Properties

Label 882.4
Level 882
Weight 4
Dimension 16081
Nonzero newspaces 20
Sturm bound 169344
Trace bound 9

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(169344\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(882))\).

Total New Old
Modular forms 64464 16081 48383
Cusp forms 62544 16081 46463
Eisenstein series 1920 0 1920

Trace form

\( 16081q + 4q^{2} + 3q^{3} - 8q^{4} + 60q^{5} - 18q^{6} + 48q^{7} - 8q^{8} - 105q^{9} + O(q^{10}) \) \( 16081q + 4q^{2} + 3q^{3} - 8q^{4} + 60q^{5} - 18q^{6} + 48q^{7} - 8q^{8} - 105q^{9} - 84q^{10} - 57q^{11} + 24q^{12} + 458q^{13} + 396q^{14} + 570q^{15} - 32q^{16} - 804q^{17} - 516q^{18} - 1666q^{19} - 672q^{20} - 720q^{21} - 1338q^{22} - 1860q^{23} - 216q^{24} - 728q^{25} - 52q^{26} + 1584q^{27} + 168q^{28} + 3462q^{29} + 1392q^{30} + 4238q^{31} + 64q^{32} + 2253q^{33} + 1158q^{34} + 492q^{35} + 516q^{36} + 3050q^{37} + 2750q^{38} - 3102q^{39} + 672q^{40} - 5865q^{41} - 4147q^{43} - 1872q^{44} - 3486q^{45} - 4788q^{46} - 5976q^{47} - 144q^{48} - 4854q^{49} - 7988q^{50} - 6705q^{51} + 848q^{52} + 750q^{53} - 486q^{54} + 936q^{55} + 288q^{56} + 7131q^{57} - 312q^{58} + 12069q^{59} + 7128q^{60} - 1816q^{61} + 9500q^{62} + 10416q^{63} - 320q^{64} + 13626q^{65} + 9888q^{66} + 1883q^{67} + 4164q^{68} + 9342q^{69} + 396q^{70} + 6528q^{71} - 24q^{72} + 6188q^{73} - 6700q^{74} - 20121q^{75} + 1532q^{76} - 9522q^{77} - 16956q^{78} - 2758q^{79} + 96q^{80} - 1533q^{81} - 1032q^{82} - 2094q^{83} - 3948q^{85} + 9554q^{86} + 6228q^{87} + 5208q^{88} + 19482q^{89} + 9744q^{90} + 450q^{91} + 4128q^{92} + 2406q^{93} + 3588q^{94} - 11628q^{95} - 384q^{96} - 9757q^{97} - 6288q^{98} - 5520q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(882))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
882.4.a \(\chi_{882}(1, \cdot)\) 882.4.a.a 1 1
882.4.a.b 1
882.4.a.c 1
882.4.a.d 1
882.4.a.e 1
882.4.a.f 1
882.4.a.g 1
882.4.a.h 1
882.4.a.i 1
882.4.a.j 1
882.4.a.k 1
882.4.a.l 1
882.4.a.m 1
882.4.a.n 1
882.4.a.o 1
882.4.a.p 1
882.4.a.q 1
882.4.a.r 1
882.4.a.s 1
882.4.a.t 2
882.4.a.u 2
882.4.a.v 2
882.4.a.w 2
882.4.a.x 2
882.4.a.y 2
882.4.a.z 2
882.4.a.ba 2
882.4.a.bb 2
882.4.a.bc 2
882.4.a.bd 2
882.4.a.be 2
882.4.a.bf 2
882.4.a.bg 2
882.4.a.bh 2
882.4.a.bi 2
882.4.d \(\chi_{882}(881, \cdot)\) 882.4.d.a 8 1
882.4.d.b 16
882.4.d.c 16
882.4.e \(\chi_{882}(373, \cdot)\) n/a 240 2
882.4.f \(\chi_{882}(295, \cdot)\) n/a 246 2
882.4.g \(\chi_{882}(361, \cdot)\) 882.4.g.a 2 2
882.4.g.b 2
882.4.g.c 2
882.4.g.d 2
882.4.g.e 2
882.4.g.f 2
882.4.g.g 2
882.4.g.h 2
882.4.g.i 2
882.4.g.j 2
882.4.g.k 2
882.4.g.l 2
882.4.g.m 2
882.4.g.n 2
882.4.g.o 2
882.4.g.p 2
882.4.g.q 2
882.4.g.r 2
882.4.g.s 2
882.4.g.t 2
882.4.g.u 2
882.4.g.v 2
882.4.g.w 2
882.4.g.x 2
882.4.g.y 4
882.4.g.z 4
882.4.g.ba 4
882.4.g.bb 4
882.4.g.bc 4
882.4.g.bd 4
882.4.g.be 4
882.4.g.bf 4
882.4.g.bg 4
882.4.g.bh 4
882.4.g.bi 4
882.4.g.bj 4
882.4.g.bk 4
882.4.h \(\chi_{882}(67, \cdot)\) n/a 240 2
882.4.k \(\chi_{882}(215, \cdot)\) 882.4.k.a 16 2
882.4.k.b 16
882.4.k.c 16
882.4.k.d 32
882.4.l \(\chi_{882}(227, \cdot)\) n/a 240 2
882.4.m \(\chi_{882}(293, \cdot)\) n/a 240 2
882.4.t \(\chi_{882}(803, \cdot)\) n/a 240 2
882.4.u \(\chi_{882}(127, \cdot)\) n/a 420 6
882.4.v \(\chi_{882}(125, \cdot)\) n/a 336 6
882.4.y \(\chi_{882}(193, \cdot)\) n/a 2016 12
882.4.z \(\chi_{882}(37, \cdot)\) n/a 840 12
882.4.ba \(\chi_{882}(43, \cdot)\) n/a 2016 12
882.4.bb \(\chi_{882}(25, \cdot)\) n/a 2016 12
882.4.bc \(\chi_{882}(47, \cdot)\) n/a 2016 12
882.4.bj \(\chi_{882}(41, \cdot)\) n/a 2016 12
882.4.bk \(\chi_{882}(5, \cdot)\) n/a 2016 12
882.4.bl \(\chi_{882}(17, \cdot)\) n/a 672 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(882))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(882)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(294))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(441))\)\(^{\oplus 2}\)