Properties

Label 1050.4.g.n
Level 10501050
Weight 44
Character orbit 1050.g
Analytic conductor 61.95261.952
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,4,Mod(799,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.799"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 1050=23527 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1050.g (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,12,0,0,-18,0,-16,0,0,28,0,32,0,0,248] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 61.952005506061.9520055060
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2iq23iq34q4+6q67iq78iq89q98q11+12iq12+42iq13+14q14+16q162iq1718iq18+124q1921q2116iq22++72q99+O(q100) q + 2 i q^{2} - 3 i q^{3} - 4 q^{4} + 6 q^{6} - 7 i q^{7} - 8 i q^{8} - 9 q^{9} - 8 q^{11} + 12 i q^{12} + 42 i q^{13} + 14 q^{14} + 16 q^{16} - 2 i q^{17} - 18 i q^{18} + 124 q^{19} - 21 q^{21} - 16 i q^{22} + \cdots + 72 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q4+12q618q916q11+28q14+32q16+248q1942q2148q24168q26508q29144q31+8q34+72q36+252q39+924q41+64q44++144q99+O(q100) 2 q - 8 q^{4} + 12 q^{6} - 18 q^{9} - 16 q^{11} + 28 q^{14} + 32 q^{16} + 248 q^{19} - 42 q^{21} - 48 q^{24} - 168 q^{26} - 508 q^{29} - 144 q^{31} + 8 q^{34} + 72 q^{36} + 252 q^{39} + 924 q^{41} + 64 q^{44}+ \cdots + 144 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1050Z)×\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times.

nn 127127 451451 701701
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
799.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 6.00000 7.00000i 8.00000i −9.00000 0
799.2 2.00000i 3.00000i −4.00000 0 6.00000 7.00000i 8.00000i −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.4.g.n 2
5.b even 2 1 inner 1050.4.g.n 2
5.c odd 4 1 42.4.a.b 1
5.c odd 4 1 1050.4.a.d 1
15.e even 4 1 126.4.a.c 1
20.e even 4 1 336.4.a.d 1
35.f even 4 1 294.4.a.h 1
35.k even 12 2 294.4.e.d 2
35.l odd 12 2 294.4.e.a 2
40.i odd 4 1 1344.4.a.f 1
40.k even 4 1 1344.4.a.t 1
60.l odd 4 1 1008.4.a.j 1
105.k odd 4 1 882.4.a.d 1
105.w odd 12 2 882.4.g.r 2
105.x even 12 2 882.4.g.s 2
140.j odd 4 1 2352.4.a.ba 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.b 1 5.c odd 4 1
126.4.a.c 1 15.e even 4 1
294.4.a.h 1 35.f even 4 1
294.4.e.a 2 35.l odd 12 2
294.4.e.d 2 35.k even 12 2
336.4.a.d 1 20.e even 4 1
882.4.a.d 1 105.k odd 4 1
882.4.g.r 2 105.w odd 12 2
882.4.g.s 2 105.x even 12 2
1008.4.a.j 1 60.l odd 4 1
1050.4.a.d 1 5.c odd 4 1
1050.4.g.n 2 1.a even 1 1 trivial
1050.4.g.n 2 5.b even 2 1 inner
1344.4.a.f 1 40.i odd 4 1
1344.4.a.t 1 40.k even 4 1
2352.4.a.ba 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1050,[χ])S_{4}^{\mathrm{new}}(1050, [\chi]):

T11+8 T_{11} + 8 Copy content Toggle raw display
T132+1764 T_{13}^{2} + 1764 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+49 T^{2} + 49 Copy content Toggle raw display
1111 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
1313 T2+1764 T^{2} + 1764 Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 (T124)2 (T - 124)^{2} Copy content Toggle raw display
2323 T2+5776 T^{2} + 5776 Copy content Toggle raw display
2929 (T+254)2 (T + 254)^{2} Copy content Toggle raw display
3131 (T+72)2 (T + 72)^{2} Copy content Toggle raw display
3737 T2+158404 T^{2} + 158404 Copy content Toggle raw display
4141 (T462)2 (T - 462)^{2} Copy content Toggle raw display
4343 T2+44944 T^{2} + 44944 Copy content Toggle raw display
4747 T2+69696 T^{2} + 69696 Copy content Toggle raw display
5353 T2+26244 T^{2} + 26244 Copy content Toggle raw display
5959 (T772)2 (T - 772)^{2} Copy content Toggle raw display
6161 (T30)2 (T - 30)^{2} Copy content Toggle raw display
6767 T2+583696 T^{2} + 583696 Copy content Toggle raw display
7171 (T+236)2 (T + 236)^{2} Copy content Toggle raw display
7373 T2+174724 T^{2} + 174724 Copy content Toggle raw display
7979 (T+552)2 (T + 552)^{2} Copy content Toggle raw display
8383 T2+1073296 T^{2} + 1073296 Copy content Toggle raw display
8989 (T+30)2 (T + 30)^{2} Copy content Toggle raw display
9797 T2+1416100 T^{2} + 1416100 Copy content Toggle raw display
show more
show less