0
\(700\) −2.37081 + 0.476696i −0.0896083 + 0.0180174i
\(701\) 31.0643i 1.17328i 0.809847 + 0.586641i \(0.199550\pi\)
−0.809847 + 0.586641i \(0.800450\pi\)
\(702\) 0 0
\(703\) 26.2756i 0.991001i
\(704\) 24.2832 1.74338i 0.915208 0.0657060i
\(705\) 0 0
\(706\) 24.1415 + 19.7705i 0.908576 + 0.744074i
\(707\) −2.88841 5.00287i −0.108630 0.188152i
\(708\) 0 0
\(709\) 21.7239 37.6269i 0.815859 1.41311i −0.0928511 0.995680i \(-0.529598\pi\)
0.908710 0.417429i \(-0.137069\pi\)
\(710\) 4.62146 1.74487i 0.173440 0.0654837i
\(711\) 0 0
\(712\) 3.18302 5.99982i 0.119289 0.224853i
\(713\) 19.7535 + 11.4047i 0.739773 + 0.427108i
\(714\) 0 0
\(715\) 13.3862 7.72850i 0.500614 0.289030i
\(716\) 24.3017 + 8.19317i 0.908198 + 0.306193i
\(717\) 0 0
\(718\) −2.37709 0.389928i −0.0887122 0.0145520i
\(719\) 12.6495 0.471747 0.235874 0.971784i \(-0.424205\pi\)
0.235874 + 0.971784i \(0.424205\pi\)
\(720\) 0 0
\(721\) 11.4371 0.425938
\(722\) 17.5238 + 2.87453i 0.652167 + 0.106979i
\(723\) 0 0
\(724\) 32.9097 + 11.0953i 1.22308 + 0.412353i
\(725\) 4.84407 2.79673i 0.179904 0.103868i
\(726\) 0 0
\(727\) 43.4035 + 25.0590i 1.60975 + 0.929389i 0.989425 + 0.145042i \(0.0463318\pi\)
0.620323 + 0.784347i \(0.287002\pi\)
\(728\) 8.14068 15.3448i 0.301714 0.568714i
\(729\) 0 0
\(730\) 6.74826 2.54785i 0.249764 0.0943003i
\(731\) 4.83699 8.37791i 0.178902 0.309868i
\(732\) 0 0
\(733\) 14.7327 + 25.5178i 0.544166 + 0.942523i 0.998659 + 0.0517728i \(0.0164872\pi\)
−0.454493 + 0.890750i \(0.650179\pi\)
\(734\) −10.3084 8.44199i −0.380489 0.311600i
\(735\) 0 0
\(736\) 11.2357 37.7424i 0.414154 1.39120i
\(737\) 43.8751i 1.61616i
\(738\) 0 0
\(739\) 45.3131i 1.66687i −0.552618 0.833435i \(-0.686371\pi\)
0.552618 0.833435i \(-0.313629\pi\)
\(740\) −20.2966 + 4.08102i −0.746120 + 0.150021i
\(741\) 0 0
\(742\) −10.2132 + 12.4712i −0.374940 + 0.457832i
\(743\) 4.03779 + 6.99366i 0.148132 + 0.256573i 0.930537 0.366197i \(-0.119341\pi\)
−0.782405 + 0.622770i \(0.786007\pi\)
\(744\) 0 0
\(745\) −0.941851 + 1.63133i −0.0345067 + 0.0597674i
\(746\) −7.28589 19.2974i −0.266756 0.706530i
\(747\) 0 0
\(748\) −9.00823 10.2291i −0.329373 0.374011i
\(749\) 19.1641 + 11.0644i 0.700239 + 0.404283i
\(750\) 0 0
\(751\) 9.71367 5.60819i 0.354457 0.204646i −0.312190 0.950020i \(-0.601062\pi\)
0.666646 + 0.745374i \(0.267729\pi\)
\(752\) −38.0034 + 15.9265i −1.38584 + 0.580779i
\(753\) 0 0
\(754\) −6.50370 + 39.6480i −0.236851 + 1.44390i
\(755\) −6.18825 −0.225214
\(756\) 0 0
\(757\) −26.9148 −0.978236 −0.489118 0.872218i \(-0.662681\pi\)
−0.489118 + 0.872218i \(0.662681\pi\)
\(758\) 2.16575 13.2029i 0.0786637 0.479552i
\(759\) 0 0
\(760\) 0.257225 + 7.17493i 0.00933055 + 0.260262i
\(761\) −6.74550 + 3.89451i −0.244524 + 0.141176i −0.617254 0.786764i \(-0.711755\pi\)
0.372730 + 0.927940i \(0.378422\pi\)
\(762\) 0 0
\(763\) 10.7425 + 6.20218i 0.388904 + 0.224534i
\(764\) 26.7597 23.5660i 0.968132 0.852587i
\(765\) 0 0
\(766\) 3.42683 + 9.07632i 0.123816 + 0.327941i
\(767\) 22.6701 39.2657i 0.818569 1.41780i
\(768\) 0 0
\(769\) −3.36491 5.82819i −0.121342 0.210170i 0.798955 0.601390i \(-0.205386\pi\)
−0.920297 + 0.391220i \(0.872053\pi\)
\(770\) −3.29709 + 4.02602i −0.118819 + 0.145088i
\(771\) 0 0
\(772\) 1.92535 + 9.57559i 0.0692950 + 0.344633i
\(773\) 16.5270i 0.594435i 0.954810 + 0.297217i \(0.0960586\pi\)
−0.954810 + 0.297217i \(0.903941\pi\)
\(774\) 0 0
\(775\) 3.27657i 0.117698i
\(776\) 27.9306 17.4891i 1.00265 0.627821i
\(777\) 0 0
\(778\) −8.99086 7.36302i −0.322338 0.263977i
\(779\) −5.42547 9.39719i −0.194388 0.336689i
\(780\) 0 0
\(781\) 5.31502 9.20588i 0.190186 0.329412i
\(782\) −20.6257 + 7.78740i −0.737574 + 0.278477i
\(783\) 0 0
\(784\) 2.80031 21.9743i 0.100011 0.784796i
\(785\) 1.90546 + 1.10012i 0.0680089 + 0.0392650i
\(786\) 0 0
\(787\) 2.38973 1.37971i 0.0851847 0.0491814i −0.456803 0.889568i \(-0.651005\pi\)
0.541987 + 0.840387i \(0.317672\pi\)
\(788\) 10.7454 31.8719i 0.382789 1.13539i
\(789\) 0 0
\(790\) 5.26095 + 0.862984i 0.187176 + 0.0307036i
\(791\) 7.41755 0.263738
\(792\) 0 0
\(793\) 13.5001 0.479401
\(794\) −9.87968 1.62062i −0.350617 0.0575137i
\(795\) 0 0
\(796\) −3.77934 + 11.2099i −0.133955 + 0.397324i
\(797\) −4.54011 + 2.62123i −0.160819 + 0.0928488i −0.578250 0.815860i \(-0.696264\pi\)
0.417431 + 0.908709i \(0.362931\pi\)
\(798\) 0 0
\(799\) 19.9787 + 11.5347i 0.706794 + 0.408068i
\(800\) 5.50235 1.31308i 0.194537 0.0464243i
\(801\) 0 0
\(802\) 23.4079 8.83781i 0.826560 0.312074i
\(803\) 7.76099 13.4424i 0.273879 0.474373i
\(804\) 0 0
\(805\) 4.20859 + 7.28949i 0.148333 + 0.256921i
\(806\) −18.2088 14.9120i −0.641378 0.525253i
\(807\) 0 0
\(808\) 7.17158 + 11.4532i 0.252295 + 0.402924i
\(809\) 47.1813i 1.65881i 0.558650 + 0.829403i \(0.311319\pi\)
−0.558650 + 0.829403i \(0.688681\pi\)
\(810\) 0 0
\(811\) 18.8666i 0.662495i 0.943544 + 0.331247i \(0.107469\pi\)
−0.943544 + 0.331247i \(0.892531\pi\)
\(812\) −2.66638 13.2610i −0.0935715 0.465371i
\(813\) 0 0
\(814\) −28.2265 + 34.4669i −0.989339 + 1.20807i
\(815\) −7.68247 13.3064i −0.269105 0.466104i
\(816\) 0 0
\(817\) −5.48261 + 9.49617i −0.191812 + 0.332229i
\(818\) 11.3435 + 30.0444i 0.396615 + 1.05048i
\(819\) 0 0
\(820\) −6.41622 + 5.65046i −0.224064 + 0.197323i
\(821\) −1.12399 0.648938i −0.0392277 0.0226481i 0.480258 0.877127i \(-0.340543\pi\)
−0.519486 + 0.854479i \(0.673876\pi\)
\(822\) 0 0
\(823\) 5.77693 3.33531i 0.201371 0.116262i −0.395924 0.918283i \(-0.629576\pi\)
0.597295 + 0.802022i \(0.296242\pi\)
\(824\) −26.7367 + 0.958525i −0.931416 + 0.0333918i
\(825\) 0 0
\(826\) −2.47088 + 15.0631i −0.0859729 + 0.524111i
\(827\) 37.4924 1.30374 0.651869 0.758331i \(-0.273985\pi\)
0.651869 + 0.758331i \(0.273985\pi\)
\(828\) 0 0
\(829\) −22.9261 −0.796255 −0.398127 0.917330i \(-0.630340\pi\)
−0.398127 + 0.917330i \(0.630340\pi\)
\(830\) −0.131022 + 0.798742i −0.00454785 + 0.0277248i
\(831\) 0 0
\(832\) −17.7446 + 36.5540i −0.615184 + 1.26728i
\(833\) −10.7405 + 6.20100i −0.372135 + 0.214852i
\(834\) 0 0
\(835\) 19.2472 + 11.1124i 0.666076 + 0.384559i
\(836\) 10.2106 + 11.5944i 0.353142 + 0.401001i
\(837\) 0 0
\(838\) −13.1680 34.8769i −0.454882 1.20480i
\(839\) −9.11048 + 15.7798i −0.314529 + 0.544780i −0.979337 0.202234i \(-0.935180\pi\)
0.664808 + 0.747014i \(0.268513\pi\)
\(840\) 0 0
\(841\) 1.14335 + 1.98034i 0.0394259 + 0.0682877i
\(842\) −15.3718 + 18.7702i −0.529746 + 0.646864i
\(843\) 0 0
\(844\) 54.2216 10.9023i 1.86638 0.375271i
\(845\) 12.7979i 0.440263i
\(846\) 0 0
\(847\) 2.10248i 0.0722422i
\(848\) 22.8305 30.0102i 0.784003 1.03055i
\(849\) 0 0
\(850\) −2.45024 2.00661i −0.0840425 0.0688262i
\(851\) 36.0299 + 62.4057i 1.23509 + 2.13924i
\(852\) 0 0
\(853\) 0.975478 1.68958i 0.0333997 0.0578500i −0.848842 0.528646i \(-0.822700\pi\)
0.882242 + 0.470796i \(0.156033\pi\)
\(854\) −4.25201 + 1.60538i −0.145501 + 0.0549349i
\(855\) 0 0
\(856\) −45.7275 24.2593i −1.56293 0.829166i
\(857\) −11.2785 6.51166i −0.385267 0.222434i 0.294840 0.955546i \(-0.404733\pi\)
−0.680107 + 0.733113i \(0.738067\pi\)
\(858\) 0 0
\(859\) 3.50034 2.02092i 0.119430 0.0689530i −0.439095 0.898441i \(-0.644701\pi\)
0.558525 + 0.829488i \(0.311367\pi\)
\(860\) 8.18689 + 2.76015i 0.279171 + 0.0941205i
\(861\) 0 0
\(862\) −17.5585 2.88022i −0.598044 0.0981006i
\(863\) 10.6258 0.361705 0.180853 0.983510i \(-0.442114\pi\)
0.180853 + 0.983510i \(0.442114\pi\)
\(864\) 0 0
\(865\) 15.4106 0.523978
\(866\) −16.3885 2.68830i −0.556903 0.0913521i
\(867\) 0 0
\(868\) 7.50836 + 2.53139i 0.254850 + 0.0859211i
\(869\) 9.93523 5.73611i 0.337030 0.194584i
\(870\) 0 0
\(871\) −63.4174 36.6140i −2.14882 1.24062i
\(872\) −25.6327 13.5986i −0.868034 0.460508i
\(873\) 0 0
\(874\) 23.3788 8.82684i 0.790799 0.298572i
\(875\) −0.604565 + 1.04714i −0.0204380 + 0.0353997i
\(876\) 0 0
\(877\) 26.5530 + 45.9911i 0.896631 + 1.55301i 0.831774 + 0.555115i \(0.187326\pi\)
0.0648570 + 0.997895i \(0.479341\pi\)
\(878\) 1.84125 + 1.50788i 0.0621392 + 0.0508886i
\(879\) 0 0
\(880\) 7.37026 9.68803i 0.248451 0.326583i
\(881\) 10.8244i 0.364685i 0.983235 + 0.182342i \(0.0583679\pi\)
−0.983235 + 0.182342i \(0.941632\pi\)
\(882\) 0 0
\(883\) 21.6083i 0.727178i 0.931559 + 0.363589i \(0.118449\pi\)
−0.931559 + 0.363589i \(0.881551\pi\)
\(884\) 22.3026 4.48435i 0.750117 0.150825i
\(885\) 0 0
\(886\) 0.680108 0.830468i 0.0228487 0.0279001i
\(887\) −0.264026 0.457306i −0.00886511 0.0153548i 0.861559 0.507658i \(-0.169489\pi\)
−0.870424 + 0.492303i \(0.836155\pi\)
\(888\) 0 0
\(889\) 5.69025 9.85580i 0.190845 0.330553i
\(890\) −1.19951 3.17703i −0.0402078 0.106494i
\(891\) 0 0
\(892\) 31.6537 + 35.9435i 1.05984 + 1.20348i
\(893\) −22.6454 13.0743i −0.757798 0.437515i
\(894\) 0 0
\(895\) 11.1049 6.41143i 0.371196 0.214310i
\(896\) 1.24201 13.6233i 0.0414928 0.455121i
\(897\) 0 0
\(898\) 3.99649 24.3635i 0.133365 0.813021i
\(899\) −18.3273 −0.611251
\(900\) 0 0
\(901\) −21.1108 −0.703302
\(902\) −2.97808 + 18.1551i −0.0991592 + 0.604497i
\(903\) 0 0
\(904\) −17.3402 + 0.621656i −0.576726 + 0.0206760i
\(905\) 15.0384 8.68243i 0.499894 0.288614i
\(906\) 0 0
\(907\) 40.9884 + 23.6647i 1.36100 + 0.785773i 0.989757 0.142763i \(-0.0455988\pi\)
0.371242 + 0.928536i \(0.378932\pi\)
\(908\) −10.3859 + 9.14635i −0.344668 + 0.303532i
\(909\) 0 0
\(910\) −3.06779 8.12537i −0.101696 0.269353i
\(911\) 18.8160 32.5902i 0.623401 1.07976i −0.365447 0.930832i \(-0.619084\pi\)
0.988848 0.148930i \(-0.0475829\pi\)
\(912\) 0 0
\(913\) 0.870884 + 1.50841i 0.0288220 + 0.0499213i
\(914\) 31.2392 38.1456i 1.03330 1.26174i
\(915\) 0 0
\(916\) 6.03859 + 30.0324i 0.199520 + 0.992299i
\(917\) 2.57860i 0.0851528i
\(918\) 0 0
\(919\) 42.9157i 1.41566i −0.706383 0.707830i \(-0.749674\pi\)
0.706383 0.707830i \(-0.250326\pi\)
\(920\) −10.4494 16.6881i −0.344507 0.550190i
\(921\) 0 0
\(922\) −34.2261 28.0293i −1.12718 0.923095i
\(923\) 8.87083 + 15.3647i 0.291987 + 0.505736i
\(924\) 0 0
\(925\) −5.17572 + 8.96460i −0.170176 + 0.294754i
\(926\) −13.6046 + 5.13652i −0.447075 + 0.168797i
\(927\) 0 0
\(928\) 7.34464 + 30.7771i 0.241100 + 1.01031i
\(929\) 25.1609 + 14.5267i 0.825503 + 0.476605i 0.852311 0.523036i \(-0.175201\pi\)
−0.0268072 + 0.999641i \(0.508534\pi\)
\(930\) 0 0
\(931\) 12.1741 7.02870i 0.398989 0.230356i
\(932\) 4.22378 12.5282i 0.138355 0.410373i
\(933\) 0 0
\(934\) 4.05529 + 0.665213i 0.132693 + 0.0217665i
\(935\) −6.81509 −0.222877
\(936\) 0 0
\(937\) 51.0143 1.66656 0.833282 0.552848i \(-0.186459\pi\)
0.833282 + 0.552848i \(0.186459\pi\)
\(938\) 24.3281 + 3.99067i 0.794339 + 0.130300i
\(939\) 0 0
\(940\) −6.58210 + 19.5231i −0.214684 + 0.636775i
\(941\) −7.54730 + 4.35743i −0.246035 + 0.142048i −0.617947 0.786220i \(-0.712036\pi\)
0.371912 + 0.928268i \(0.378702\pi\)
\(942\) 0 0
\(943\) 25.7715 + 14.8792i 0.839235 + 0.484532i
\(944\) 4.51382 35.4203i 0.146912 1.15283i
\(945\) 0 0
\(946\) 17.3931 6.56689i 0.565498 0.213508i
\(947\) 19.0803 33.0481i 0.620028 1.07392i −0.369452 0.929250i \(-0.620455\pi\)
0.989480 0.144670i \(-0.0462120\pi\)
\(948\) 0 0
\(949\) 12.9532 + 22.4356i 0.420478 + 0.728290i
\(950\) 2.77729 + 2.27445i 0.0901071 + 0.0737928i
\(951\) 0 0
\(952\) −6.49120 + 4.06454i −0.210381 + 0.131732i
\(953\) 40.4395i 1.30996i −0.755645 0.654982i \(-0.772676\pi\)
0.755645 0.654982i \(-0.227324\pi\)
\(954\) 0 0
\(955\) 17.8286i 0.576920i
\(956\) 3.24118 + 16.1198i 0.104827 + 0.521350i
\(957\) 0 0
\(958\) 16.8951 20.6303i 0.545857 0.666536i
\(959\) 9.96739 + 17.2640i 0.321864 + 0.557485i
\(960\) 0 0
\(961\) −10.1320 + 17.5492i −0.326840 + 0.566104i
\(962\) −26.2636 69.5617i −0.846771 2.24276i
\(963\) 0 0
\(964\) −21.9371 + 19.3189i −0.706546 + 0.622220i
\(965\) 4.22934 + 2.44181i 0.136147 + 0.0786046i
\(966\) 0 0
\(967\) 14.5754 8.41511i 0.468713 0.270612i −0.246988 0.969019i \(-0.579441\pi\)
0.715701 + 0.698407i \(0.246107\pi\)
\(968\) 0.176206 + 4.91502i 0.00566349 + 0.157975i
\(969\) 0 0
\(970\) 2.66720 16.2599i 0.0856386 0.522073i
\(971\) 34.0951 1.09416 0.547082 0.837079i \(-0.315738\pi\)
0.547082 + 0.837079i \(0.315738\pi\)
\(972\) 0 0
\(973\) −24.3044 −0.779163
\(974\) −2.64854 + 16.1461i −0.0848646 + 0.517354i
\(975\) 0 0
\(976\) 9.80546 4.10928i 0.313865 0.131535i
\(977\) −0.748148 + 0.431943i −0.0239354 + 0.0138191i −0.511920 0.859033i \(-0.671066\pi\)
0.487985 + 0.872852i \(0.337732\pi\)
\(978\) 0 0
\(979\) −6.32860 3.65382i −0.202263 0.116777i
\(980\) −7.32017 8.31222i −0.233834 0.265524i
\(981\) 0 0
\(982\) −0.746913 1.97828i −0.0238349 0.0631293i
\(983\) −18.4107 + 31.8882i −0.587209 + 1.01708i 0.407387 + 0.913256i \(0.366440\pi\)
−0.994596 + 0.103821i \(0.966893\pi\)
\(984\) 0 0
\(985\) −8.40863 14.5642i −0.267921 0.464053i
\(986\) 11.2239 13.7053i 0.357441 0.436465i
\(987\) 0 0
\(988\) −25.2795 + 5.08291i −0.804247 + 0.161709i
\(989\) 30.0718i 0.956227i
\(990\) 0 0
\(991\) 35.9773i 1.14286i −0.820652 0.571428i \(-0.806390\pi\)
0.820652 0.571428i \(-0.193610\pi\)
\(992\) −17.7646 5.28843i −0.564027 0.167908i
\(993\) 0 0
\(994\) −4.62109 3.78442i −0.146572 0.120035i
\(995\) 2.95746 + 5.12247i 0.0937577 + 0.162393i
\(996\) 0 0
\(997\) 16.7322 28.9811i 0.529915 0.917840i −0.469476 0.882945i \(-0.655557\pi\)
0.999391 0.0348944i \(-0.0111095\pi\)
\(998\) −41.6478 + 15.7244i −1.31834 + 0.497748i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.q.a.251.24 48
3.2 odd 2 180.2.q.a.11.1 48
4.3 odd 2 inner 540.2.q.a.251.17 48
9.2 odd 6 1620.2.e.b.971.32 48
9.4 even 3 180.2.q.a.131.8 yes 48
9.5 odd 6 inner 540.2.q.a.71.17 48
9.7 even 3 1620.2.e.b.971.17 48
12.11 even 2 180.2.q.a.11.8 yes 48
15.2 even 4 900.2.o.c.299.14 48
15.8 even 4 900.2.o.b.299.11 48
15.14 odd 2 900.2.r.f.551.24 48
36.7 odd 6 1620.2.e.b.971.31 48
36.11 even 6 1620.2.e.b.971.18 48
36.23 even 6 inner 540.2.q.a.71.24 48
36.31 odd 6 180.2.q.a.131.1 yes 48
45.4 even 6 900.2.r.f.851.17 48
45.13 odd 12 900.2.o.c.599.19 48
45.22 odd 12 900.2.o.b.599.6 48
60.23 odd 4 900.2.o.b.299.6 48
60.47 odd 4 900.2.o.c.299.19 48
60.59 even 2 900.2.r.f.551.17 48
180.67 even 12 900.2.o.b.599.11 48
180.103 even 12 900.2.o.c.599.14 48
180.139 odd 6 900.2.r.f.851.24 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.1 48 3.2 odd 2
180.2.q.a.11.8 yes 48 12.11 even 2
180.2.q.a.131.1 yes 48 36.31 odd 6
180.2.q.a.131.8 yes 48 9.4 even 3
540.2.q.a.71.17 48 9.5 odd 6 inner
540.2.q.a.71.24 48 36.23 even 6 inner
540.2.q.a.251.17 48 4.3 odd 2 inner
540.2.q.a.251.24 48 1.1 even 1 trivial
900.2.o.b.299.6 48 60.23 odd 4
900.2.o.b.299.11 48 15.8 even 4
900.2.o.b.599.6 48 45.22 odd 12
900.2.o.b.599.11 48 180.67 even 12
900.2.o.c.299.14 48 15.2 even 4
900.2.o.c.299.19 48 60.47 odd 4
900.2.o.c.599.14 48 180.103 even 12
900.2.o.c.599.19 48 45.13 odd 12
900.2.r.f.551.17 48 60.59 even 2
900.2.r.f.551.24 48 15.14 odd 2
900.2.r.f.851.17 48 45.4 even 6
900.2.r.f.851.24 48 180.139 odd 6
1620.2.e.b.971.17 48 9.7 even 3
1620.2.e.b.971.18 48 36.11 even 6
1620.2.e.b.971.31 48 36.7 odd 6
1620.2.e.b.971.32 48 9.2 odd 6