Properties

Label 882.4.g.s
Level 882882
Weight 44
Character orbit 882.g
Analytic conductor 52.04052.040
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,4,Mod(361,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 882.g (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-4,2,0,0,-16,0,-4,-8,0,-84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 52.039684625152.0396846251
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2ζ6q2+(4ζ64)q4+2ζ6q58q8+(4ζ64)q10+(8ζ68)q1142q1316ζ6q16+(2ζ62)q17+124ζ6q19+1190q97+O(q100) q + 2 \zeta_{6} q^{2} + (4 \zeta_{6} - 4) q^{4} + 2 \zeta_{6} q^{5} - 8 q^{8} + (4 \zeta_{6} - 4) q^{10} + (8 \zeta_{6} - 8) q^{11} - 42 q^{13} - 16 \zeta_{6} q^{16} + (2 \zeta_{6} - 2) q^{17} + 124 \zeta_{6} q^{19} + \cdots - 1190 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q24q4+2q516q84q108q1184q1316q162q17+124q1916q2032q22+76q23+121q2584q26508q29+72q31+32q32+2380q97+O(q100) 2 q + 2 q^{2} - 4 q^{4} + 2 q^{5} - 16 q^{8} - 4 q^{10} - 8 q^{11} - 84 q^{13} - 16 q^{16} - 2 q^{17} + 124 q^{19} - 16 q^{20} - 32 q^{22} + 76 q^{23} + 121 q^{25} - 84 q^{26} - 508 q^{29} + 72 q^{31} + 32 q^{32}+ \cdots - 2380 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/882Z)×\left(\mathbb{Z}/882\mathbb{Z}\right)^\times.

nn 199199 785785
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i 1.00000 + 1.73205i 0 0 −8.00000 0 −2.00000 + 3.46410i
667.1 1.00000 1.73205i 0 −2.00000 3.46410i 1.00000 1.73205i 0 0 −8.00000 0 −2.00000 3.46410i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.s 2
3.b odd 2 1 294.4.e.a 2
7.b odd 2 1 882.4.g.r 2
7.c even 3 1 126.4.a.c 1
7.c even 3 1 inner 882.4.g.s 2
7.d odd 6 1 882.4.a.d 1
7.d odd 6 1 882.4.g.r 2
21.c even 2 1 294.4.e.d 2
21.g even 6 1 294.4.a.h 1
21.g even 6 1 294.4.e.d 2
21.h odd 6 1 42.4.a.b 1
21.h odd 6 1 294.4.e.a 2
28.g odd 6 1 1008.4.a.j 1
84.j odd 6 1 2352.4.a.ba 1
84.n even 6 1 336.4.a.d 1
105.o odd 6 1 1050.4.a.d 1
105.x even 12 2 1050.4.g.n 2
168.s odd 6 1 1344.4.a.f 1
168.v even 6 1 1344.4.a.t 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.b 1 21.h odd 6 1
126.4.a.c 1 7.c even 3 1
294.4.a.h 1 21.g even 6 1
294.4.e.a 2 3.b odd 2 1
294.4.e.a 2 21.h odd 6 1
294.4.e.d 2 21.c even 2 1
294.4.e.d 2 21.g even 6 1
336.4.a.d 1 84.n even 6 1
882.4.a.d 1 7.d odd 6 1
882.4.g.r 2 7.b odd 2 1
882.4.g.r 2 7.d odd 6 1
882.4.g.s 2 1.a even 1 1 trivial
882.4.g.s 2 7.c even 3 1 inner
1008.4.a.j 1 28.g odd 6 1
1050.4.a.d 1 105.o odd 6 1
1050.4.g.n 2 105.x even 12 2
1344.4.a.f 1 168.s odd 6 1
1344.4.a.t 1 168.v even 6 1
2352.4.a.ba 1 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(882,[χ])S_{4}^{\mathrm{new}}(882, [\chi]):

T522T5+4 T_{5}^{2} - 2T_{5} + 4 Copy content Toggle raw display
T112+8T11+64 T_{11}^{2} + 8T_{11} + 64 Copy content Toggle raw display
T13+42 T_{13} + 42 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
1313 (T+42)2 (T + 42)^{2} Copy content Toggle raw display
1717 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1919 T2124T+15376 T^{2} - 124T + 15376 Copy content Toggle raw display
2323 T276T+5776 T^{2} - 76T + 5776 Copy content Toggle raw display
2929 (T+254)2 (T + 254)^{2} Copy content Toggle raw display
3131 T272T+5184 T^{2} - 72T + 5184 Copy content Toggle raw display
3737 T2+398T+158404 T^{2} + 398T + 158404 Copy content Toggle raw display
4141 (T+462)2 (T + 462)^{2} Copy content Toggle raw display
4343 (T212)2 (T - 212)^{2} Copy content Toggle raw display
4747 T2+264T+69696 T^{2} + 264T + 69696 Copy content Toggle raw display
5353 T2+162T+26244 T^{2} + 162T + 26244 Copy content Toggle raw display
5959 T2+772T+595984 T^{2} + 772T + 595984 Copy content Toggle raw display
6161 T2+30T+900 T^{2} + 30T + 900 Copy content Toggle raw display
6767 T2764T+583696 T^{2} - 764T + 583696 Copy content Toggle raw display
7171 (T236)2 (T - 236)^{2} Copy content Toggle raw display
7373 T2+418T+174724 T^{2} + 418T + 174724 Copy content Toggle raw display
7979 T2+552T+304704 T^{2} + 552T + 304704 Copy content Toggle raw display
8383 (T+1036)2 (T + 1036)^{2} Copy content Toggle raw display
8989 T230T+900 T^{2} - 30T + 900 Copy content Toggle raw display
9797 (T+1190)2 (T + 1190)^{2} Copy content Toggle raw display
show more
show less