Properties

Label 882.4.a.d
Level 882882
Weight 44
Character orbit 882.a
Self dual yes
Analytic conductor 52.04052.040
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,4,Mod(1,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 882.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,0,4,2,0,0,-8,0,-4,8,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.039684625152.0396846251
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2q2+4q4+2q58q84q10+8q11+42q13+16q162q17+124q19+8q2016q2276q23121q2584q26254q29+72q3132q32++1190q97+O(q100) q - 2 q^{2} + 4 q^{4} + 2 q^{5} - 8 q^{8} - 4 q^{10} + 8 q^{11} + 42 q^{13} + 16 q^{16} - 2 q^{17} + 124 q^{19} + 8 q^{20} - 16 q^{22} - 76 q^{23} - 121 q^{25} - 84 q^{26} - 254 q^{29} + 72 q^{31} - 32 q^{32}+ \cdots + 1190 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−2.00000 0 4.00000 2.00000 0 0 −8.00000 0 −4.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.a.d 1
3.b odd 2 1 294.4.a.h 1
7.b odd 2 1 126.4.a.c 1
7.c even 3 2 882.4.g.r 2
7.d odd 6 2 882.4.g.s 2
12.b even 2 1 2352.4.a.ba 1
21.c even 2 1 42.4.a.b 1
21.g even 6 2 294.4.e.a 2
21.h odd 6 2 294.4.e.d 2
28.d even 2 1 1008.4.a.j 1
84.h odd 2 1 336.4.a.d 1
105.g even 2 1 1050.4.a.d 1
105.k odd 4 2 1050.4.g.n 2
168.e odd 2 1 1344.4.a.t 1
168.i even 2 1 1344.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.b 1 21.c even 2 1
126.4.a.c 1 7.b odd 2 1
294.4.a.h 1 3.b odd 2 1
294.4.e.a 2 21.g even 6 2
294.4.e.d 2 21.h odd 6 2
336.4.a.d 1 84.h odd 2 1
882.4.a.d 1 1.a even 1 1 trivial
882.4.g.r 2 7.c even 3 2
882.4.g.s 2 7.d odd 6 2
1008.4.a.j 1 28.d even 2 1
1050.4.a.d 1 105.g even 2 1
1050.4.g.n 2 105.k odd 4 2
1344.4.a.f 1 168.i even 2 1
1344.4.a.t 1 168.e odd 2 1
2352.4.a.ba 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(882))S_{4}^{\mathrm{new}}(\Gamma_0(882)):

T52 T_{5} - 2 Copy content Toggle raw display
T118 T_{11} - 8 Copy content Toggle raw display
T1342 T_{13} - 42 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T2 T - 2 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T8 T - 8 Copy content Toggle raw display
1313 T42 T - 42 Copy content Toggle raw display
1717 T+2 T + 2 Copy content Toggle raw display
1919 T124 T - 124 Copy content Toggle raw display
2323 T+76 T + 76 Copy content Toggle raw display
2929 T+254 T + 254 Copy content Toggle raw display
3131 T72 T - 72 Copy content Toggle raw display
3737 T398 T - 398 Copy content Toggle raw display
4141 T462 T - 462 Copy content Toggle raw display
4343 T212 T - 212 Copy content Toggle raw display
4747 T+264 T + 264 Copy content Toggle raw display
5353 T162 T - 162 Copy content Toggle raw display
5959 T+772 T + 772 Copy content Toggle raw display
6161 T+30 T + 30 Copy content Toggle raw display
6767 T+764 T + 764 Copy content Toggle raw display
7171 T236 T - 236 Copy content Toggle raw display
7373 T+418 T + 418 Copy content Toggle raw display
7979 T552 T - 552 Copy content Toggle raw display
8383 T1036 T - 1036 Copy content Toggle raw display
8989 T30 T - 30 Copy content Toggle raw display
9797 T1190 T - 1190 Copy content Toggle raw display
show more
show less