Properties

Label 845.2.n.d.529.4
Level $845$
Weight $2$
Character 845.529
Analytic conductor $6.747$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(484,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.484"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,6,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.4
Root \(1.09445 + 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 845.529
Dual form 845.2.n.d.484.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89564 + 1.09445i) q^{2} +(0.866025 + 0.500000i) q^{3} +(1.39564 + 2.41733i) q^{4} +(2.18890 - 0.456850i) q^{5} +(1.09445 + 1.89564i) q^{6} +(1.50000 - 0.866025i) q^{7} +1.73205i q^{8} +(-1.00000 - 1.73205i) q^{9} +(4.64938 + 1.52962i) q^{10} +(-1.32288 + 2.29129i) q^{11} +2.79129i q^{12} +3.79129 q^{14} +(2.12407 + 0.698807i) q^{15} +(0.895644 - 1.55130i) q^{16} +(-3.96863 + 2.29129i) q^{17} -4.37780i q^{18} +(0.866025 + 1.50000i) q^{19} +(4.15928 + 4.65369i) q^{20} +1.73205 q^{21} +(-5.01540 + 2.89564i) q^{22} +(3.96863 + 2.29129i) q^{23} +(-0.866025 + 1.50000i) q^{24} +(4.58258 - 2.00000i) q^{25} -5.00000i q^{27} +(4.18693 + 2.41733i) q^{28} +(-2.29129 + 3.96863i) q^{29} +(3.26167 + 3.64938i) q^{30} -9.66930 q^{31} +(6.39564 - 3.69253i) q^{32} +(-2.29129 + 1.32288i) q^{33} -10.0308 q^{34} +(2.88771 - 2.58092i) q^{35} +(2.79129 - 4.83465i) q^{36} +(-6.87386 - 3.96863i) q^{37} +3.79129i q^{38} +(0.791288 + 3.79129i) q^{40} +(-1.32288 + 2.29129i) q^{41} +(3.28335 + 1.89564i) q^{42} +(1.22753 - 0.708712i) q^{43} -7.38505 q^{44} +(-2.98019 - 3.33444i) q^{45} +(5.01540 + 8.68693i) q^{46} -8.75560i q^{47} +(1.55130 - 0.895644i) q^{48} +(-2.00000 + 3.46410i) q^{49} +(10.8758 + 1.22411i) q^{50} -4.58258 q^{51} +1.58258i q^{53} +(5.47225 - 9.47822i) q^{54} +(-1.84887 + 5.61976i) q^{55} +(1.50000 + 2.59808i) q^{56} +1.73205i q^{57} +(-8.68693 + 5.01540i) q^{58} +(-1.68438 - 2.91742i) q^{59} +(1.27520 + 6.10985i) q^{60} +(5.29129 + 9.16478i) q^{61} +(-18.3296 - 10.5826i) q^{62} +(-3.00000 - 1.73205i) q^{63} +12.5826 q^{64} -5.79129 q^{66} +(-12.8739 - 7.43273i) q^{67} +(-11.0776 - 6.39564i) q^{68} +(2.29129 + 3.96863i) q^{69} +(8.29875 - 1.73205i) q^{70} +(1.77973 + 3.08258i) q^{71} +(3.00000 - 1.73205i) q^{72} +(-8.68693 - 15.0462i) q^{74} +(4.96863 + 0.559237i) q^{75} +(-2.41733 + 4.18693i) q^{76} +4.58258i q^{77} +6.00000 q^{79} +(1.25176 - 3.80482i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-5.01540 + 2.89564i) q^{82} +11.3060i q^{83} +(2.41733 + 4.18693i) q^{84} +(-7.64016 + 6.82847i) q^{85} +3.10260 q^{86} +(-3.96863 + 2.29129i) q^{87} +(-3.96863 - 2.29129i) q^{88} +(-2.14123 + 3.70871i) q^{89} +(-2.00000 - 9.58258i) q^{90} +12.7913i q^{92} +(-8.37386 - 4.83465i) q^{93} +(9.58258 - 16.5975i) q^{94} +(2.58092 + 2.88771i) q^{95} +7.38505 q^{96} +(3.87386 - 2.23658i) q^{97} +(-7.58258 + 4.37780i) q^{98} +5.29150 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 2 q^{4} + 12 q^{7} - 8 q^{9} + 4 q^{10} + 12 q^{14} + 6 q^{15} - 2 q^{16} + 18 q^{20} + 6 q^{28} + 10 q^{30} + 42 q^{32} + 6 q^{35} + 4 q^{36} - 12 q^{40} + 12 q^{45} - 16 q^{49} + 42 q^{50}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89564 + 1.09445i 1.34042 + 0.773893i 0.986869 0.161521i \(-0.0516399\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i 0.728714 0.684819i \(-0.240119\pi\)
−0.228714 + 0.973494i \(0.573452\pi\)
\(4\) 1.39564 + 2.41733i 0.697822 + 1.20866i
\(5\) 2.18890 0.456850i 0.978906 0.204310i
\(6\) 1.09445 + 1.89564i 0.446808 + 0.773893i
\(7\) 1.50000 0.866025i 0.566947 0.327327i −0.188982 0.981981i \(-0.560519\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 1.73205i 0.612372i
\(9\) −1.00000 1.73205i −0.333333 0.577350i
\(10\) 4.64938 + 1.52962i 1.47026 + 0.483708i
\(11\) −1.32288 + 2.29129i −0.398862 + 0.690849i −0.993586 0.113081i \(-0.963928\pi\)
0.594724 + 0.803930i \(0.297261\pi\)
\(12\) 2.79129i 0.805775i
\(13\) 0 0
\(14\) 3.79129 1.01326
\(15\) 2.12407 + 0.698807i 0.548432 + 0.180431i
\(16\) 0.895644 1.55130i 0.223911 0.387825i
\(17\) −3.96863 + 2.29129i −0.962533 + 0.555719i −0.896952 0.442128i \(-0.854224\pi\)
−0.0655816 + 0.997847i \(0.520890\pi\)
\(18\) 4.37780i 1.03186i
\(19\) 0.866025 + 1.50000i 0.198680 + 0.344124i 0.948101 0.317970i \(-0.103001\pi\)
−0.749421 + 0.662094i \(0.769668\pi\)
\(20\) 4.15928 + 4.65369i 0.930044 + 1.04060i
\(21\) 1.73205 0.377964
\(22\) −5.01540 + 2.89564i −1.06929 + 0.617353i
\(23\) 3.96863 + 2.29129i 0.827516 + 0.477767i 0.853001 0.521909i \(-0.174780\pi\)
−0.0254855 + 0.999675i \(0.508113\pi\)
\(24\) −0.866025 + 1.50000i −0.176777 + 0.306186i
\(25\) 4.58258 2.00000i 0.916515 0.400000i
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 4.18693 + 2.41733i 0.791256 + 0.456832i
\(29\) −2.29129 + 3.96863i −0.425481 + 0.736956i −0.996465 0.0840058i \(-0.973229\pi\)
0.570984 + 0.820961i \(0.306562\pi\)
\(30\) 3.26167 + 3.64938i 0.595497 + 0.666282i
\(31\) −9.66930 −1.73666 −0.868329 0.495988i \(-0.834806\pi\)
−0.868329 + 0.495988i \(0.834806\pi\)
\(32\) 6.39564 3.69253i 1.13060 0.652753i
\(33\) −2.29129 + 1.32288i −0.398862 + 0.230283i
\(34\) −10.0308 −1.72027
\(35\) 2.88771 2.58092i 0.488112 0.436255i
\(36\) 2.79129 4.83465i 0.465215 0.805775i
\(37\) −6.87386 3.96863i −1.13006 0.652438i −0.186107 0.982529i \(-0.559587\pi\)
−0.943949 + 0.330091i \(0.892920\pi\)
\(38\) 3.79129i 0.615028i
\(39\) 0 0
\(40\) 0.791288 + 3.79129i 0.125114 + 0.599455i
\(41\) −1.32288 + 2.29129i −0.206598 + 0.357839i −0.950641 0.310293i \(-0.899573\pi\)
0.744042 + 0.668132i \(0.232906\pi\)
\(42\) 3.28335 + 1.89564i 0.506632 + 0.292504i
\(43\) 1.22753 0.708712i 0.187196 0.108078i −0.403473 0.914991i \(-0.632197\pi\)
0.590669 + 0.806914i \(0.298864\pi\)
\(44\) −7.38505 −1.11334
\(45\) −2.98019 3.33444i −0.444260 0.497069i
\(46\) 5.01540 + 8.68693i 0.739481 + 1.28082i
\(47\) 8.75560i 1.27714i −0.769565 0.638568i \(-0.779527\pi\)
0.769565 0.638568i \(-0.220473\pi\)
\(48\) 1.55130 0.895644i 0.223911 0.129275i
\(49\) −2.00000 + 3.46410i −0.285714 + 0.494872i
\(50\) 10.8758 + 1.22411i 1.53808 + 0.173116i
\(51\) −4.58258 −0.641689
\(52\) 0 0
\(53\) 1.58258i 0.217383i 0.994076 + 0.108692i \(0.0346661\pi\)
−0.994076 + 0.108692i \(0.965334\pi\)
\(54\) 5.47225 9.47822i 0.744679 1.28982i
\(55\) −1.84887 + 5.61976i −0.249301 + 0.757768i
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) 1.73205i 0.229416i
\(58\) −8.68693 + 5.01540i −1.14065 + 0.658555i
\(59\) −1.68438 2.91742i −0.219287 0.379816i 0.735303 0.677738i \(-0.237040\pi\)
−0.954590 + 0.297922i \(0.903706\pi\)
\(60\) 1.27520 + 6.10985i 0.164628 + 0.788779i
\(61\) 5.29129 + 9.16478i 0.677480 + 1.17343i 0.975737 + 0.218944i \(0.0702613\pi\)
−0.298257 + 0.954485i \(0.596405\pi\)
\(62\) −18.3296 10.5826i −2.32786 1.34399i
\(63\) −3.00000 1.73205i −0.377964 0.218218i
\(64\) 12.5826 1.57282
\(65\) 0 0
\(66\) −5.79129 −0.712858
\(67\) −12.8739 7.43273i −1.57279 0.908052i −0.995825 0.0912856i \(-0.970902\pi\)
−0.576968 0.816767i \(-0.695764\pi\)
\(68\) −11.0776 6.39564i −1.34335 0.775586i
\(69\) 2.29129 + 3.96863i 0.275839 + 0.477767i
\(70\) 8.29875 1.73205i 0.991891 0.207020i
\(71\) 1.77973 + 3.08258i 0.211215 + 0.365834i 0.952095 0.305803i \(-0.0989248\pi\)
−0.740880 + 0.671637i \(0.765591\pi\)
\(72\) 3.00000 1.73205i 0.353553 0.204124i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −8.68693 15.0462i −1.00984 1.74909i
\(75\) 4.96863 + 0.559237i 0.573728 + 0.0645751i
\(76\) −2.41733 + 4.18693i −0.277286 + 0.480274i
\(77\) 4.58258i 0.522233i
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 1.25176 3.80482i 0.139951 0.425392i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −5.01540 + 2.89564i −0.553859 + 0.319770i
\(83\) 11.3060i 1.24100i 0.784208 + 0.620498i \(0.213069\pi\)
−0.784208 + 0.620498i \(0.786931\pi\)
\(84\) 2.41733 + 4.18693i 0.263752 + 0.456832i
\(85\) −7.64016 + 6.82847i −0.828691 + 0.740652i
\(86\) 3.10260 0.334562
\(87\) −3.96863 + 2.29129i −0.425481 + 0.245652i
\(88\) −3.96863 2.29129i −0.423057 0.244252i
\(89\) −2.14123 + 3.70871i −0.226969 + 0.393123i −0.956909 0.290390i \(-0.906215\pi\)
0.729939 + 0.683512i \(0.239548\pi\)
\(90\) −2.00000 9.58258i −0.210819 1.01009i
\(91\) 0 0
\(92\) 12.7913i 1.33358i
\(93\) −8.37386 4.83465i −0.868329 0.501330i
\(94\) 9.58258 16.5975i 0.988367 1.71190i
\(95\) 2.58092 + 2.88771i 0.264797 + 0.296273i
\(96\) 7.38505 0.753734
\(97\) 3.87386 2.23658i 0.393331 0.227090i −0.290271 0.956944i \(-0.593746\pi\)
0.683603 + 0.729854i \(0.260412\pi\)
\(98\) −7.58258 + 4.37780i −0.765956 + 0.442225i
\(99\) 5.29150 0.531816
\(100\) 11.2303 + 8.28629i 1.12303 + 0.828629i
\(101\) 4.50000 7.79423i 0.447767 0.775555i −0.550474 0.834853i \(-0.685553\pi\)
0.998240 + 0.0592978i \(0.0188862\pi\)
\(102\) −8.68693 5.01540i −0.860134 0.496599i
\(103\) 15.1652i 1.49427i −0.664674 0.747133i \(-0.731430\pi\)
0.664674 0.747133i \(-0.268570\pi\)
\(104\) 0 0
\(105\) 3.79129 0.791288i 0.369992 0.0772218i
\(106\) −1.73205 + 3.00000i −0.168232 + 0.291386i
\(107\) 1.22753 + 0.708712i 0.118669 + 0.0685138i 0.558160 0.829733i \(-0.311508\pi\)
−0.439490 + 0.898247i \(0.644841\pi\)
\(108\) 12.0866 6.97822i 1.16304 0.671479i
\(109\) 2.74110 0.262550 0.131275 0.991346i \(-0.458093\pi\)
0.131275 + 0.991346i \(0.458093\pi\)
\(110\) −9.65534 + 8.62957i −0.920601 + 0.822797i
\(111\) −3.96863 6.87386i −0.376685 0.652438i
\(112\) 3.10260i 0.293168i
\(113\) 14.3609 8.29129i 1.35096 0.779979i 0.362578 0.931953i \(-0.381897\pi\)
0.988384 + 0.151975i \(0.0485632\pi\)
\(114\) −1.89564 + 3.28335i −0.177543 + 0.307514i
\(115\) 9.73371 + 3.20233i 0.907673 + 0.298619i
\(116\) −12.7913 −1.18764
\(117\) 0 0
\(118\) 7.37386i 0.678819i
\(119\) −3.96863 + 6.87386i −0.363803 + 0.630126i
\(120\) −1.21037 + 3.67900i −0.110491 + 0.335845i
\(121\) 2.00000 + 3.46410i 0.181818 + 0.314918i
\(122\) 23.1642i 2.09719i
\(123\) −2.29129 + 1.32288i −0.206598 + 0.119280i
\(124\) −13.4949 23.3739i −1.21188 2.09903i
\(125\) 9.11710 6.47135i 0.815459 0.578815i
\(126\) −3.79129 6.56670i −0.337755 0.585008i
\(127\) −8.44178 4.87386i −0.749087 0.432485i 0.0762771 0.997087i \(-0.475697\pi\)
−0.825364 + 0.564601i \(0.809030\pi\)
\(128\) 11.0608 + 6.38595i 0.977645 + 0.564444i
\(129\) 1.41742 0.124797
\(130\) 0 0
\(131\) 1.58258 0.138270 0.0691351 0.997607i \(-0.477976\pi\)
0.0691351 + 0.997607i \(0.477976\pi\)
\(132\) −6.39564 3.69253i −0.556669 0.321393i
\(133\) 2.59808 + 1.50000i 0.225282 + 0.130066i
\(134\) −16.2695 28.1796i −1.40547 2.43435i
\(135\) −2.28425 10.9445i −0.196597 0.941953i
\(136\) −3.96863 6.87386i −0.340307 0.589429i
\(137\) 0.0825757 0.0476751i 0.00705492 0.00407316i −0.496468 0.868055i \(-0.665370\pi\)
0.503523 + 0.863982i \(0.332037\pi\)
\(138\) 10.0308i 0.853879i
\(139\) 2.87386 + 4.97768i 0.243758 + 0.422201i 0.961782 0.273817i \(-0.0882864\pi\)
−0.718024 + 0.696019i \(0.754953\pi\)
\(140\) 10.2691 + 3.37849i 0.867900 + 0.285534i
\(141\) 4.37780 7.58258i 0.368677 0.638568i
\(142\) 7.79129i 0.653830i
\(143\) 0 0
\(144\) −3.58258 −0.298548
\(145\) −3.20233 + 9.73371i −0.265939 + 0.808340i
\(146\) 0 0
\(147\) −3.46410 + 2.00000i −0.285714 + 0.164957i
\(148\) 22.1552i 1.82114i
\(149\) −4.88233 8.45644i −0.399976 0.692778i 0.593747 0.804652i \(-0.297648\pi\)
−0.993722 + 0.111874i \(0.964315\pi\)
\(150\) 8.80669 + 6.49803i 0.719063 + 0.530562i
\(151\) −6.20520 −0.504972 −0.252486 0.967601i \(-0.581248\pi\)
−0.252486 + 0.967601i \(0.581248\pi\)
\(152\) −2.59808 + 1.50000i −0.210732 + 0.121666i
\(153\) 7.93725 + 4.58258i 0.641689 + 0.370479i
\(154\) −5.01540 + 8.68693i −0.404153 + 0.700013i
\(155\) −21.1652 + 4.41742i −1.70003 + 0.354816i
\(156\) 0 0
\(157\) 9.16515i 0.731459i −0.930721 0.365729i \(-0.880820\pi\)
0.930721 0.365729i \(-0.119180\pi\)
\(158\) 11.3739 + 6.56670i 0.904856 + 0.522419i
\(159\) −0.791288 + 1.37055i −0.0627532 + 0.108692i
\(160\) 12.3125 11.0044i 0.973389 0.869976i
\(161\) 7.93725 0.625543
\(162\) −1.89564 + 1.09445i −0.148936 + 0.0859882i
\(163\) 9.24773 5.33918i 0.724338 0.418197i −0.0920093 0.995758i \(-0.529329\pi\)
0.816347 + 0.577561i \(0.195996\pi\)
\(164\) −7.38505 −0.576676
\(165\) −4.41105 + 3.94242i −0.343399 + 0.306917i
\(166\) −12.3739 + 21.4322i −0.960398 + 1.66346i
\(167\) −3.70871 2.14123i −0.286989 0.165693i 0.349594 0.936901i \(-0.386319\pi\)
−0.636583 + 0.771208i \(0.719653\pi\)
\(168\) 3.00000i 0.231455i
\(169\) 0 0
\(170\) −21.9564 + 4.58258i −1.68398 + 0.351468i
\(171\) 1.73205 3.00000i 0.132453 0.229416i
\(172\) 3.42638 + 1.97822i 0.261259 + 0.150838i
\(173\) −6.42368 + 3.70871i −0.488383 + 0.281968i −0.723903 0.689901i \(-0.757654\pi\)
0.235520 + 0.971869i \(0.424321\pi\)
\(174\) −10.0308 −0.760433
\(175\) 5.14181 6.96863i 0.388685 0.526779i
\(176\) 2.36965 + 4.10436i 0.178619 + 0.309377i
\(177\) 3.36875i 0.253211i
\(178\) −8.11800 + 4.68693i −0.608470 + 0.351300i
\(179\) 0.0825757 0.143025i 0.00617200 0.0106902i −0.862923 0.505336i \(-0.831369\pi\)
0.869095 + 0.494645i \(0.164702\pi\)
\(180\) 3.90114 11.8578i 0.290774 0.883826i
\(181\) 18.7477 1.39351 0.696754 0.717310i \(-0.254627\pi\)
0.696754 + 0.717310i \(0.254627\pi\)
\(182\) 0 0
\(183\) 10.5826i 0.782287i
\(184\) −3.96863 + 6.87386i −0.292571 + 0.506748i
\(185\) −16.8593 5.54661i −1.23952 0.407795i
\(186\) −10.5826 18.3296i −0.775952 1.34399i
\(187\) 12.1244i 0.886621i
\(188\) 21.1652 12.2197i 1.54363 0.891214i
\(189\) −4.33013 7.50000i −0.314970 0.545545i
\(190\) 1.73205 + 8.29875i 0.125656 + 0.602055i
\(191\) 3.70871 + 6.42368i 0.268353 + 0.464801i 0.968437 0.249260i \(-0.0801873\pi\)
−0.700084 + 0.714061i \(0.746854\pi\)
\(192\) 10.8968 + 6.29129i 0.786411 + 0.454035i
\(193\) −0.873864 0.504525i −0.0629021 0.0363165i 0.468219 0.883612i \(-0.344896\pi\)
−0.531121 + 0.847296i \(0.678229\pi\)
\(194\) 9.79129 0.702973
\(195\) 0 0
\(196\) −11.1652 −0.797511
\(197\) 17.2913 + 9.98313i 1.23195 + 0.711269i 0.967437 0.253113i \(-0.0814543\pi\)
0.264516 + 0.964381i \(0.414788\pi\)
\(198\) 10.0308 + 5.79129i 0.712858 + 0.411569i
\(199\) −0.708712 1.22753i −0.0502393 0.0870170i 0.839812 0.542877i \(-0.182665\pi\)
−0.890051 + 0.455860i \(0.849332\pi\)
\(200\) 3.46410 + 7.93725i 0.244949 + 0.561249i
\(201\) −7.43273 12.8739i −0.524264 0.908052i
\(202\) 17.0608 9.85005i 1.20039 0.693047i
\(203\) 7.93725i 0.557086i
\(204\) −6.39564 11.0776i −0.447785 0.775586i
\(205\) −1.84887 + 5.61976i −0.129131 + 0.392501i
\(206\) 16.5975 28.7477i 1.15640 2.00295i
\(207\) 9.16515i 0.637022i
\(208\) 0 0
\(209\) −4.58258 −0.316983
\(210\) 8.05296 + 2.64938i 0.555707 + 0.182824i
\(211\) −9.08258 + 15.7315i −0.625270 + 1.08300i 0.363218 + 0.931704i \(0.381678\pi\)
−0.988489 + 0.151296i \(0.951655\pi\)
\(212\) −3.82560 + 2.20871i −0.262743 + 0.151695i
\(213\) 3.55945i 0.243890i
\(214\) 1.55130 + 2.68693i 0.106045 + 0.183675i
\(215\) 2.36316 2.11210i 0.161166 0.144044i
\(216\) 8.66025 0.589256
\(217\) −14.5040 + 8.37386i −0.984593 + 0.568455i
\(218\) 5.19615 + 3.00000i 0.351928 + 0.203186i
\(219\) 0 0
\(220\) −16.1652 + 3.37386i −1.08985 + 0.227466i
\(221\) 0 0
\(222\) 17.3739i 1.16606i
\(223\) 7.50000 + 4.33013i 0.502237 + 0.289967i 0.729637 0.683835i \(-0.239689\pi\)
−0.227400 + 0.973801i \(0.573022\pi\)
\(224\) 6.39564 11.0776i 0.427327 0.740152i
\(225\) −8.04668 5.93725i −0.536445 0.395817i
\(226\) 36.2976 2.41448
\(227\) 5.29129 3.05493i 0.351195 0.202763i −0.314016 0.949418i \(-0.601675\pi\)
0.665212 + 0.746655i \(0.268341\pi\)
\(228\) −4.18693 + 2.41733i −0.277286 + 0.160091i
\(229\) 5.48220 0.362274 0.181137 0.983458i \(-0.442022\pi\)
0.181137 + 0.983458i \(0.442022\pi\)
\(230\) 14.9468 + 16.7235i 0.985566 + 1.10272i
\(231\) −2.29129 + 3.96863i −0.150756 + 0.261116i
\(232\) −6.87386 3.96863i −0.451291 0.260553i
\(233\) 21.1652i 1.38658i 0.720661 + 0.693288i \(0.243838\pi\)
−0.720661 + 0.693288i \(0.756162\pi\)
\(234\) 0 0
\(235\) −4.00000 19.1652i −0.260931 1.25020i
\(236\) 4.70158 8.14337i 0.306047 0.530088i
\(237\) 5.19615 + 3.00000i 0.337526 + 0.194871i
\(238\) −15.0462 + 8.68693i −0.975301 + 0.563090i
\(239\) −20.9753 −1.35678 −0.678390 0.734702i \(-0.737322\pi\)
−0.678390 + 0.734702i \(0.737322\pi\)
\(240\) 2.98647 2.66919i 0.192776 0.172295i
\(241\) −0.866025 1.50000i −0.0557856 0.0966235i 0.836784 0.547533i \(-0.184433\pi\)
−0.892570 + 0.450910i \(0.851100\pi\)
\(242\) 8.75560i 0.562832i
\(243\) −13.8564 + 8.00000i −0.888889 + 0.513200i
\(244\) −14.7695 + 25.5815i −0.945521 + 1.63769i
\(245\) −2.79523 + 8.49628i −0.178580 + 0.542807i
\(246\) −5.79129 −0.369239
\(247\) 0 0
\(248\) 16.7477i 1.06348i
\(249\) −5.65300 + 9.79129i −0.358244 + 0.620498i
\(250\) 24.3654 2.28916i 1.54100 0.144779i
\(251\) 9.08258 + 15.7315i 0.573287 + 0.992962i 0.996225 + 0.0868039i \(0.0276654\pi\)
−0.422938 + 0.906158i \(0.639001\pi\)
\(252\) 9.66930i 0.609109i
\(253\) −10.5000 + 6.06218i −0.660129 + 0.381126i
\(254\) −10.6684 18.4782i −0.669395 1.15943i
\(255\) −10.0308 + 2.09355i −0.628153 + 0.131103i
\(256\) 1.39564 + 2.41733i 0.0872277 + 0.151083i
\(257\) 0.143025 + 0.0825757i 0.00892167 + 0.00515093i 0.504454 0.863438i \(-0.331694\pi\)
−0.495533 + 0.868589i \(0.665027\pi\)
\(258\) 2.68693 + 1.55130i 0.167281 + 0.0965798i
\(259\) −13.7477 −0.854242
\(260\) 0 0
\(261\) 9.16515 0.567309
\(262\) 3.00000 + 1.73205i 0.185341 + 0.107006i
\(263\) 7.79423 + 4.50000i 0.480613 + 0.277482i 0.720672 0.693276i \(-0.243833\pi\)
−0.240059 + 0.970758i \(0.577167\pi\)
\(264\) −2.29129 3.96863i −0.141019 0.244252i
\(265\) 0.723000 + 3.46410i 0.0444135 + 0.212798i
\(266\) 3.28335 + 5.68693i 0.201315 + 0.348688i
\(267\) −3.70871 + 2.14123i −0.226969 + 0.131041i
\(268\) 41.4938i 2.53464i
\(269\) −7.50000 12.9904i −0.457283 0.792038i 0.541533 0.840679i \(-0.317844\pi\)
−0.998816 + 0.0486418i \(0.984511\pi\)
\(270\) 7.64809 23.2469i 0.465448 1.41476i
\(271\) −4.33013 + 7.50000i −0.263036 + 0.455593i −0.967047 0.254597i \(-0.918057\pi\)
0.704011 + 0.710189i \(0.251391\pi\)
\(272\) 8.20871i 0.497726i
\(273\) 0 0
\(274\) 0.208712 0.0126088
\(275\) −1.47960 + 13.1458i −0.0892234 + 0.792719i
\(276\) −6.39564 + 11.0776i −0.384973 + 0.666792i
\(277\) 14.3609 8.29129i 0.862865 0.498175i −0.00210581 0.999998i \(-0.500670\pi\)
0.864971 + 0.501823i \(0.167337\pi\)
\(278\) 12.5812i 0.754571i
\(279\) 9.66930 + 16.7477i 0.578886 + 1.00266i
\(280\) 4.47028 + 5.00166i 0.267151 + 0.298906i
\(281\) 17.5112 1.04463 0.522316 0.852752i \(-0.325068\pi\)
0.522316 + 0.852752i \(0.325068\pi\)
\(282\) 16.5975 9.58258i 0.988367 0.570634i
\(283\) 0.218475 + 0.126136i 0.0129870 + 0.00749803i 0.506479 0.862252i \(-0.330947\pi\)
−0.493492 + 0.869750i \(0.664280\pi\)
\(284\) −4.96773 + 8.60436i −0.294780 + 0.510575i
\(285\) 0.791288 + 3.79129i 0.0468718 + 0.224577i
\(286\) 0 0
\(287\) 4.58258i 0.270501i
\(288\) −12.7913 7.38505i −0.753734 0.435168i
\(289\) 2.00000 3.46410i 0.117647 0.203771i
\(290\) −16.7235 + 14.9468i −0.982040 + 0.877709i
\(291\) 4.47315 0.262221
\(292\) 0 0
\(293\) 20.2913 11.7152i 1.18543 0.684408i 0.228165 0.973622i \(-0.426727\pi\)
0.957264 + 0.289214i \(0.0933940\pi\)
\(294\) −8.75560 −0.510637
\(295\) −5.01976 5.61645i −0.292262 0.327002i
\(296\) 6.87386 11.9059i 0.399535 0.692015i
\(297\) 11.4564 + 6.61438i 0.664770 + 0.383805i
\(298\) 21.3739i 1.23815i
\(299\) 0 0
\(300\) 5.58258 + 12.7913i 0.322310 + 0.738505i
\(301\) 1.22753 2.12614i 0.0707534 0.122548i
\(302\) −11.7629 6.79129i −0.676876 0.390795i
\(303\) 7.79423 4.50000i 0.447767 0.258518i
\(304\) 3.10260 0.177946
\(305\) 15.7690 + 17.6435i 0.902932 + 1.01026i
\(306\) 10.0308 + 17.3739i 0.573423 + 0.993198i
\(307\) 24.2487i 1.38395i 0.721923 + 0.691974i \(0.243259\pi\)
−0.721923 + 0.691974i \(0.756741\pi\)
\(308\) −11.0776 + 6.39564i −0.631204 + 0.364426i
\(309\) 7.58258 13.1334i 0.431358 0.747133i
\(310\) −44.9562 14.7903i −2.55334 0.840035i
\(311\) 1.58258 0.0897396 0.0448698 0.998993i \(-0.485713\pi\)
0.0448698 + 0.998993i \(0.485713\pi\)
\(312\) 0 0
\(313\) 30.7477i 1.73796i 0.494843 + 0.868982i \(0.335225\pi\)
−0.494843 + 0.868982i \(0.664775\pi\)
\(314\) 10.0308 17.3739i 0.566071 0.980464i
\(315\) −7.35799 2.42074i −0.414576 0.136393i
\(316\) 8.37386 + 14.5040i 0.471067 + 0.815911i
\(317\) 20.9753i 1.17809i −0.808100 0.589045i \(-0.799504\pi\)
0.808100 0.589045i \(-0.200496\pi\)
\(318\) −3.00000 + 1.73205i −0.168232 + 0.0971286i
\(319\) −6.06218 10.5000i −0.339417 0.587887i
\(320\) 27.5420 5.74835i 1.53965 0.321343i
\(321\) 0.708712 + 1.22753i 0.0395565 + 0.0685138i
\(322\) 15.0462 + 8.68693i 0.838492 + 0.484104i
\(323\) −6.87386 3.96863i −0.382472 0.220820i
\(324\) −2.79129 −0.155072
\(325\) 0 0
\(326\) 23.3739 1.29456
\(327\) 2.37386 + 1.37055i 0.131275 + 0.0757916i
\(328\) −3.96863 2.29129i −0.219131 0.126515i
\(329\) −7.58258 13.1334i −0.418041 0.724068i
\(330\) −12.6766 + 2.64575i −0.697821 + 0.145644i
\(331\) −5.70068 9.87386i −0.313338 0.542717i 0.665745 0.746179i \(-0.268114\pi\)
−0.979083 + 0.203463i \(0.934780\pi\)
\(332\) −27.3303 + 15.7792i −1.49995 + 0.865994i
\(333\) 15.8745i 0.869918i
\(334\) −4.68693 8.11800i −0.256457 0.444197i
\(335\) −31.5753 10.3881i −1.72514 0.567561i
\(336\) 1.55130 2.68693i 0.0846304 0.146584i
\(337\) 3.25227i 0.177163i −0.996069 0.0885813i \(-0.971767\pi\)
0.996069 0.0885813i \(-0.0282333\pi\)
\(338\) 0 0
\(339\) 16.5826 0.900642
\(340\) −27.1696 8.93864i −1.47348 0.484766i
\(341\) 12.7913 22.1552i 0.692687 1.19977i
\(342\) 6.56670 3.79129i 0.355087 0.205009i
\(343\) 19.0526i 1.02874i
\(344\) 1.22753 + 2.12614i 0.0661837 + 0.114634i
\(345\) 6.82847 + 7.64016i 0.367633 + 0.411332i
\(346\) −16.2360 −0.872853
\(347\) 13.2764 7.66515i 0.712716 0.411487i −0.0993497 0.995053i \(-0.531676\pi\)
0.812066 + 0.583566i \(0.198343\pi\)
\(348\) −11.0776 6.39564i −0.593821 0.342843i
\(349\) −9.16478 + 15.8739i −0.490579 + 0.849708i −0.999941 0.0108440i \(-0.996548\pi\)
0.509362 + 0.860552i \(0.329882\pi\)
\(350\) 17.3739 7.58258i 0.928672 0.405306i
\(351\) 0 0
\(352\) 19.5390i 1.04143i
\(353\) −15.0826 8.70793i −0.802765 0.463476i 0.0416724 0.999131i \(-0.486731\pi\)
−0.844437 + 0.535655i \(0.820065\pi\)
\(354\) 3.68693 6.38595i 0.195958 0.339410i
\(355\) 5.30392 + 5.93438i 0.281503 + 0.314964i
\(356\) −11.9536 −0.633537
\(357\) −6.87386 + 3.96863i −0.363803 + 0.210042i
\(358\) 0.313068 0.180750i 0.0165462 0.00955294i
\(359\) −33.3857 −1.76203 −0.881015 0.473088i \(-0.843139\pi\)
−0.881015 + 0.473088i \(0.843139\pi\)
\(360\) 5.77542 5.16184i 0.304391 0.272053i
\(361\) 8.00000 13.8564i 0.421053 0.729285i
\(362\) 35.5390 + 20.5185i 1.86789 + 1.07843i
\(363\) 4.00000i 0.209946i
\(364\) 0 0
\(365\) 0 0
\(366\) −11.5821 + 20.0608i −0.605406 + 1.04859i
\(367\) −22.2982 12.8739i −1.16396 0.672010i −0.211707 0.977333i \(-0.567902\pi\)
−0.952249 + 0.305323i \(0.901236\pi\)
\(368\) 7.10895 4.10436i 0.370580 0.213954i
\(369\) 5.29150 0.275465
\(370\) −25.8887 28.9660i −1.34589 1.50587i
\(371\) 1.37055 + 2.37386i 0.0711554 + 0.123245i
\(372\) 26.9898i 1.39936i
\(373\) 11.2583 6.50000i 0.582934 0.336557i −0.179364 0.983783i \(-0.557404\pi\)
0.762299 + 0.647225i \(0.224071\pi\)
\(374\) 13.2695 22.9835i 0.686150 1.18845i
\(375\) 11.1313 1.04580i 0.574819 0.0540051i
\(376\) 15.1652 0.782083
\(377\) 0 0
\(378\) 18.9564i 0.975014i
\(379\) 10.5353 18.2477i 0.541164 0.937323i −0.457674 0.889120i \(-0.651317\pi\)
0.998838 0.0482027i \(-0.0153493\pi\)
\(380\) −3.37849 + 10.2691i −0.173313 + 0.526796i
\(381\) −4.87386 8.44178i −0.249696 0.432485i
\(382\) 16.2360i 0.830706i
\(383\) −2.45644 + 1.41823i −0.125518 + 0.0724680i −0.561444 0.827514i \(-0.689754\pi\)
0.435926 + 0.899982i \(0.356421\pi\)
\(384\) 6.38595 + 11.0608i 0.325882 + 0.564444i
\(385\) 2.09355 + 10.0308i 0.106697 + 0.511217i
\(386\) −1.10436 1.91280i −0.0562102 0.0973590i
\(387\) −2.45505 1.41742i −0.124797 0.0720517i
\(388\) 10.8131 + 6.24293i 0.548950 + 0.316937i
\(389\) 15.1652 0.768904 0.384452 0.923145i \(-0.374390\pi\)
0.384452 + 0.923145i \(0.374390\pi\)
\(390\) 0 0
\(391\) −21.0000 −1.06202
\(392\) −6.00000 3.46410i −0.303046 0.174964i
\(393\) 1.37055 + 0.791288i 0.0691351 + 0.0399152i
\(394\) 21.8521 + 37.8489i 1.10089 + 1.90680i
\(395\) 13.1334 2.74110i 0.660813 0.137920i
\(396\) 7.38505 + 12.7913i 0.371113 + 0.642786i
\(397\) −23.6216 + 13.6379i −1.18553 + 0.684468i −0.957288 0.289135i \(-0.906632\pi\)
−0.228245 + 0.973604i \(0.573299\pi\)
\(398\) 3.10260i 0.155519i
\(399\) 1.50000 + 2.59808i 0.0750939 + 0.130066i
\(400\) 1.00175 8.90024i 0.0500877 0.445012i
\(401\) −6.25288 + 10.8303i −0.312254 + 0.540840i −0.978850 0.204580i \(-0.934417\pi\)
0.666596 + 0.745419i \(0.267751\pi\)
\(402\) 32.5390i 1.62290i
\(403\) 0 0
\(404\) 25.1216 1.24985
\(405\) −0.698807 + 2.12407i −0.0347240 + 0.105546i
\(406\) −8.68693 + 15.0462i −0.431125 + 0.746731i
\(407\) 18.1865 10.5000i 0.901473 0.520466i
\(408\) 7.93725i 0.392953i
\(409\) −4.33013 7.50000i −0.214111 0.370851i 0.738886 0.673830i \(-0.235352\pi\)
−0.952997 + 0.302979i \(0.902019\pi\)
\(410\) −9.65534 + 8.62957i −0.476843 + 0.426184i
\(411\) 0.0953502 0.00470328
\(412\) 36.6591 21.1652i 1.80607 1.04273i
\(413\) −5.05313 2.91742i −0.248648 0.143557i
\(414\) 10.0308 17.3739i 0.492987 0.853879i
\(415\) 5.16515 + 24.7477i 0.253547 + 1.21482i
\(416\) 0 0
\(417\) 5.74773i 0.281467i
\(418\) −8.68693 5.01540i −0.424892 0.245311i
\(419\) −12.0826 + 20.9276i −0.590272 + 1.02238i 0.403923 + 0.914793i \(0.367646\pi\)
−0.994195 + 0.107589i \(0.965687\pi\)
\(420\) 7.20409 + 8.06042i 0.351524 + 0.393308i
\(421\) −26.2668 −1.28017 −0.640083 0.768306i \(-0.721100\pi\)
−0.640083 + 0.768306i \(0.721100\pi\)
\(422\) −34.4347 + 19.8809i −1.67625 + 0.967785i
\(423\) −15.1652 + 8.75560i −0.737355 + 0.425712i
\(424\) −2.74110 −0.133120
\(425\) −13.6040 + 18.4373i −0.659889 + 0.894338i
\(426\) −3.89564 + 6.74745i −0.188745 + 0.326915i
\(427\) 15.8739 + 9.16478i 0.768190 + 0.443515i
\(428\) 3.95644i 0.191242i
\(429\) 0 0
\(430\) 6.79129 1.41742i 0.327505 0.0683543i
\(431\) 14.8178 25.6652i 0.713747 1.23625i −0.249693 0.968325i \(-0.580330\pi\)
0.963441 0.267922i \(-0.0863369\pi\)
\(432\) −7.75650 4.47822i −0.373185 0.215458i
\(433\) −15.3700 + 8.87386i −0.738634 + 0.426451i −0.821573 0.570104i \(-0.806903\pi\)
0.0829383 + 0.996555i \(0.473570\pi\)
\(434\) −36.6591 −1.75969
\(435\) −7.64016 + 6.82847i −0.366317 + 0.327400i
\(436\) 3.82560 + 6.62614i 0.183213 + 0.317334i
\(437\) 7.93725i 0.379690i
\(438\) 0 0
\(439\) −20.2477 + 35.0701i −0.966371 + 1.67380i −0.260487 + 0.965477i \(0.583883\pi\)
−0.705885 + 0.708327i \(0.749450\pi\)
\(440\) −9.73371 3.20233i −0.464036 0.152665i
\(441\) 8.00000 0.380952
\(442\) 0 0
\(443\) 25.9129i 1.23116i 0.788075 + 0.615579i \(0.211078\pi\)
−0.788075 + 0.615579i \(0.788922\pi\)
\(444\) 11.0776 19.1869i 0.525719 0.910571i
\(445\) −2.99261 + 9.09622i −0.141863 + 0.431202i
\(446\) 9.47822 + 16.4168i 0.448807 + 0.777356i
\(447\) 9.76465i 0.461852i
\(448\) 18.8739 10.8968i 0.891706 0.514827i
\(449\) 18.7387 + 32.4564i 0.884336 + 1.53171i 0.846473 + 0.532431i \(0.178721\pi\)
0.0378622 + 0.999283i \(0.487945\pi\)
\(450\) −8.75560 20.0616i −0.412743 0.945713i
\(451\) −3.50000 6.06218i −0.164809 0.285457i
\(452\) 40.0855 + 23.1434i 1.88546 + 1.08857i
\(453\) −5.37386 3.10260i −0.252486 0.145773i
\(454\) 13.3739 0.627667
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) −1.50000 0.866025i −0.0701670 0.0405110i 0.464506 0.885570i \(-0.346232\pi\)
−0.534673 + 0.845059i \(0.679565\pi\)
\(458\) 10.3923 + 6.00000i 0.485601 + 0.280362i
\(459\) 11.4564 + 19.8431i 0.534741 + 0.926198i
\(460\) 5.84370 + 27.9989i 0.272464 + 1.30545i
\(461\) 0.599876 + 1.03901i 0.0279390 + 0.0483917i 0.879657 0.475609i \(-0.157772\pi\)
−0.851718 + 0.524001i \(0.824439\pi\)
\(462\) −8.68693 + 5.01540i −0.404153 + 0.233338i
\(463\) 8.22330i 0.382169i −0.981574 0.191085i \(-0.938799\pi\)
0.981574 0.191085i \(-0.0612005\pi\)
\(464\) 4.10436 + 7.10895i 0.190540 + 0.330025i
\(465\) −20.5383 6.75697i −0.952440 0.313347i
\(466\) −23.1642 + 40.1216i −1.07306 + 1.85860i
\(467\) 12.3303i 0.570578i −0.958441 0.285289i \(-0.907910\pi\)
0.958441 0.285289i \(-0.0920896\pi\)
\(468\) 0 0
\(469\) −25.7477 −1.18892
\(470\) 13.3927 40.7081i 0.617761 1.87772i
\(471\) 4.58258 7.93725i 0.211154 0.365729i
\(472\) 5.05313 2.91742i 0.232589 0.134285i
\(473\) 3.75015i 0.172432i
\(474\) 6.56670 + 11.3739i 0.301619 + 0.522419i
\(475\) 6.96863 + 5.14181i 0.319743 + 0.235923i
\(476\) −22.1552 −1.01548
\(477\) 2.74110 1.58258i 0.125506 0.0724612i
\(478\) −39.7617 22.9564i −1.81866 1.05000i
\(479\) 16.1883 28.0390i 0.739664 1.28114i −0.212983 0.977056i \(-0.568318\pi\)
0.952647 0.304079i \(-0.0983488\pi\)
\(480\) 16.1652 3.37386i 0.737835 0.153995i
\(481\) 0 0
\(482\) 3.79129i 0.172688i
\(483\) 6.87386 + 3.96863i 0.312772 + 0.180579i
\(484\) −5.58258 + 9.66930i −0.253753 + 0.439514i
\(485\) 7.45772 6.66542i 0.338638 0.302661i
\(486\) −35.0224 −1.58865
\(487\) −18.2477 + 10.5353i −0.826883 + 0.477401i −0.852784 0.522263i \(-0.825088\pi\)
0.0259009 + 0.999665i \(0.491755\pi\)
\(488\) −15.8739 + 9.16478i −0.718576 + 0.414870i
\(489\) 10.6784 0.482892
\(490\) −14.5975 + 13.0467i −0.659448 + 0.589389i
\(491\) 14.2913 24.7532i 0.644957 1.11710i −0.339355 0.940658i \(-0.610209\pi\)
0.984311 0.176439i \(-0.0564580\pi\)
\(492\) −6.39564 3.69253i −0.288338 0.166472i
\(493\) 21.0000i 0.945792i
\(494\) 0 0
\(495\) 11.5826 2.41742i 0.520598 0.108655i
\(496\) −8.66025 + 15.0000i −0.388857 + 0.673520i
\(497\) 5.33918 + 3.08258i 0.239495 + 0.138272i
\(498\) −21.4322 + 12.3739i −0.960398 + 0.554486i
\(499\) 16.5975 0.743006 0.371503 0.928432i \(-0.378842\pi\)
0.371503 + 0.928432i \(0.378842\pi\)
\(500\) 28.3676 + 13.0073i 1.26864 + 0.581705i
\(501\) −2.14123 3.70871i −0.0956629 0.165693i
\(502\) 39.7617i 1.77465i
\(503\) 15.7315 9.08258i 0.701432 0.404972i −0.106448 0.994318i \(-0.533948\pi\)
0.807881 + 0.589346i \(0.200615\pi\)
\(504\) 3.00000 5.19615i 0.133631 0.231455i
\(505\) 6.28926 19.1166i 0.279868 0.850678i
\(506\) −26.5390 −1.17980
\(507\) 0 0
\(508\) 27.2087i 1.20719i
\(509\) −14.8178 + 25.6652i −0.656787 + 1.13759i 0.324656 + 0.945832i \(0.394751\pi\)
−0.981443 + 0.191756i \(0.938582\pi\)
\(510\) −21.3061 7.00959i −0.943451 0.310390i
\(511\) 0 0
\(512\) 19.4340i 0.858868i
\(513\) 7.50000 4.33013i 0.331133 0.191180i
\(514\) 0.180750 + 0.313068i 0.00797254 + 0.0138088i
\(515\) −6.92820 33.1950i −0.305293 1.46275i
\(516\) 1.97822 + 3.42638i 0.0870863 + 0.150838i
\(517\) 20.0616 + 11.5826i 0.882309 + 0.509401i
\(518\) −26.0608 15.0462i −1.14505 0.661092i
\(519\) −7.41742 −0.325589
\(520\) 0 0
\(521\) −27.4955 −1.20460 −0.602299 0.798271i \(-0.705748\pi\)
−0.602299 + 0.798271i \(0.705748\pi\)
\(522\) 17.3739 + 10.0308i 0.760433 + 0.439036i
\(523\) −15.7315 9.08258i −0.687890 0.397153i 0.114931 0.993373i \(-0.463335\pi\)
−0.802821 + 0.596220i \(0.796669\pi\)
\(524\) 2.20871 + 3.82560i 0.0964880 + 0.167122i
\(525\) 7.93725 3.46410i 0.346410 0.151186i
\(526\) 9.85005 + 17.0608i 0.429483 + 0.743886i
\(527\) 38.3739 22.1552i 1.67159 0.965094i
\(528\) 4.73930i 0.206252i
\(529\) −1.00000 1.73205i −0.0434783 0.0753066i
\(530\) −2.42074 + 7.35799i −0.105150 + 0.319611i
\(531\) −3.36875 + 5.83485i −0.146191 + 0.253211i
\(532\) 8.37386i 0.363053i
\(533\) 0 0
\(534\) −9.37386 −0.405647
\(535\) 3.01071 + 0.990505i 0.130164 + 0.0428233i
\(536\) 12.8739 22.2982i 0.556066 0.963135i
\(537\) 0.143025 0.0825757i 0.00617200 0.00356340i
\(538\) 32.8335i 1.41555i
\(539\) −5.29150 9.16515i −0.227921 0.394771i
\(540\) 23.2684 20.7964i 1.00131 0.894935i
\(541\) 10.3923 0.446800 0.223400 0.974727i \(-0.428284\pi\)
0.223400 + 0.974727i \(0.428284\pi\)
\(542\) −16.4168 + 9.47822i −0.705160 + 0.407124i
\(543\) 16.2360 + 9.37386i 0.696754 + 0.402271i
\(544\) −16.9213 + 29.3085i −0.725494 + 1.25659i
\(545\) 6.00000 1.25227i 0.257012 0.0536415i
\(546\) 0 0
\(547\) 1.25227i 0.0535433i 0.999642 + 0.0267717i \(0.00852270\pi\)
−0.999642 + 0.0267717i \(0.991477\pi\)
\(548\) 0.230493 + 0.133075i 0.00984615 + 0.00568468i
\(549\) 10.5826 18.3296i 0.451653 0.782287i
\(550\) −17.1922 + 23.3003i −0.733077 + 0.993529i
\(551\) −7.93725 −0.338138
\(552\) −6.87386 + 3.96863i −0.292571 + 0.168916i
\(553\) 9.00000 5.19615i 0.382719 0.220963i
\(554\) 36.2976 1.54214
\(555\) −11.8273 13.2331i −0.502039 0.561715i
\(556\) −8.02178 + 13.8941i −0.340199 + 0.589242i
\(557\) 11.2913 + 6.51903i 0.478427 + 0.276220i 0.719761 0.694222i \(-0.244251\pi\)
−0.241334 + 0.970442i \(0.577585\pi\)
\(558\) 42.3303i 1.79198i
\(559\) 0 0
\(560\) −1.41742 6.79129i −0.0598971 0.286984i
\(561\) 6.06218 10.5000i 0.255945 0.443310i
\(562\) 33.1950 + 19.1652i 1.40025 + 0.808433i
\(563\) −7.79423 + 4.50000i −0.328488 + 0.189652i −0.655169 0.755482i \(-0.727403\pi\)
0.326682 + 0.945134i \(0.394069\pi\)
\(564\) 24.4394 1.02908
\(565\) 27.6468 24.7096i 1.16311 1.03954i
\(566\) 0.276100 + 0.478220i 0.0116054 + 0.0201011i
\(567\) 1.73205i 0.0727393i
\(568\) −5.33918 + 3.08258i −0.224027 + 0.129342i
\(569\) 9.87386 17.1020i 0.413934 0.716955i −0.581382 0.813631i \(-0.697488\pi\)
0.995316 + 0.0966762i \(0.0308211\pi\)
\(570\) −2.64938 + 8.05296i −0.110970 + 0.337301i
\(571\) −29.0780 −1.21688 −0.608439 0.793601i \(-0.708204\pi\)
−0.608439 + 0.793601i \(0.708204\pi\)
\(572\) 0 0
\(573\) 7.41742i 0.309867i
\(574\) −5.01540 + 8.68693i −0.209339 + 0.362586i
\(575\) 22.7691 + 2.56275i 0.949537 + 0.106874i
\(576\) −12.5826 21.7937i −0.524274 0.908069i
\(577\) 6.92820i 0.288425i 0.989547 + 0.144212i \(0.0460649\pi\)
−0.989547 + 0.144212i \(0.953935\pi\)
\(578\) 7.58258 4.37780i 0.315394 0.182093i
\(579\) −0.504525 0.873864i −0.0209674 0.0363165i
\(580\) −27.9989 + 5.84370i −1.16259 + 0.242647i
\(581\) 9.79129 + 16.9590i 0.406211 + 0.703578i
\(582\) 8.47950 + 4.89564i 0.351487 + 0.202931i
\(583\) −3.62614 2.09355i −0.150179 0.0867060i
\(584\) 0 0
\(585\) 0 0
\(586\) 51.2867 2.11864
\(587\) 16.2042 + 9.35548i 0.668818 + 0.386142i 0.795628 0.605785i \(-0.207141\pi\)
−0.126811 + 0.991927i \(0.540474\pi\)
\(588\) −9.66930 5.58258i −0.398755 0.230222i
\(589\) −8.37386 14.5040i −0.345039 0.597625i
\(590\) −3.36875 16.1407i −0.138689 0.664500i
\(591\) 9.98313 + 17.2913i 0.410651 + 0.711269i
\(592\) −12.3131 + 7.10895i −0.506064 + 0.292176i
\(593\) 21.1660i 0.869184i 0.900627 + 0.434592i \(0.143107\pi\)
−0.900627 + 0.434592i \(0.856893\pi\)
\(594\) 14.4782 + 25.0770i 0.594049 + 1.02892i
\(595\) −5.54661 + 16.8593i −0.227389 + 0.691163i
\(596\) 13.6280 23.6044i 0.558224 0.966872i
\(597\) 1.41742i 0.0580113i
\(598\) 0 0
\(599\) 39.4955 1.61374 0.806870 0.590729i \(-0.201160\pi\)
0.806870 + 0.590729i \(0.201160\pi\)
\(600\) −0.968627 + 8.60591i −0.0395440 + 0.351335i
\(601\) 14.4564 25.0393i 0.589690 1.02137i −0.404582 0.914502i \(-0.632583\pi\)
0.994273 0.106872i \(-0.0340836\pi\)
\(602\) 4.65390 2.68693i 0.189679 0.109511i
\(603\) 29.7309i 1.21074i
\(604\) −8.66025 15.0000i −0.352381 0.610341i
\(605\) 5.96038 + 6.66888i 0.242324 + 0.271128i
\(606\) 19.7001 0.800262
\(607\) −17.1020 + 9.87386i −0.694150 + 0.400768i −0.805165 0.593051i \(-0.797923\pi\)
0.111015 + 0.993819i \(0.464590\pi\)
\(608\) 11.0776 + 6.39564i 0.449255 + 0.259378i
\(609\) −3.96863 + 6.87386i −0.160817 + 0.278543i
\(610\) 10.5826 + 50.7042i 0.428476 + 2.05295i
\(611\) 0 0
\(612\) 25.5826i 1.03411i
\(613\) 18.8739 + 10.8968i 0.762308 + 0.440119i 0.830124 0.557579i \(-0.188270\pi\)
−0.0678157 + 0.997698i \(0.521603\pi\)
\(614\) −26.5390 + 45.9669i −1.07103 + 1.85507i
\(615\) −4.41105 + 3.94242i −0.177871 + 0.158974i
\(616\) −7.93725 −0.319801
\(617\) −2.91742 + 1.68438i −0.117451 + 0.0678104i −0.557575 0.830127i \(-0.688268\pi\)
0.440124 + 0.897937i \(0.354935\pi\)
\(618\) 28.7477 16.5975i 1.15640 0.667650i
\(619\) −2.01810 −0.0811143 −0.0405572 0.999177i \(-0.512913\pi\)
−0.0405572 + 0.999177i \(0.512913\pi\)
\(620\) −40.2174 44.9979i −1.61517 1.80716i
\(621\) 11.4564 19.8431i 0.459731 0.796278i
\(622\) 3.00000 + 1.73205i 0.120289 + 0.0694489i
\(623\) 7.41742i 0.297173i
\(624\) 0 0
\(625\) 17.0000 18.3303i 0.680000 0.733212i
\(626\) −33.6519 + 58.2867i −1.34500 + 2.32961i
\(627\) −3.96863 2.29129i −0.158492 0.0915052i
\(628\) 22.1552 12.7913i 0.884087 0.510428i
\(629\) 36.3731 1.45029
\(630\) −11.2988 12.6418i −0.450153 0.503662i
\(631\) −10.8968 18.8739i −0.433796 0.751357i 0.563401 0.826184i \(-0.309493\pi\)
−0.997197 + 0.0748272i \(0.976159\pi\)
\(632\) 10.3923i 0.413384i
\(633\) −15.7315 + 9.08258i −0.625270 + 0.361000i
\(634\) 22.9564 39.7617i 0.911717 1.57914i
\(635\) −20.7048 6.81178i −0.821647 0.270317i
\(636\) −4.41742 −0.175162
\(637\) 0 0
\(638\) 26.5390i 1.05069i
\(639\) 3.55945 6.16515i 0.140810 0.243890i
\(640\) 27.1284 + 8.92509i 1.07234 + 0.352795i
\(641\) −0.0825757 0.143025i −0.00326154 0.00564916i 0.864390 0.502822i \(-0.167705\pi\)
−0.867652 + 0.497173i \(0.834372\pi\)
\(642\) 3.10260i 0.122450i
\(643\) −5.12614 + 2.95958i −0.202155 + 0.116714i −0.597660 0.801749i \(-0.703903\pi\)
0.395505 + 0.918464i \(0.370570\pi\)
\(644\) 11.0776 + 19.1869i 0.436518 + 0.756071i
\(645\) 3.10260 0.647551i 0.122165 0.0254973i
\(646\) −8.68693 15.0462i −0.341783 0.591985i
\(647\) 23.3827 + 13.5000i 0.919268 + 0.530740i 0.883402 0.468617i \(-0.155247\pi\)
0.0358667 + 0.999357i \(0.488581\pi\)
\(648\) −1.50000 0.866025i −0.0589256 0.0340207i
\(649\) 8.91288 0.349861
\(650\) 0 0
\(651\) −16.7477 −0.656395
\(652\) 25.8131 + 14.9032i 1.01092 + 0.583654i
\(653\) 42.2843 + 24.4129i 1.65471 + 0.955350i 0.975096 + 0.221784i \(0.0711880\pi\)
0.679619 + 0.733566i \(0.262145\pi\)
\(654\) 3.00000 + 5.19615i 0.117309 + 0.203186i
\(655\) 3.46410 0.723000i 0.135354 0.0282500i
\(656\) 2.36965 + 4.10436i 0.0925193 + 0.160248i
\(657\) 0 0
\(658\) 33.1950i 1.29408i
\(659\) −12.2477 21.2137i −0.477104 0.826368i 0.522552 0.852607i \(-0.324980\pi\)
−0.999656 + 0.0262396i \(0.991647\pi\)
\(660\) −15.6864 5.16072i −0.610591 0.200881i
\(661\) −1.22753 + 2.12614i −0.0477452 + 0.0826971i −0.888910 0.458081i \(-0.848537\pi\)
0.841165 + 0.540778i \(0.181870\pi\)
\(662\) 24.9564i 0.969960i
\(663\) 0 0
\(664\) −19.5826 −0.759951
\(665\) 6.37221 + 2.09642i 0.247104 + 0.0812957i
\(666\) −17.3739 + 30.0924i −0.673224 + 1.16606i
\(667\) −18.1865 + 10.5000i −0.704185 + 0.406562i
\(668\) 11.9536i 0.462497i
\(669\) 4.33013 + 7.50000i 0.167412 + 0.289967i
\(670\) −48.4862 54.2497i −1.87319 2.09585i
\(671\) −27.9989 −1.08088
\(672\) 11.0776 6.39564i 0.427327 0.246717i
\(673\) 5.05313 + 2.91742i 0.194784 + 0.112458i 0.594220 0.804302i \(-0.297461\pi\)
−0.399436 + 0.916761i \(0.630794\pi\)
\(674\) 3.55945 6.16515i 0.137105 0.237473i
\(675\) −10.0000 22.9129i −0.384900 0.881917i
\(676\) 0 0
\(677\) 21.1652i 0.813443i −0.913552 0.406721i \(-0.866672\pi\)
0.913552 0.406721i \(-0.133328\pi\)
\(678\) 31.4347 + 18.1488i 1.20724 + 0.697001i
\(679\) 3.87386 6.70973i 0.148665 0.257496i
\(680\) −11.8273 13.2331i −0.453555 0.507468i
\(681\) 6.10985 0.234130
\(682\) 48.4955 27.9989i 1.85699 1.07213i
\(683\) −10.3348 + 5.96683i −0.395452 + 0.228314i −0.684520 0.728994i \(-0.739988\pi\)
0.289068 + 0.957309i \(0.406655\pi\)
\(684\) 9.66930 0.369715
\(685\) 0.158970 0.142081i 0.00607392 0.00542863i
\(686\) −20.8521 + 36.1169i −0.796136 + 1.37895i
\(687\) 4.74773 + 2.74110i 0.181137 + 0.104580i
\(688\) 2.53901i 0.0967990i
\(689\) 0 0
\(690\) 4.58258 + 21.9564i 0.174456 + 0.835867i
\(691\) 17.8250 30.8739i 0.678096 1.17450i −0.297457 0.954735i \(-0.596139\pi\)
0.975554 0.219762i \(-0.0705281\pi\)
\(692\) −17.9303 10.3521i −0.681609 0.393527i
\(693\) 7.93725 4.58258i 0.301511 0.174078i
\(694\) 33.5565 1.27379
\(695\) 8.56466 + 9.58272i 0.324876 + 0.363493i
\(696\) −3.96863 6.87386i −0.150430 0.260553i
\(697\) 12.1244i 0.459243i
\(698\) −34.7463 + 20.0608i −1.31517 + 0.759312i
\(699\) −10.5826 + 18.3296i −0.400270 + 0.693288i
\(700\) 24.0216 + 2.70372i 0.907931 + 0.102191i
\(701\) 2.83485 0.107071 0.0535354 0.998566i \(-0.482951\pi\)
0.0535354 + 0.998566i \(0.482951\pi\)
\(702\) 0 0
\(703\) 13.7477i 0.518505i
\(704\) −16.6452 + 28.8303i −0.627339 + 1.08658i
\(705\) 6.11847 18.5975i 0.230435 0.700423i
\(706\) −19.0608 33.0143i −0.717362 1.24251i
\(707\) 15.5885i 0.586264i
\(708\) 8.14337 4.70158i 0.306047 0.176696i
\(709\) 18.1865 + 31.5000i 0.683010 + 1.18301i 0.974058 + 0.226299i \(0.0726626\pi\)
−0.291048 + 0.956708i \(0.594004\pi\)
\(710\) 3.55945 + 17.0544i 0.133584 + 0.640039i
\(711\) −6.00000 10.3923i −0.225018 0.389742i
\(712\) −6.42368 3.70871i −0.240738 0.138990i
\(713\) −38.3739 22.1552i −1.43711 0.829717i
\(714\) −17.3739 −0.650201
\(715\) 0 0
\(716\) 0.460985 0.0172278
\(717\) −18.1652 10.4877i −0.678390 0.391669i
\(718\) −63.2874 36.5390i −2.36187 1.36362i
\(719\) −15.2477 26.4098i −0.568644 0.984921i −0.996700 0.0811686i \(-0.974135\pi\)
0.428056 0.903752i \(-0.359199\pi\)
\(720\) −7.84190 + 1.63670i −0.292250 + 0.0609962i
\(721\) −13.1334 22.7477i −0.489114 0.847170i
\(722\) 30.3303 17.5112i 1.12878 0.651700i
\(723\) 1.73205i 0.0644157i
\(724\) 26.1652 + 45.3194i 0.972420 + 1.68428i
\(725\) −2.56275 + 22.7691i −0.0951780 + 0.845623i
\(726\) −4.37780 + 7.58258i −0.162475 + 0.281416i
\(727\) 42.7477i 1.58543i 0.609595 + 0.792713i \(0.291332\pi\)
−0.609595 + 0.792713i \(0.708668\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −3.24773 + 5.62523i −0.120122 + 0.208057i
\(732\) −25.5815 + 14.7695i −0.945521 + 0.545897i
\(733\) 8.94630i 0.330439i 0.986257 + 0.165220i \(0.0528333\pi\)
−0.986257 + 0.165220i \(0.947167\pi\)
\(734\) −28.1796 48.8085i −1.04013 1.80156i
\(735\) −6.66888 + 5.96038i −0.245985 + 0.219852i
\(736\) 33.8426 1.24745
\(737\) 34.0610 19.6652i 1.25465 0.724375i
\(738\) 10.0308 + 5.79129i 0.369239 + 0.213180i
\(739\) 24.3917 42.2477i 0.897265 1.55411i 0.0662878 0.997801i \(-0.478884\pi\)
0.830977 0.556307i \(-0.187782\pi\)
\(740\) −10.1216 48.4955i −0.372077 1.78273i
\(741\) 0 0
\(742\) 6.00000i 0.220267i
\(743\) −37.0390 21.3845i −1.35883 0.784521i −0.369364 0.929285i \(-0.620424\pi\)
−0.989466 + 0.144764i \(0.953758\pi\)
\(744\) 8.37386 14.5040i 0.307001 0.531741i
\(745\) −14.5503 16.2798i −0.533080 0.596446i
\(746\) 28.4557 1.04184
\(747\) 19.5826 11.3060i 0.716489 0.413665i
\(748\) 29.3085 16.9213i 1.07163 0.618703i
\(749\) 2.45505 0.0897056
\(750\) 22.2456 + 10.2002i 0.812294 + 0.372459i
\(751\) −7.87386 + 13.6379i −0.287321 + 0.497655i −0.973169 0.230090i \(-0.926098\pi\)
0.685848 + 0.727745i \(0.259431\pi\)
\(752\) −13.5826 7.84190i −0.495306 0.285965i
\(753\) 18.1652i 0.661975i
\(754\) 0 0
\(755\) −13.5826 + 2.83485i −0.494321 + 0.103171i
\(756\) 12.0866 20.9347i 0.439587 0.761386i
\(757\) 15.3700 + 8.87386i 0.558632 + 0.322526i 0.752596 0.658482i \(-0.228801\pi\)
−0.193965 + 0.981009i \(0.562135\pi\)
\(758\) 39.9425 23.0608i 1.45078 0.837606i
\(759\) −12.1244 −0.440086
\(760\) −5.00166 + 4.47028i −0.181429 + 0.162154i
\(761\) −20.3754 35.2913i −0.738609 1.27931i −0.953122 0.302587i \(-0.902150\pi\)
0.214513 0.976721i \(-0.431184\pi\)
\(762\) 21.3368i 0.772951i
\(763\) 4.11165 2.37386i 0.148852 0.0859396i
\(764\) −10.3521 + 17.9303i −0.374525 + 0.648697i
\(765\) 19.4674 + 6.40467i 0.703846 + 0.231561i
\(766\) −6.20871 −0.224330
\(767\) 0 0
\(768\) 2.79129i 0.100722i
\(769\) −7.79423 + 13.5000i −0.281067 + 0.486822i −0.971648 0.236433i \(-0.924022\pi\)
0.690581 + 0.723255i \(0.257355\pi\)
\(770\) −7.00959 + 21.3061i −0.252608 + 0.767819i
\(771\) 0.0825757 + 0.143025i 0.00297389 + 0.00515093i
\(772\) 2.81655i 0.101370i
\(773\) −30.0826 + 17.3682i −1.08200 + 0.624690i −0.931434 0.363911i \(-0.881441\pi\)
−0.150561 + 0.988601i \(0.548108\pi\)
\(774\) −3.10260 5.37386i −0.111521 0.193160i
\(775\) −44.3103 + 19.3386i −1.59167 + 0.694663i
\(776\) 3.87386 + 6.70973i 0.139064 + 0.240865i
\(777\) −11.9059 6.87386i −0.427121 0.246598i
\(778\) 28.7477 + 16.5975i 1.03066 + 0.595049i
\(779\) −4.58258 −0.164188
\(780\) 0 0
\(781\) −9.41742 −0.336982
\(782\) −39.8085 22.9835i −1.42355 0.821887i
\(783\) 19.8431 + 11.4564i 0.709136 + 0.409420i
\(784\) 3.58258 + 6.20520i 0.127949 + 0.221614i
\(785\) −4.18710 20.0616i −0.149444 0.716030i
\(786\) 1.73205 + 3.00000i 0.0617802 + 0.107006i
\(787\) −27.8739 + 16.0930i −0.993596 + 0.573653i −0.906347 0.422534i \(-0.861141\pi\)
−0.0872487 + 0.996187i \(0.527807\pi\)
\(788\) 55.7316i 1.98536i
\(789\) 4.50000 + 7.79423i 0.160204 + 0.277482i
\(790\) 27.8963 + 9.17771i 0.992504 + 0.326528i
\(791\) 14.3609 24.8739i 0.510616 0.884413i
\(792\) 9.16515i 0.325669i
\(793\) 0 0
\(794\) −59.7042 −2.11882
\(795\) −1.10591 + 3.36150i −0.0392227 + 0.119220i
\(796\) 1.97822 3.42638i 0.0701161 0.121445i
\(797\) 17.3881 10.0390i 0.615918 0.355600i −0.159360 0.987220i \(-0.550943\pi\)
0.775278 + 0.631620i \(0.217610\pi\)
\(798\) 6.56670i 0.232459i
\(799\) 20.0616 + 34.7477i 0.709729 + 1.22929i
\(800\) 21.9235 29.7126i 0.775112 1.05050i
\(801\) 8.56490 0.302626
\(802\) −23.7065 + 13.6869i −0.837104 + 0.483302i
\(803\) 0 0
\(804\) 20.7469 35.9347i 0.731686 1.26732i
\(805\) 17.3739 3.62614i 0.612348 0.127805i
\(806\) 0 0
\(807\) 15.0000i 0.528025i
\(808\) 13.5000 + 7.79423i 0.474928 + 0.274200i
\(809\) 18.4129 31.8920i 0.647362 1.12126i −0.336388 0.941723i \(-0.609205\pi\)
0.983750 0.179541i \(-0.0574613\pi\)
\(810\) −3.64938 + 3.26167i −0.128226 + 0.114603i
\(811\) −18.7665 −0.658981 −0.329491 0.944159i \(-0.606877\pi\)
−0.329491 + 0.944159i \(0.606877\pi\)
\(812\) −19.1869 + 11.0776i −0.673329 + 0.388747i
\(813\) −7.50000 + 4.33013i −0.263036 + 0.151864i
\(814\) 45.9669 1.61114
\(815\) 17.8032 15.9118i 0.623617 0.557365i
\(816\) −4.10436 + 7.10895i −0.143681 + 0.248863i
\(817\) 2.12614 + 1.22753i 0.0743841 + 0.0429457i
\(818\) 18.9564i 0.662796i
\(819\) 0 0
\(820\) −16.1652 + 3.37386i −0.564512 + 0.117820i
\(821\) 11.7152 20.2913i 0.408863 0.708171i −0.585900 0.810383i \(-0.699259\pi\)
0.994763 + 0.102213i \(0.0325922\pi\)
\(822\) 0.180750 + 0.104356i 0.00630438 + 0.00363984i
\(823\) −35.1455 + 20.2913i −1.22510 + 0.707310i −0.966000 0.258542i \(-0.916758\pi\)
−0.259096 + 0.965851i \(0.583425\pi\)
\(824\) 26.2668 0.915048
\(825\) −7.85425 + 10.6448i −0.273450 + 0.370603i
\(826\) −6.38595 11.0608i −0.222196 0.384854i
\(827\) 31.5583i 1.09739i −0.836023 0.548695i \(-0.815125\pi\)
0.836023 0.548695i \(-0.184875\pi\)
\(828\) 22.1552 12.7913i 0.769945 0.444528i
\(829\) −1.66515 + 2.88413i −0.0578331 + 0.100170i −0.893492 0.449078i \(-0.851752\pi\)
0.835659 + 0.549248i \(0.185086\pi\)
\(830\) −17.2939 + 52.5659i −0.600279 + 1.82459i
\(831\) 16.5826 0.575243
\(832\) 0 0
\(833\) 18.3303i 0.635107i
\(834\) −6.29060 + 10.8956i −0.217826 + 0.377285i
\(835\) −9.09622 2.99261i −0.314788 0.103563i
\(836\) −6.39564 11.0776i −0.221198 0.383126i
\(837\) 48.3465i 1.67110i
\(838\) −45.8085 + 26.4476i −1.58243 + 0.913616i
\(839\) 0.675325 + 1.16970i 0.0233148 + 0.0403824i 0.877447 0.479673i \(-0.159245\pi\)
−0.854133 + 0.520055i \(0.825911\pi\)
\(840\) 1.37055 + 6.56670i 0.0472885 + 0.226573i
\(841\) 4.00000 + 6.92820i 0.137931 + 0.238904i
\(842\) −49.7925 28.7477i −1.71596 0.990712i
\(843\) 15.1652 + 8.75560i 0.522316 + 0.301559i
\(844\) −50.7042 −1.74531
\(845\) 0 0
\(846\) −38.3303 −1.31782
\(847\) 6.00000 + 3.46410i 0.206162 + 0.119028i
\(848\) 2.45505 + 1.41742i 0.0843068 + 0.0486746i
\(849\) 0.126136 + 0.218475i 0.00432899 + 0.00749803i
\(850\) −45.9669 + 20.0616i −1.57665 + 0.688108i
\(851\) −18.1865 31.5000i −0.623426 1.07981i
\(852\) −8.60436 + 4.96773i −0.294780 + 0.170192i
\(853\) 53.2566i 1.82347i −0.410777 0.911736i \(-0.634742\pi\)
0.410777 0.911736i \(-0.365258\pi\)
\(854\) 20.0608 + 34.7463i 0.686466 + 1.18899i
\(855\) 2.42074 7.35799i 0.0827875 0.251638i
\(856\) −1.22753 + 2.12614i −0.0419560 + 0.0726698i
\(857\) 22.7477i 0.777048i −0.921439 0.388524i \(-0.872985\pi\)
0.921439 0.388524i \(-0.127015\pi\)
\(858\) 0 0
\(859\) −38.2432 −1.30484 −0.652420 0.757857i \(-0.726246\pi\)
−0.652420 + 0.757857i \(0.726246\pi\)
\(860\) 8.40375 + 2.76479i 0.286566 + 0.0942784i
\(861\) −2.29129 + 3.96863i −0.0780869 + 0.135250i
\(862\) 56.1785 32.4347i 1.91345 1.10473i
\(863\) 34.8317i 1.18569i −0.805318 0.592843i \(-0.798006\pi\)
0.805318 0.592843i \(-0.201994\pi\)
\(864\) −18.4626 31.9782i −0.628112 1.08792i
\(865\) −12.3665 + 11.0527i −0.420473 + 0.375802i
\(866\) −38.8480 −1.32011
\(867\) 3.46410 2.00000i 0.117647 0.0679236i
\(868\) −40.4847 23.3739i −1.37414 0.793361i
\(869\) −7.93725 + 13.7477i −0.269253 + 0.466360i
\(870\) −21.9564 + 4.58258i −0.744393 + 0.155364i
\(871\) 0 0
\(872\) 4.74773i 0.160778i
\(873\) −7.74773 4.47315i −0.262221 0.151393i
\(874\) −8.68693 + 15.0462i −0.293840 + 0.508946i
\(875\) 8.07130 17.6027i 0.272860 0.595079i
\(876\) 0 0
\(877\) 6.87386 3.96863i 0.232114 0.134011i −0.379433 0.925219i \(-0.623881\pi\)
0.611547 + 0.791208i \(0.290548\pi\)
\(878\) −76.7650 + 44.3203i −2.59069 + 1.49574i
\(879\) 23.4304 0.790286
\(880\) 7.06201 + 7.90145i 0.238060 + 0.266358i
\(881\) −9.24773 + 16.0175i −0.311564 + 0.539644i −0.978701 0.205290i \(-0.934186\pi\)
0.667137 + 0.744935i \(0.267519\pi\)
\(882\) 15.1652 + 8.75560i 0.510637 + 0.294817i
\(883\) 46.2432i 1.55621i −0.628136 0.778103i \(-0.716182\pi\)
0.628136 0.778103i \(-0.283818\pi\)
\(884\) 0 0
\(885\) −1.53901 7.37386i −0.0517334 0.247870i
\(886\) −28.3604 + 49.1216i −0.952785 + 1.65027i
\(887\) 0.429076 + 0.247727i 0.0144070 + 0.00831786i 0.507186 0.861837i \(-0.330686\pi\)
−0.492779 + 0.870154i \(0.664019\pi\)
\(888\) 11.9059 6.87386i 0.399535 0.230672i
\(889\) −16.8836 −0.566256
\(890\) −15.6283 + 13.9679i −0.523861 + 0.468206i
\(891\) −1.32288 2.29129i −0.0443180 0.0767610i
\(892\) 24.1733i 0.809381i
\(893\) 13.1334 7.58258i 0.439493 0.253741i
\(894\) 10.6869 18.5103i 0.357424 0.619077i
\(895\) 0.115409 0.350793i 0.00385769 0.0117257i
\(896\) 22.1216 0.739030
\(897\) 0 0
\(898\) 82.0345i 2.73753i
\(899\) 22.1552 38.3739i 0.738916 1.27984i
\(900\) 3.12198 27.7377i 0.104066 0.924591i
\(901\) −3.62614 6.28065i −0.120804 0.209239i
\(902\) 15.3223i 0.510177i
\(903\) 2.12614 1.22753i 0.0707534 0.0408495i
\(904\) 14.3609 + 24.8739i 0.477637 + 0.827292i
\(905\) 41.0369 8.56490i 1.36411 0.284707i
\(906\) −6.79129 11.7629i −0.225625 0.390795i
\(907\) −29.2264 16.8739i −0.970446 0.560287i −0.0710740 0.997471i \(-0.522643\pi\)
−0.899372 + 0.437184i \(0.855976\pi\)
\(908\) 14.7695 + 8.52718i 0.490143 + 0.282984i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 37.9129 1.25611 0.628055 0.778169i \(-0.283851\pi\)
0.628055 + 0.778169i \(0.283851\pi\)
\(912\) 2.68693 + 1.55130i 0.0889732 + 0.0513687i
\(913\) −25.9053 14.9564i −0.857341 0.494986i
\(914\) −1.89564 3.28335i −0.0627023 0.108604i
\(915\) 4.83465 + 23.1642i 0.159829 + 0.765785i
\(916\) 7.65120 + 13.2523i 0.252803 + 0.437867i
\(917\) 2.37386 1.37055i 0.0783919 0.0452596i
\(918\) 50.1540i 1.65533i
\(919\) 17.9174 + 31.0339i 0.591041 + 1.02371i 0.994093 + 0.108536i \(0.0346163\pi\)
−0.403051 + 0.915177i \(0.632050\pi\)
\(920\) −5.54661 + 16.8593i −0.182866 + 0.555834i
\(921\) −12.1244 + 21.0000i −0.399511 + 0.691974i
\(922\) 2.62614i 0.0864872i
\(923\) 0 0
\(924\) −12.7913 −0.420802
\(925\) −39.4373 4.43881i −1.29669 0.145947i
\(926\) 9.00000 15.5885i 0.295758 0.512268i
\(927\) −26.2668 + 15.1652i −0.862715 + 0.498089i
\(928\) 33.8426i 1.11094i
\(929\) 7.98493 + 13.8303i 0.261977 + 0.453758i 0.966767 0.255658i \(-0.0822922\pi\)
−0.704790 + 0.709416i \(0.748959\pi\)
\(930\) −31.5381 35.2869i −1.03417 1.15710i
\(931\) −6.92820 −0.227063
\(932\) −51.1631 + 29.5390i −1.67590 + 0.967583i
\(933\) 1.37055 + 0.791288i 0.0448698 + 0.0259056i
\(934\) 13.4949 23.3739i 0.441567 0.764816i
\(935\) −5.53901 26.5390i −0.181145 0.867919i
\(936\) 0 0
\(937\) 23.4955i 0.767563i −0.923424 0.383782i \(-0.874622\pi\)
0.923424 0.383782i \(-0.125378\pi\)
\(938\) −48.8085 28.1796i −1.59365 0.920097i
\(939\) −15.3739 + 26.6283i −0.501707 + 0.868982i
\(940\) 40.7458 36.4170i 1.32898 1.18779i
\(941\) 26.4575 0.862490 0.431245 0.902235i \(-0.358074\pi\)
0.431245 + 0.902235i \(0.358074\pi\)
\(942\) 17.3739 10.0308i 0.566071 0.326821i
\(943\) −10.5000 + 6.06218i −0.341927 + 0.197412i
\(944\) −6.03440 −0.196403
\(945\) −12.9046 14.4385i −0.419787 0.469686i
\(946\) −4.10436 + 7.10895i −0.133444 + 0.231132i
\(947\) −33.4129 19.2909i −1.08577 0.626871i −0.153325 0.988176i \(-0.548998\pi\)
−0.932448 + 0.361305i \(0.882331\pi\)
\(948\) 16.7477i 0.543941i
\(949\) 0 0
\(950\) 7.58258 + 17.3739i 0.246011 + 0.563683i
\(951\) 10.4877 18.1652i 0.340086 0.589045i
\(952\) −11.9059 6.87386i −0.385872 0.222783i
\(953\) 48.5650 28.0390i 1.57317 0.908273i 0.577398 0.816463i \(-0.304068\pi\)
0.995777 0.0918100i \(-0.0292652\pi\)
\(954\) 6.92820 0.224309
\(955\) 11.0527 + 12.3665i 0.357656 + 0.400170i
\(956\) −29.2741 50.7042i −0.946791 1.63989i
\(957\) 12.1244i 0.391925i
\(958\) 61.3746 35.4347i 1.98292 1.14484i
\(959\) 0.0825757 0.143025i 0.00266651 0.00461853i
\(960\) 26.7263 + 8.79279i 0.862586 + 0.283786i
\(961\) 62.4955 2.01598
\(962\) 0 0
\(963\) 2.83485i 0.0913517i
\(964\) 2.41733 4.18693i 0.0778568 0.134852i
\(965\) −2.14329 0.705131i −0.0689951 0.0226990i
\(966\) 8.68693 + 15.0462i 0.279497 + 0.484104i
\(967\) 21.5076i 0.691638i 0.938301 + 0.345819i \(0.112399\pi\)
−0.938301 + 0.345819i \(0.887601\pi\)
\(968\) −6.00000 + 3.46410i −0.192847 + 0.111340i
\(969\) −3.96863 6.87386i −0.127491 0.220820i
\(970\) 21.4322 4.47315i 0.688145 0.143624i
\(971\) −18.2477 31.6060i −0.585597 1.01428i −0.994801 0.101841i \(-0.967527\pi\)
0.409203 0.912443i \(-0.365807\pi\)
\(972\) −38.6772 22.3303i −1.24057 0.716245i
\(973\) 8.62159 + 4.97768i 0.276396 + 0.159577i
\(974\) −46.1216 −1.47783
\(975\) 0 0
\(976\) 18.9564 0.606781
\(977\) −33.5780 19.3863i −1.07426 0.620222i −0.144915 0.989444i \(-0.546291\pi\)
−0.929341 + 0.369222i \(0.879624\pi\)
\(978\) 20.2424 + 11.6869i 0.647279 + 0.373707i
\(979\) −5.66515 9.81233i −0.181059 0.313603i
\(980\) −24.4394 + 5.10080i −0.780688 + 0.162939i
\(981\) −2.74110 4.74773i −0.0875166 0.151583i
\(982\) 54.1824 31.2822i 1.72903 0.998256i
\(983\) 3.12250i 0.0995924i −0.998759 0.0497962i \(-0.984143\pi\)
0.998759 0.0497962i \(-0.0158572\pi\)
\(984\) −2.29129 3.96863i −0.0730436 0.126515i
\(985\) 42.4097 + 13.9526i 1.35129 + 0.444565i
\(986\) 22.9835 39.8085i 0.731943 1.26776i
\(987\) 15.1652i 0.482712i
\(988\) 0 0
\(989\) 6.49545 0.206543
\(990\) 24.6022 + 8.09398i 0.781909 + 0.257244i
\(991\) 6.50000 11.2583i 0.206479 0.357633i −0.744124 0.668042i \(-0.767133\pi\)
0.950603 + 0.310409i \(0.100466\pi\)
\(992\) −61.8414 + 35.7042i −1.96347 + 1.13361i
\(993\) 11.4014i 0.361811i
\(994\) 6.74745 + 11.6869i 0.214016 + 0.370687i
\(995\) −2.11210 2.36316i −0.0669579 0.0749171i
\(996\) −31.5583 −0.999963
\(997\) −15.7315 + 9.08258i −0.498221 + 0.287648i −0.727979 0.685600i \(-0.759540\pi\)
0.229758 + 0.973248i \(0.426207\pi\)
\(998\) 31.4630 + 18.1652i 0.995943 + 0.575008i
\(999\) −19.8431 + 34.3693i −0.627809 + 1.08740i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.n.d.529.4 8
5.4 even 2 845.2.n.c.529.1 8
13.2 odd 12 65.2.l.a.49.4 yes 8
13.3 even 3 845.2.n.c.484.1 8
13.4 even 6 845.2.b.f.339.7 8
13.5 odd 4 845.2.l.c.654.4 8
13.6 odd 12 845.2.d.c.844.1 8
13.7 odd 12 845.2.d.c.844.7 8
13.8 odd 4 65.2.l.a.4.1 8
13.9 even 3 845.2.b.f.339.1 8
13.10 even 6 inner 845.2.n.d.484.3 8
13.11 odd 12 845.2.l.c.699.1 8
13.12 even 2 845.2.n.c.529.2 8
39.2 even 12 585.2.bf.a.244.1 8
39.8 even 4 585.2.bf.a.199.4 8
52.15 even 12 1040.2.df.b.49.3 8
52.47 even 4 1040.2.df.b.849.2 8
65.2 even 12 325.2.n.b.101.1 4
65.4 even 6 845.2.b.f.339.2 8
65.8 even 4 325.2.n.c.251.2 4
65.9 even 6 845.2.b.f.339.8 8
65.17 odd 12 4225.2.a.bj.1.1 4
65.19 odd 12 845.2.d.c.844.8 8
65.22 odd 12 4225.2.a.bj.1.4 4
65.24 odd 12 845.2.l.c.699.4 8
65.28 even 12 325.2.n.c.101.2 4
65.29 even 6 inner 845.2.n.d.484.4 8
65.34 odd 4 65.2.l.a.4.4 yes 8
65.43 odd 12 4225.2.a.bk.1.4 4
65.44 odd 4 845.2.l.c.654.1 8
65.47 even 4 325.2.n.b.251.1 4
65.48 odd 12 4225.2.a.bk.1.1 4
65.49 even 6 845.2.n.c.484.2 8
65.54 odd 12 65.2.l.a.49.1 yes 8
65.59 odd 12 845.2.d.c.844.2 8
65.64 even 2 inner 845.2.n.d.529.3 8
195.119 even 12 585.2.bf.a.244.4 8
195.164 even 4 585.2.bf.a.199.1 8
260.99 even 4 1040.2.df.b.849.3 8
260.119 even 12 1040.2.df.b.49.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.1 8 13.8 odd 4
65.2.l.a.4.4 yes 8 65.34 odd 4
65.2.l.a.49.1 yes 8 65.54 odd 12
65.2.l.a.49.4 yes 8 13.2 odd 12
325.2.n.b.101.1 4 65.2 even 12
325.2.n.b.251.1 4 65.47 even 4
325.2.n.c.101.2 4 65.28 even 12
325.2.n.c.251.2 4 65.8 even 4
585.2.bf.a.199.1 8 195.164 even 4
585.2.bf.a.199.4 8 39.8 even 4
585.2.bf.a.244.1 8 39.2 even 12
585.2.bf.a.244.4 8 195.119 even 12
845.2.b.f.339.1 8 13.9 even 3
845.2.b.f.339.2 8 65.4 even 6
845.2.b.f.339.7 8 13.4 even 6
845.2.b.f.339.8 8 65.9 even 6
845.2.d.c.844.1 8 13.6 odd 12
845.2.d.c.844.2 8 65.59 odd 12
845.2.d.c.844.7 8 13.7 odd 12
845.2.d.c.844.8 8 65.19 odd 12
845.2.l.c.654.1 8 65.44 odd 4
845.2.l.c.654.4 8 13.5 odd 4
845.2.l.c.699.1 8 13.11 odd 12
845.2.l.c.699.4 8 65.24 odd 12
845.2.n.c.484.1 8 13.3 even 3
845.2.n.c.484.2 8 65.49 even 6
845.2.n.c.529.1 8 5.4 even 2
845.2.n.c.529.2 8 13.12 even 2
845.2.n.d.484.3 8 13.10 even 6 inner
845.2.n.d.484.4 8 65.29 even 6 inner
845.2.n.d.529.3 8 65.64 even 2 inner
845.2.n.d.529.4 8 1.1 even 1 trivial
1040.2.df.b.49.2 8 260.119 even 12
1040.2.df.b.49.3 8 52.15 even 12
1040.2.df.b.849.2 8 52.47 even 4
1040.2.df.b.849.3 8 260.99 even 4
4225.2.a.bj.1.1 4 65.17 odd 12
4225.2.a.bj.1.4 4 65.22 odd 12
4225.2.a.bk.1.1 4 65.48 odd 12
4225.2.a.bk.1.4 4 65.43 odd 12