Defining parameters
Level: | \( N \) | \(=\) | \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2352.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 70 \) | ||
Sturm bound: | \(1792\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2352))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1392 | 123 | 1269 |
Cusp forms | 1296 | 123 | 1173 |
Eisenstein series | 96 | 0 | 96 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(176\) | \(15\) | \(161\) | \(164\) | \(15\) | \(149\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(173\) | \(15\) | \(158\) | \(161\) | \(15\) | \(146\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(172\) | \(13\) | \(159\) | \(160\) | \(13\) | \(147\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(175\) | \(18\) | \(157\) | \(163\) | \(18\) | \(145\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(172\) | \(16\) | \(156\) | \(160\) | \(16\) | \(144\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(175\) | \(15\) | \(160\) | \(163\) | \(15\) | \(148\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(176\) | \(16\) | \(160\) | \(164\) | \(16\) | \(148\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(173\) | \(15\) | \(158\) | \(161\) | \(15\) | \(146\) | \(12\) | \(0\) | \(12\) | |||
Plus space | \(+\) | \(702\) | \(64\) | \(638\) | \(654\) | \(64\) | \(590\) | \(48\) | \(0\) | \(48\) | |||||
Minus space | \(-\) | \(690\) | \(59\) | \(631\) | \(642\) | \(59\) | \(583\) | \(48\) | \(0\) | \(48\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2352))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2352))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2352)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(392))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(588))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(784))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1176))\)\(^{\oplus 2}\)