gp: [N,k,chi] = [1050,4,Mod(799,1050)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1050.799");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [2,0,0,-8,0,12,0,0,-18,0,-16,0,0,28,0,32,0,0,248]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 1050 Z ) × \left(\mathbb{Z}/1050\mathbb{Z}\right)^\times ( Z / 1 0 5 0 Z ) × .
n n n
127 127 1 2 7
451 451 4 5 1
701 701 7 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 1050 , [ χ ] ) S_{4}^{\mathrm{new}}(1050, [\chi]) S 4 n e w ( 1 0 5 0 , [ χ ] ) :
T 11 + 8 T_{11} + 8 T 1 1 + 8
T11 + 8
T 13 2 + 1764 T_{13}^{2} + 1764 T 1 3 2 + 1 7 6 4
T13^2 + 1764
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
3 3 3
T 2 + 9 T^{2} + 9 T 2 + 9
T^2 + 9
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
11 11 1 1
( T + 8 ) 2 (T + 8)^{2} ( T + 8 ) 2
(T + 8)^2
13 13 1 3
T 2 + 1764 T^{2} + 1764 T 2 + 1 7 6 4
T^2 + 1764
17 17 1 7
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
19 19 1 9
( T − 124 ) 2 (T - 124)^{2} ( T − 1 2 4 ) 2
(T - 124)^2
23 23 2 3
T 2 + 5776 T^{2} + 5776 T 2 + 5 7 7 6
T^2 + 5776
29 29 2 9
( T + 254 ) 2 (T + 254)^{2} ( T + 2 5 4 ) 2
(T + 254)^2
31 31 3 1
( T + 72 ) 2 (T + 72)^{2} ( T + 7 2 ) 2
(T + 72)^2
37 37 3 7
T 2 + 158404 T^{2} + 158404 T 2 + 1 5 8 4 0 4
T^2 + 158404
41 41 4 1
( T − 462 ) 2 (T - 462)^{2} ( T − 4 6 2 ) 2
(T - 462)^2
43 43 4 3
T 2 + 44944 T^{2} + 44944 T 2 + 4 4 9 4 4
T^2 + 44944
47 47 4 7
T 2 + 69696 T^{2} + 69696 T 2 + 6 9 6 9 6
T^2 + 69696
53 53 5 3
T 2 + 26244 T^{2} + 26244 T 2 + 2 6 2 4 4
T^2 + 26244
59 59 5 9
( T − 772 ) 2 (T - 772)^{2} ( T − 7 7 2 ) 2
(T - 772)^2
61 61 6 1
( T − 30 ) 2 (T - 30)^{2} ( T − 3 0 ) 2
(T - 30)^2
67 67 6 7
T 2 + 583696 T^{2} + 583696 T 2 + 5 8 3 6 9 6
T^2 + 583696
71 71 7 1
( T + 236 ) 2 (T + 236)^{2} ( T + 2 3 6 ) 2
(T + 236)^2
73 73 7 3
T 2 + 174724 T^{2} + 174724 T 2 + 1 7 4 7 2 4
T^2 + 174724
79 79 7 9
( T + 552 ) 2 (T + 552)^{2} ( T + 5 5 2 ) 2
(T + 552)^2
83 83 8 3
T 2 + 1073296 T^{2} + 1073296 T 2 + 1 0 7 3 2 9 6
T^2 + 1073296
89 89 8 9
( T + 30 ) 2 (T + 30)^{2} ( T + 3 0 ) 2
(T + 30)^2
97 97 9 7
T 2 + 1416100 T^{2} + 1416100 T 2 + 1 4 1 6 1 0 0
T^2 + 1416100
show more
show less