gp: [N,k,chi] = [882,4,Mod(1,882)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(882, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("882.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-2,0,4,2,0,0,-8,0,-4,8,0,42]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 882 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(882)) S 4 n e w ( Γ 0 ( 8 8 2 ) ) :
T 5 − 2 T_{5} - 2 T 5 − 2
T5 - 2
T 11 − 8 T_{11} - 8 T 1 1 − 8
T11 - 8
T 13 − 42 T_{13} - 42 T 1 3 − 4 2
T13 - 42
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T T T
T
5 5 5
T − 2 T - 2 T − 2
T - 2
7 7 7
T T T
T
11 11 1 1
T − 8 T - 8 T − 8
T - 8
13 13 1 3
T − 42 T - 42 T − 4 2
T - 42
17 17 1 7
T + 2 T + 2 T + 2
T + 2
19 19 1 9
T − 124 T - 124 T − 1 2 4
T - 124
23 23 2 3
T + 76 T + 76 T + 7 6
T + 76
29 29 2 9
T + 254 T + 254 T + 2 5 4
T + 254
31 31 3 1
T − 72 T - 72 T − 7 2
T - 72
37 37 3 7
T − 398 T - 398 T − 3 9 8
T - 398
41 41 4 1
T − 462 T - 462 T − 4 6 2
T - 462
43 43 4 3
T − 212 T - 212 T − 2 1 2
T - 212
47 47 4 7
T + 264 T + 264 T + 2 6 4
T + 264
53 53 5 3
T − 162 T - 162 T − 1 6 2
T - 162
59 59 5 9
T + 772 T + 772 T + 7 7 2
T + 772
61 61 6 1
T + 30 T + 30 T + 3 0
T + 30
67 67 6 7
T + 764 T + 764 T + 7 6 4
T + 764
71 71 7 1
T − 236 T - 236 T − 2 3 6
T - 236
73 73 7 3
T + 418 T + 418 T + 4 1 8
T + 418
79 79 7 9
T − 552 T - 552 T − 5 5 2
T - 552
83 83 8 3
T − 1036 T - 1036 T − 1 0 3 6
T - 1036
89 89 8 9
T − 30 T - 30 T − 3 0
T - 30
97 97 9 7
T − 1190 T - 1190 T − 1 1 9 0
T - 1190
show more
show less