Properties

Label 2352.4.a.ba
Level 23522352
Weight 44
Character orbit 2352.a
Self dual yes
Analytic conductor 138.772138.772
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2352,4,Mod(1,2352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2352.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 2352=24372 2352 = 2^{4} \cdot 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,3,0,-2,0,0,0,9,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 138.772492334138.772492334
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+3q32q5+9q9+8q11+42q136q15+2q17124q1976q23121q25+27q27+254q2972q31+24q33+398q37+126q39462q41++72q99+O(q100) q + 3 q^{3} - 2 q^{5} + 9 q^{9} + 8 q^{11} + 42 q^{13} - 6 q^{15} + 2 q^{17} - 124 q^{19} - 76 q^{23} - 121 q^{25} + 27 q^{27} + 254 q^{29} - 72 q^{31} + 24 q^{33} + 398 q^{37} + 126 q^{39} - 462 q^{41}+ \cdots + 72 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 3.00000 0 −2.00000 0 0 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.ba 1
4.b odd 2 1 294.4.a.h 1
7.b odd 2 1 336.4.a.d 1
12.b even 2 1 882.4.a.d 1
21.c even 2 1 1008.4.a.j 1
28.d even 2 1 42.4.a.b 1
28.f even 6 2 294.4.e.a 2
28.g odd 6 2 294.4.e.d 2
56.e even 2 1 1344.4.a.f 1
56.h odd 2 1 1344.4.a.t 1
84.h odd 2 1 126.4.a.c 1
84.j odd 6 2 882.4.g.s 2
84.n even 6 2 882.4.g.r 2
140.c even 2 1 1050.4.a.d 1
140.j odd 4 2 1050.4.g.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.b 1 28.d even 2 1
126.4.a.c 1 84.h odd 2 1
294.4.a.h 1 4.b odd 2 1
294.4.e.a 2 28.f even 6 2
294.4.e.d 2 28.g odd 6 2
336.4.a.d 1 7.b odd 2 1
882.4.a.d 1 12.b even 2 1
882.4.g.r 2 84.n even 6 2
882.4.g.s 2 84.j odd 6 2
1008.4.a.j 1 21.c even 2 1
1050.4.a.d 1 140.c even 2 1
1050.4.g.n 2 140.j odd 4 2
1344.4.a.f 1 56.e even 2 1
1344.4.a.t 1 56.h odd 2 1
2352.4.a.ba 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2352))S_{4}^{\mathrm{new}}(\Gamma_0(2352)):

T5+2 T_{5} + 2 Copy content Toggle raw display
T118 T_{11} - 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T+2 T + 2 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T8 T - 8 Copy content Toggle raw display
1313 T42 T - 42 Copy content Toggle raw display
1717 T2 T - 2 Copy content Toggle raw display
1919 T+124 T + 124 Copy content Toggle raw display
2323 T+76 T + 76 Copy content Toggle raw display
2929 T254 T - 254 Copy content Toggle raw display
3131 T+72 T + 72 Copy content Toggle raw display
3737 T398 T - 398 Copy content Toggle raw display
4141 T+462 T + 462 Copy content Toggle raw display
4343 T+212 T + 212 Copy content Toggle raw display
4747 T+264 T + 264 Copy content Toggle raw display
5353 T+162 T + 162 Copy content Toggle raw display
5959 T+772 T + 772 Copy content Toggle raw display
6161 T+30 T + 30 Copy content Toggle raw display
6767 T764 T - 764 Copy content Toggle raw display
7171 T236 T - 236 Copy content Toggle raw display
7373 T+418 T + 418 Copy content Toggle raw display
7979 T+552 T + 552 Copy content Toggle raw display
8383 T1036 T - 1036 Copy content Toggle raw display
8989 T+30 T + 30 Copy content Toggle raw display
9797 T1190 T - 1190 Copy content Toggle raw display
show more
show less