gp: [N,k,chi] = [882,4,Mod(361,882)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(882, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("882.361");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,2,0,-4,2,0,0,-16,0,-4,-8,0,-84]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 882 Z ) × \left(\mathbb{Z}/882\mathbb{Z}\right)^\times ( Z / 8 8 2 Z ) × .
n n n
199 199 1 9 9
785 785 7 8 5
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 882 , [ χ ] ) S_{4}^{\mathrm{new}}(882, [\chi]) S 4 n e w ( 8 8 2 , [ χ ] ) :
T 5 2 − 2 T 5 + 4 T_{5}^{2} - 2T_{5} + 4 T 5 2 − 2 T 5 + 4
T5^2 - 2*T5 + 4
T 11 2 + 8 T 11 + 64 T_{11}^{2} + 8T_{11} + 64 T 1 1 2 + 8 T 1 1 + 6 4
T11^2 + 8*T11 + 64
T 13 + 42 T_{13} + 42 T 1 3 + 4 2
T13 + 42
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 + 8 T + 64 T^{2} + 8T + 64 T 2 + 8 T + 6 4
T^2 + 8*T + 64
13 13 1 3
( T + 42 ) 2 (T + 42)^{2} ( T + 4 2 ) 2
(T + 42)^2
17 17 1 7
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
19 19 1 9
T 2 − 124 T + 15376 T^{2} - 124T + 15376 T 2 − 1 2 4 T + 1 5 3 7 6
T^2 - 124*T + 15376
23 23 2 3
T 2 − 76 T + 5776 T^{2} - 76T + 5776 T 2 − 7 6 T + 5 7 7 6
T^2 - 76*T + 5776
29 29 2 9
( T + 254 ) 2 (T + 254)^{2} ( T + 2 5 4 ) 2
(T + 254)^2
31 31 3 1
T 2 − 72 T + 5184 T^{2} - 72T + 5184 T 2 − 7 2 T + 5 1 8 4
T^2 - 72*T + 5184
37 37 3 7
T 2 + 398 T + 158404 T^{2} + 398T + 158404 T 2 + 3 9 8 T + 1 5 8 4 0 4
T^2 + 398*T + 158404
41 41 4 1
( T + 462 ) 2 (T + 462)^{2} ( T + 4 6 2 ) 2
(T + 462)^2
43 43 4 3
( T − 212 ) 2 (T - 212)^{2} ( T − 2 1 2 ) 2
(T - 212)^2
47 47 4 7
T 2 + 264 T + 69696 T^{2} + 264T + 69696 T 2 + 2 6 4 T + 6 9 6 9 6
T^2 + 264*T + 69696
53 53 5 3
T 2 + 162 T + 26244 T^{2} + 162T + 26244 T 2 + 1 6 2 T + 2 6 2 4 4
T^2 + 162*T + 26244
59 59 5 9
T 2 + 772 T + 595984 T^{2} + 772T + 595984 T 2 + 7 7 2 T + 5 9 5 9 8 4
T^2 + 772*T + 595984
61 61 6 1
T 2 + 30 T + 900 T^{2} + 30T + 900 T 2 + 3 0 T + 9 0 0
T^2 + 30*T + 900
67 67 6 7
T 2 − 764 T + 583696 T^{2} - 764T + 583696 T 2 − 7 6 4 T + 5 8 3 6 9 6
T^2 - 764*T + 583696
71 71 7 1
( T − 236 ) 2 (T - 236)^{2} ( T − 2 3 6 ) 2
(T - 236)^2
73 73 7 3
T 2 + 418 T + 174724 T^{2} + 418T + 174724 T 2 + 4 1 8 T + 1 7 4 7 2 4
T^2 + 418*T + 174724
79 79 7 9
T 2 + 552 T + 304704 T^{2} + 552T + 304704 T 2 + 5 5 2 T + 3 0 4 7 0 4
T^2 + 552*T + 304704
83 83 8 3
( T + 1036 ) 2 (T + 1036)^{2} ( T + 1 0 3 6 ) 2
(T + 1036)^2
89 89 8 9
T 2 − 30 T + 900 T^{2} - 30T + 900 T 2 − 3 0 T + 9 0 0
T^2 - 30*T + 900
97 97 9 7
( T + 1190 ) 2 (T + 1190)^{2} ( T + 1 1 9 0 ) 2
(T + 1190)^2
show more
show less