Properties

Label 294.4.a.h
Level $294$
Weight $4$
Character orbit 294.a
Self dual yes
Analytic conductor $17.347$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,4,Mod(1,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,-3,4,-2,-6,0,8,9,-4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3465615417\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} - 3 q^{3} + 4 q^{4} - 2 q^{5} - 6 q^{6} + 8 q^{8} + 9 q^{9} - 4 q^{10} - 8 q^{11} - 12 q^{12} + 42 q^{13} + 6 q^{15} + 16 q^{16} + 2 q^{17} + 18 q^{18} + 124 q^{19} - 8 q^{20} - 16 q^{22} + 76 q^{23}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −3.00000 4.00000 −2.00000 −6.00000 0 8.00000 9.00000 −4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.4.a.h 1
3.b odd 2 1 882.4.a.d 1
4.b odd 2 1 2352.4.a.ba 1
7.b odd 2 1 42.4.a.b 1
7.c even 3 2 294.4.e.d 2
7.d odd 6 2 294.4.e.a 2
21.c even 2 1 126.4.a.c 1
21.g even 6 2 882.4.g.s 2
21.h odd 6 2 882.4.g.r 2
28.d even 2 1 336.4.a.d 1
35.c odd 2 1 1050.4.a.d 1
35.f even 4 2 1050.4.g.n 2
56.e even 2 1 1344.4.a.t 1
56.h odd 2 1 1344.4.a.f 1
84.h odd 2 1 1008.4.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.b 1 7.b odd 2 1
126.4.a.c 1 21.c even 2 1
294.4.a.h 1 1.a even 1 1 trivial
294.4.e.a 2 7.d odd 6 2
294.4.e.d 2 7.c even 3 2
336.4.a.d 1 28.d even 2 1
882.4.a.d 1 3.b odd 2 1
882.4.g.r 2 21.h odd 6 2
882.4.g.s 2 21.g even 6 2
1008.4.a.j 1 84.h odd 2 1
1050.4.a.d 1 35.c odd 2 1
1050.4.g.n 2 35.f even 4 2
1344.4.a.f 1 56.h odd 2 1
1344.4.a.t 1 56.e even 2 1
2352.4.a.ba 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{11} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 8 \) Copy content Toggle raw display
$13$ \( T - 42 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T - 124 \) Copy content Toggle raw display
$23$ \( T - 76 \) Copy content Toggle raw display
$29$ \( T - 254 \) Copy content Toggle raw display
$31$ \( T - 72 \) Copy content Toggle raw display
$37$ \( T - 398 \) Copy content Toggle raw display
$41$ \( T + 462 \) Copy content Toggle raw display
$43$ \( T - 212 \) Copy content Toggle raw display
$47$ \( T - 264 \) Copy content Toggle raw display
$53$ \( T + 162 \) Copy content Toggle raw display
$59$ \( T - 772 \) Copy content Toggle raw display
$61$ \( T + 30 \) Copy content Toggle raw display
$67$ \( T + 764 \) Copy content Toggle raw display
$71$ \( T + 236 \) Copy content Toggle raw display
$73$ \( T + 418 \) Copy content Toggle raw display
$79$ \( T - 552 \) Copy content Toggle raw display
$83$ \( T + 1036 \) Copy content Toggle raw display
$89$ \( T + 30 \) Copy content Toggle raw display
$97$ \( T - 1190 \) Copy content Toggle raw display
show more
show less