Properties

Label 845.2.b.f.339.8
Level $845$
Weight $2$
Character 845.339
Analytic conductor $6.747$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(339,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.8
Root \(-0.228425 - 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 845.339
Dual form 845.2.b.f.339.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.18890i q^{2} +1.00000i q^{3} -2.79129 q^{4} +(2.18890 + 0.456850i) q^{5} -2.18890 q^{6} -1.73205i q^{7} -1.73205i q^{8} +2.00000 q^{9} +(-1.00000 + 4.79129i) q^{10} +2.64575 q^{11} -2.79129i q^{12} +3.79129 q^{14} +(-0.456850 + 2.18890i) q^{15} -1.79129 q^{16} +4.58258i q^{17} +4.37780i q^{18} -1.73205 q^{19} +(-6.10985 - 1.27520i) q^{20} +1.73205 q^{21} +5.79129i q^{22} +4.58258i q^{23} +1.73205 q^{24} +(4.58258 + 2.00000i) q^{25} +5.00000i q^{27} +4.83465i q^{28} +4.58258 q^{29} +(-4.79129 - 1.00000i) q^{30} -9.66930 q^{31} -7.38505i q^{32} +2.64575i q^{33} -10.0308 q^{34} +(0.791288 - 3.79129i) q^{35} -5.58258 q^{36} -7.93725i q^{37} -3.79129i q^{38} +(0.791288 - 3.79129i) q^{40} +2.64575 q^{41} +3.79129i q^{42} -1.41742i q^{43} -7.38505 q^{44} +(4.37780 + 0.913701i) q^{45} -10.0308 q^{46} +8.75560i q^{47} -1.79129i q^{48} +4.00000 q^{49} +(-4.37780 + 10.0308i) q^{50} -4.58258 q^{51} -1.58258i q^{53} -10.9445 q^{54} +(5.79129 + 1.20871i) q^{55} -3.00000 q^{56} -1.73205i q^{57} +10.0308i q^{58} +3.36875 q^{59} +(1.27520 - 6.10985i) q^{60} -10.5826 q^{61} -21.1652i q^{62} -3.46410i q^{63} +12.5826 q^{64} -5.79129 q^{66} -14.8655i q^{67} -12.7913i q^{68} -4.58258 q^{69} +(8.29875 + 1.73205i) q^{70} -3.55945 q^{71} -3.46410i q^{72} +17.3739 q^{74} +(-2.00000 + 4.58258i) q^{75} +4.83465 q^{76} -4.58258i q^{77} +6.00000 q^{79} +(-3.92095 - 0.818350i) q^{80} +1.00000 q^{81} +5.79129i q^{82} -11.3060i q^{83} -4.83465 q^{84} +(-2.09355 + 10.0308i) q^{85} +3.10260 q^{86} +4.58258i q^{87} -4.58258i q^{88} +4.28245 q^{89} +(-2.00000 + 9.58258i) q^{90} -12.7913i q^{92} -9.66930i q^{93} -19.1652 q^{94} +(-3.79129 - 0.791288i) q^{95} +7.38505 q^{96} -4.47315i q^{97} +8.75560i q^{98} +5.29150 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} + 16 q^{9} - 8 q^{10} + 12 q^{14} + 4 q^{16} - 20 q^{30} - 12 q^{35} - 8 q^{36} - 12 q^{40} + 32 q^{49} + 28 q^{55} - 24 q^{56} - 48 q^{61} + 64 q^{64} - 28 q^{66} + 84 q^{74} - 16 q^{75}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18890i 1.54779i 0.633316 + 0.773893i \(0.281693\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) −2.79129 −1.39564
\(5\) 2.18890 + 0.456850i 0.978906 + 0.204310i
\(6\) −2.18890 −0.893615
\(7\) 1.73205i 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
0.944911 0.327327i \(-0.106148\pi\)
\(8\) 1.73205i 0.612372i
\(9\) 2.00000 0.666667
\(10\) −1.00000 + 4.79129i −0.316228 + 1.51514i
\(11\) 2.64575 0.797724 0.398862 0.917011i \(-0.369405\pi\)
0.398862 + 0.917011i \(0.369405\pi\)
\(12\) 2.79129i 0.805775i
\(13\) 0 0
\(14\) 3.79129 1.01326
\(15\) −0.456850 + 2.18890i −0.117958 + 0.565172i
\(16\) −1.79129 −0.447822
\(17\) 4.58258i 1.11144i 0.831370 + 0.555719i \(0.187557\pi\)
−0.831370 + 0.555719i \(0.812443\pi\)
\(18\) 4.37780i 1.03186i
\(19\) −1.73205 −0.397360 −0.198680 0.980064i \(-0.563665\pi\)
−0.198680 + 0.980064i \(0.563665\pi\)
\(20\) −6.10985 1.27520i −1.36620 0.285144i
\(21\) 1.73205 0.377964
\(22\) 5.79129i 1.23471i
\(23\) 4.58258i 0.955533i 0.878487 + 0.477767i \(0.158554\pi\)
−0.878487 + 0.477767i \(0.841446\pi\)
\(24\) 1.73205 0.353553
\(25\) 4.58258 + 2.00000i 0.916515 + 0.400000i
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 4.83465i 0.913663i
\(29\) 4.58258 0.850963 0.425481 0.904967i \(-0.360105\pi\)
0.425481 + 0.904967i \(0.360105\pi\)
\(30\) −4.79129 1.00000i −0.874765 0.182574i
\(31\) −9.66930 −1.73666 −0.868329 0.495988i \(-0.834806\pi\)
−0.868329 + 0.495988i \(0.834806\pi\)
\(32\) 7.38505i 1.30551i
\(33\) 2.64575i 0.460566i
\(34\) −10.0308 −1.72027
\(35\) 0.791288 3.79129i 0.133752 0.640845i
\(36\) −5.58258 −0.930429
\(37\) 7.93725i 1.30488i −0.757842 0.652438i \(-0.773746\pi\)
0.757842 0.652438i \(-0.226254\pi\)
\(38\) 3.79129i 0.615028i
\(39\) 0 0
\(40\) 0.791288 3.79129i 0.125114 0.599455i
\(41\) 2.64575 0.413197 0.206598 0.978426i \(-0.433761\pi\)
0.206598 + 0.978426i \(0.433761\pi\)
\(42\) 3.79129i 0.585008i
\(43\) 1.41742i 0.216155i −0.994142 0.108078i \(-0.965531\pi\)
0.994142 0.108078i \(-0.0344695\pi\)
\(44\) −7.38505 −1.11334
\(45\) 4.37780 + 0.913701i 0.652604 + 0.136206i
\(46\) −10.0308 −1.47896
\(47\) 8.75560i 1.27714i 0.769565 + 0.638568i \(0.220473\pi\)
−0.769565 + 0.638568i \(0.779527\pi\)
\(48\) 1.79129i 0.258550i
\(49\) 4.00000 0.571429
\(50\) −4.37780 + 10.0308i −0.619115 + 1.41857i
\(51\) −4.58258 −0.641689
\(52\) 0 0
\(53\) 1.58258i 0.217383i −0.994076 0.108692i \(-0.965334\pi\)
0.994076 0.108692i \(-0.0346661\pi\)
\(54\) −10.9445 −1.48936
\(55\) 5.79129 + 1.20871i 0.780897 + 0.162983i
\(56\) −3.00000 −0.400892
\(57\) 1.73205i 0.229416i
\(58\) 10.0308i 1.31711i
\(59\) 3.36875 0.438574 0.219287 0.975660i \(-0.429627\pi\)
0.219287 + 0.975660i \(0.429627\pi\)
\(60\) 1.27520 6.10985i 0.164628 0.788779i
\(61\) −10.5826 −1.35496 −0.677480 0.735541i \(-0.736928\pi\)
−0.677480 + 0.735541i \(0.736928\pi\)
\(62\) 21.1652i 2.68798i
\(63\) 3.46410i 0.436436i
\(64\) 12.5826 1.57282
\(65\) 0 0
\(66\) −5.79129 −0.712858
\(67\) 14.8655i 1.81610i −0.418857 0.908052i \(-0.637569\pi\)
0.418857 0.908052i \(-0.362431\pi\)
\(68\) 12.7913i 1.55117i
\(69\) −4.58258 −0.551677
\(70\) 8.29875 + 1.73205i 0.991891 + 0.207020i
\(71\) −3.55945 −0.422429 −0.211215 0.977440i \(-0.567742\pi\)
−0.211215 + 0.977440i \(0.567742\pi\)
\(72\) 3.46410i 0.408248i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 17.3739 2.01967
\(75\) −2.00000 + 4.58258i −0.230940 + 0.529150i
\(76\) 4.83465 0.554573
\(77\) 4.58258i 0.522233i
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) −3.92095 0.818350i −0.438376 0.0914943i
\(81\) 1.00000 0.111111
\(82\) 5.79129i 0.639541i
\(83\) 11.3060i 1.24100i −0.784208 0.620498i \(-0.786931\pi\)
0.784208 0.620498i \(-0.213069\pi\)
\(84\) −4.83465 −0.527504
\(85\) −2.09355 + 10.0308i −0.227077 + 1.08799i
\(86\) 3.10260 0.334562
\(87\) 4.58258i 0.491304i
\(88\) 4.58258i 0.488504i
\(89\) 4.28245 0.453939 0.226969 0.973902i \(-0.427118\pi\)
0.226969 + 0.973902i \(0.427118\pi\)
\(90\) −2.00000 + 9.58258i −0.210819 + 1.01009i
\(91\) 0 0
\(92\) 12.7913i 1.33358i
\(93\) 9.66930i 1.00266i
\(94\) −19.1652 −1.97673
\(95\) −3.79129 0.791288i −0.388978 0.0811844i
\(96\) 7.38505 0.753734
\(97\) 4.47315i 0.454180i −0.973874 0.227090i \(-0.927079\pi\)
0.973874 0.227090i \(-0.0729211\pi\)
\(98\) 8.75560i 0.884450i
\(99\) 5.29150 0.531816
\(100\) −12.7913 5.58258i −1.27913 0.558258i
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 10.0308i 0.993198i
\(103\) 15.1652i 1.49427i 0.664674 + 0.747133i \(0.268570\pi\)
−0.664674 + 0.747133i \(0.731430\pi\)
\(104\) 0 0
\(105\) 3.79129 + 0.791288i 0.369992 + 0.0772218i
\(106\) 3.46410 0.336463
\(107\) 1.41742i 0.137028i 0.997650 + 0.0685138i \(0.0218257\pi\)
−0.997650 + 0.0685138i \(0.978174\pi\)
\(108\) 13.9564i 1.34296i
\(109\) 2.74110 0.262550 0.131275 0.991346i \(-0.458093\pi\)
0.131275 + 0.991346i \(0.458093\pi\)
\(110\) −2.64575 + 12.6766i −0.252262 + 1.20866i
\(111\) 7.93725 0.753371
\(112\) 3.10260i 0.293168i
\(113\) 16.5826i 1.55996i −0.625806 0.779979i \(-0.715230\pi\)
0.625806 0.779979i \(-0.284770\pi\)
\(114\) 3.79129 0.355087
\(115\) −2.09355 + 10.0308i −0.195225 + 0.935377i
\(116\) −12.7913 −1.18764
\(117\) 0 0
\(118\) 7.37386i 0.678819i
\(119\) 7.93725 0.727607
\(120\) 3.79129 + 0.791288i 0.346096 + 0.0722344i
\(121\) −4.00000 −0.363636
\(122\) 23.1642i 2.09719i
\(123\) 2.64575i 0.238559i
\(124\) 26.9898 2.42376
\(125\) 9.11710 + 6.47135i 0.815459 + 0.578815i
\(126\) 7.58258 0.675510
\(127\) 9.74773i 0.864971i −0.901641 0.432485i \(-0.857637\pi\)
0.901641 0.432485i \(-0.142363\pi\)
\(128\) 12.7719i 1.12889i
\(129\) 1.41742 0.124797
\(130\) 0 0
\(131\) 1.58258 0.138270 0.0691351 0.997607i \(-0.477976\pi\)
0.0691351 + 0.997607i \(0.477976\pi\)
\(132\) 7.38505i 0.642786i
\(133\) 3.00000i 0.260133i
\(134\) 32.5390 2.81094
\(135\) −2.28425 + 10.9445i −0.196597 + 0.941953i
\(136\) 7.93725 0.680614
\(137\) 0.0953502i 0.00814632i −0.999992 0.00407316i \(-0.998703\pi\)
0.999992 0.00407316i \(-0.00129653\pi\)
\(138\) 10.0308i 0.853879i
\(139\) −5.74773 −0.487516 −0.243758 0.969836i \(-0.578380\pi\)
−0.243758 + 0.969836i \(0.578380\pi\)
\(140\) −2.20871 + 10.5826i −0.186670 + 0.894391i
\(141\) −8.75560 −0.737355
\(142\) 7.79129i 0.653830i
\(143\) 0 0
\(144\) −3.58258 −0.298548
\(145\) 10.0308 + 2.09355i 0.833013 + 0.173860i
\(146\) 0 0
\(147\) 4.00000i 0.329914i
\(148\) 22.1552i 1.82114i
\(149\) 9.76465 0.799952 0.399976 0.916526i \(-0.369019\pi\)
0.399976 + 0.916526i \(0.369019\pi\)
\(150\) −10.0308 4.37780i −0.819012 0.357446i
\(151\) −6.20520 −0.504972 −0.252486 0.967601i \(-0.581248\pi\)
−0.252486 + 0.967601i \(0.581248\pi\)
\(152\) 3.00000i 0.243332i
\(153\) 9.16515i 0.740959i
\(154\) 10.0308 0.808305
\(155\) −21.1652 4.41742i −1.70003 0.354816i
\(156\) 0 0
\(157\) 9.16515i 0.731459i 0.930721 + 0.365729i \(0.119180\pi\)
−0.930721 + 0.365729i \(0.880820\pi\)
\(158\) 13.1334i 1.04484i
\(159\) 1.58258 0.125506
\(160\) 3.37386 16.1652i 0.266727 1.27797i
\(161\) 7.93725 0.625543
\(162\) 2.18890i 0.171976i
\(163\) 10.6784i 0.836393i −0.908357 0.418197i \(-0.862662\pi\)
0.908357 0.418197i \(-0.137338\pi\)
\(164\) −7.38505 −0.576676
\(165\) −1.20871 + 5.79129i −0.0940981 + 0.450851i
\(166\) 24.7477 1.92080
\(167\) 4.28245i 0.331386i −0.986177 0.165693i \(-0.947014\pi\)
0.986177 0.165693i \(-0.0529861\pi\)
\(168\) 3.00000i 0.231455i
\(169\) 0 0
\(170\) −21.9564 4.58258i −1.68398 0.351468i
\(171\) −3.46410 −0.264906
\(172\) 3.95644i 0.301676i
\(173\) 7.41742i 0.563936i 0.959424 + 0.281968i \(0.0909873\pi\)
−0.959424 + 0.281968i \(0.909013\pi\)
\(174\) −10.0308 −0.760433
\(175\) 3.46410 7.93725i 0.261861 0.600000i
\(176\) −4.73930 −0.357238
\(177\) 3.36875i 0.253211i
\(178\) 9.37386i 0.702601i
\(179\) −0.165151 −0.0123440 −0.00617200 0.999981i \(-0.501965\pi\)
−0.00617200 + 0.999981i \(0.501965\pi\)
\(180\) −12.2197 2.55040i −0.910803 0.190096i
\(181\) 18.7477 1.39351 0.696754 0.717310i \(-0.254627\pi\)
0.696754 + 0.717310i \(0.254627\pi\)
\(182\) 0 0
\(183\) 10.5826i 0.782287i
\(184\) 7.93725 0.585142
\(185\) 3.62614 17.3739i 0.266599 1.27735i
\(186\) 21.1652 1.55190
\(187\) 12.1244i 0.886621i
\(188\) 24.4394i 1.78243i
\(189\) 8.66025 0.629941
\(190\) 1.73205 8.29875i 0.125656 0.602055i
\(191\) −7.41742 −0.536706 −0.268353 0.963321i \(-0.586479\pi\)
−0.268353 + 0.963321i \(0.586479\pi\)
\(192\) 12.5826i 0.908069i
\(193\) 1.00905i 0.0726331i −0.999340 0.0363165i \(-0.988438\pi\)
0.999340 0.0363165i \(-0.0115625\pi\)
\(194\) 9.79129 0.702973
\(195\) 0 0
\(196\) −11.1652 −0.797511
\(197\) 19.9663i 1.42254i 0.702920 + 0.711269i \(0.251879\pi\)
−0.702920 + 0.711269i \(0.748121\pi\)
\(198\) 11.5826i 0.823138i
\(199\) 1.41742 0.100479 0.0502393 0.998737i \(-0.484002\pi\)
0.0502393 + 0.998737i \(0.484002\pi\)
\(200\) 3.46410 7.93725i 0.244949 0.561249i
\(201\) 14.8655 1.04853
\(202\) 19.7001i 1.38609i
\(203\) 7.93725i 0.557086i
\(204\) 12.7913 0.895569
\(205\) 5.79129 + 1.20871i 0.404481 + 0.0844201i
\(206\) −33.1950 −2.31281
\(207\) 9.16515i 0.637022i
\(208\) 0 0
\(209\) −4.58258 −0.316983
\(210\) −1.73205 + 8.29875i −0.119523 + 0.572668i
\(211\) 18.1652 1.25054 0.625270 0.780408i \(-0.284989\pi\)
0.625270 + 0.780408i \(0.284989\pi\)
\(212\) 4.41742i 0.303390i
\(213\) 3.55945i 0.243890i
\(214\) −3.10260 −0.212089
\(215\) 0.647551 3.10260i 0.0441626 0.211596i
\(216\) 8.66025 0.589256
\(217\) 16.7477i 1.13691i
\(218\) 6.00000i 0.406371i
\(219\) 0 0
\(220\) −16.1652 3.37386i −1.08985 0.227466i
\(221\) 0 0
\(222\) 17.3739i 1.16606i
\(223\) 8.66025i 0.579934i 0.957037 + 0.289967i \(0.0936443\pi\)
−0.957037 + 0.289967i \(0.906356\pi\)
\(224\) −12.7913 −0.854654
\(225\) 9.16515 + 4.00000i 0.611010 + 0.266667i
\(226\) 36.2976 2.41448
\(227\) 6.10985i 0.405525i −0.979228 0.202763i \(-0.935008\pi\)
0.979228 0.202763i \(-0.0649920\pi\)
\(228\) 4.83465i 0.320183i
\(229\) 5.48220 0.362274 0.181137 0.983458i \(-0.442022\pi\)
0.181137 + 0.983458i \(0.442022\pi\)
\(230\) −21.9564 4.58258i −1.44776 0.302166i
\(231\) 4.58258 0.301511
\(232\) 7.93725i 0.521106i
\(233\) 21.1652i 1.38658i −0.720661 0.693288i \(-0.756162\pi\)
0.720661 0.693288i \(-0.243838\pi\)
\(234\) 0 0
\(235\) −4.00000 + 19.1652i −0.260931 + 1.25020i
\(236\) −9.40315 −0.612093
\(237\) 6.00000i 0.389742i
\(238\) 17.3739i 1.12618i
\(239\) −20.9753 −1.35678 −0.678390 0.734702i \(-0.737322\pi\)
−0.678390 + 0.734702i \(0.737322\pi\)
\(240\) 0.818350 3.92095i 0.0528243 0.253096i
\(241\) 1.73205 0.111571 0.0557856 0.998443i \(-0.482234\pi\)
0.0557856 + 0.998443i \(0.482234\pi\)
\(242\) 8.75560i 0.562832i
\(243\) 16.0000i 1.02640i
\(244\) 29.5390 1.89104
\(245\) 8.75560 + 1.82740i 0.559375 + 0.116748i
\(246\) −5.79129 −0.369239
\(247\) 0 0
\(248\) 16.7477i 1.06348i
\(249\) 11.3060 0.716489
\(250\) −14.1652 + 19.9564i −0.895883 + 1.26216i
\(251\) −18.1652 −1.14657 −0.573287 0.819355i \(-0.694332\pi\)
−0.573287 + 0.819355i \(0.694332\pi\)
\(252\) 9.66930i 0.609109i
\(253\) 12.1244i 0.762252i
\(254\) 21.3368 1.33879
\(255\) −10.0308 2.09355i −0.628153 0.131103i
\(256\) −2.79129 −0.174455
\(257\) 0.165151i 0.0103019i 0.999987 + 0.00515093i \(0.00163960\pi\)
−0.999987 + 0.00515093i \(0.998360\pi\)
\(258\) 3.10260i 0.193160i
\(259\) −13.7477 −0.854242
\(260\) 0 0
\(261\) 9.16515 0.567309
\(262\) 3.46410i 0.214013i
\(263\) 9.00000i 0.554964i 0.960731 + 0.277482i \(0.0894999\pi\)
−0.960731 + 0.277482i \(0.910500\pi\)
\(264\) 4.58258 0.282038
\(265\) 0.723000 3.46410i 0.0444135 0.212798i
\(266\) −6.56670 −0.402630
\(267\) 4.28245i 0.262082i
\(268\) 41.4938i 2.53464i
\(269\) 15.0000 0.914566 0.457283 0.889321i \(-0.348823\pi\)
0.457283 + 0.889321i \(0.348823\pi\)
\(270\) −23.9564 5.00000i −1.45794 0.304290i
\(271\) 8.66025 0.526073 0.263036 0.964786i \(-0.415276\pi\)
0.263036 + 0.964786i \(0.415276\pi\)
\(272\) 8.20871i 0.497726i
\(273\) 0 0
\(274\) 0.208712 0.0126088
\(275\) 12.1244 + 5.29150i 0.731126 + 0.319090i
\(276\) 12.7913 0.769945
\(277\) 16.5826i 0.996350i −0.867076 0.498175i \(-0.834004\pi\)
0.867076 0.498175i \(-0.165996\pi\)
\(278\) 12.5812i 0.754571i
\(279\) −19.3386 −1.15777
\(280\) −6.56670 1.37055i −0.392436 0.0819061i
\(281\) 17.5112 1.04463 0.522316 0.852752i \(-0.325068\pi\)
0.522316 + 0.852752i \(0.325068\pi\)
\(282\) 19.1652i 1.14127i
\(283\) 0.252273i 0.0149961i 0.999972 + 0.00749803i \(0.00238672\pi\)
−0.999972 + 0.00749803i \(0.997613\pi\)
\(284\) 9.93545 0.589561
\(285\) 0.791288 3.79129i 0.0468718 0.224577i
\(286\) 0 0
\(287\) 4.58258i 0.270501i
\(288\) 14.7701i 0.870337i
\(289\) −4.00000 −0.235294
\(290\) −4.58258 + 21.9564i −0.269098 + 1.28933i
\(291\) 4.47315 0.262221
\(292\) 0 0
\(293\) 23.4304i 1.36882i −0.729099 0.684408i \(-0.760061\pi\)
0.729099 0.684408i \(-0.239939\pi\)
\(294\) −8.75560 −0.510637
\(295\) 7.37386 + 1.53901i 0.429323 + 0.0896049i
\(296\) −13.7477 −0.799070
\(297\) 13.2288i 0.767610i
\(298\) 21.3739i 1.23815i
\(299\) 0 0
\(300\) 5.58258 12.7913i 0.322310 0.738505i
\(301\) −2.45505 −0.141507
\(302\) 13.5826i 0.781589i
\(303\) 9.00000i 0.517036i
\(304\) 3.10260 0.177946
\(305\) −23.1642 4.83465i −1.32638 0.276831i
\(306\) −20.0616 −1.14685
\(307\) 24.2487i 1.38395i −0.721923 0.691974i \(-0.756741\pi\)
0.721923 0.691974i \(-0.243259\pi\)
\(308\) 12.7913i 0.728851i
\(309\) −15.1652 −0.862715
\(310\) 9.66930 46.3284i 0.549180 2.63128i
\(311\) 1.58258 0.0897396 0.0448698 0.998993i \(-0.485713\pi\)
0.0448698 + 0.998993i \(0.485713\pi\)
\(312\) 0 0
\(313\) 30.7477i 1.73796i −0.494843 0.868982i \(-0.664775\pi\)
0.494843 0.868982i \(-0.335225\pi\)
\(314\) −20.0616 −1.13214
\(315\) 1.58258 7.58258i 0.0891680 0.427230i
\(316\) −16.7477 −0.942133
\(317\) 20.9753i 1.17809i 0.808100 + 0.589045i \(0.200496\pi\)
−0.808100 + 0.589045i \(0.799504\pi\)
\(318\) 3.46410i 0.194257i
\(319\) 12.1244 0.678834
\(320\) 27.5420 + 5.74835i 1.53965 + 0.321343i
\(321\) −1.41742 −0.0791129
\(322\) 17.3739i 0.968208i
\(323\) 7.93725i 0.441641i
\(324\) −2.79129 −0.155072
\(325\) 0 0
\(326\) 23.3739 1.29456
\(327\) 2.74110i 0.151583i
\(328\) 4.58258i 0.253030i
\(329\) 15.1652 0.836082
\(330\) −12.6766 2.64575i −0.697821 0.145644i
\(331\) 11.4014 0.626675 0.313338 0.949642i \(-0.398553\pi\)
0.313338 + 0.949642i \(0.398553\pi\)
\(332\) 31.5583i 1.73199i
\(333\) 15.8745i 0.869918i
\(334\) 9.37386 0.512915
\(335\) 6.79129 32.5390i 0.371048 1.77780i
\(336\) −3.10260 −0.169261
\(337\) 3.25227i 0.177163i 0.996069 + 0.0885813i \(0.0282333\pi\)
−0.996069 + 0.0885813i \(0.971767\pi\)
\(338\) 0 0
\(339\) 16.5826 0.900642
\(340\) 5.84370 27.9989i 0.316919 1.51845i
\(341\) −25.5826 −1.38537
\(342\) 7.58258i 0.410019i
\(343\) 19.0526i 1.02874i
\(344\) −2.45505 −0.132367
\(345\) −10.0308 2.09355i −0.540040 0.112713i
\(346\) −16.2360 −0.872853
\(347\) 15.3303i 0.822974i −0.911416 0.411487i \(-0.865010\pi\)
0.911416 0.411487i \(-0.134990\pi\)
\(348\) 12.7913i 0.685685i
\(349\) 18.3296 0.981159 0.490579 0.871396i \(-0.336785\pi\)
0.490579 + 0.871396i \(0.336785\pi\)
\(350\) 17.3739 + 7.58258i 0.928672 + 0.405306i
\(351\) 0 0
\(352\) 19.5390i 1.04143i
\(353\) 17.4159i 0.926953i −0.886109 0.463476i \(-0.846602\pi\)
0.886109 0.463476i \(-0.153398\pi\)
\(354\) −7.37386 −0.391916
\(355\) −7.79129 1.62614i −0.413519 0.0863064i
\(356\) −11.9536 −0.633537
\(357\) 7.93725i 0.420084i
\(358\) 0.361500i 0.0191059i
\(359\) −33.3857 −1.76203 −0.881015 0.473088i \(-0.843139\pi\)
−0.881015 + 0.473088i \(0.843139\pi\)
\(360\) 1.58258 7.58258i 0.0834091 0.399637i
\(361\) −16.0000 −0.842105
\(362\) 41.0369i 2.15685i
\(363\) 4.00000i 0.209946i
\(364\) 0 0
\(365\) 0 0
\(366\) 23.1642 1.21081
\(367\) 25.7477i 1.34402i −0.740542 0.672010i \(-0.765431\pi\)
0.740542 0.672010i \(-0.234569\pi\)
\(368\) 8.20871i 0.427909i
\(369\) 5.29150 0.275465
\(370\) 38.0297 + 7.93725i 1.97707 + 0.412638i
\(371\) −2.74110 −0.142311
\(372\) 26.9898i 1.39936i
\(373\) 13.0000i 0.673114i −0.941663 0.336557i \(-0.890737\pi\)
0.941663 0.336557i \(-0.109263\pi\)
\(374\) −26.5390 −1.37230
\(375\) −6.47135 + 9.11710i −0.334179 + 0.470805i
\(376\) 15.1652 0.782083
\(377\) 0 0
\(378\) 18.9564i 0.975014i
\(379\) −21.0707 −1.08233 −0.541164 0.840917i \(-0.682016\pi\)
−0.541164 + 0.840917i \(0.682016\pi\)
\(380\) 10.5826 + 2.20871i 0.542875 + 0.113305i
\(381\) 9.74773 0.499391
\(382\) 16.2360i 0.830706i
\(383\) 2.83645i 0.144936i 0.997371 + 0.0724680i \(0.0230875\pi\)
−0.997371 + 0.0724680i \(0.976912\pi\)
\(384\) −12.7719 −0.651764
\(385\) 2.09355 10.0308i 0.106697 0.511217i
\(386\) 2.20871 0.112420
\(387\) 2.83485i 0.144103i
\(388\) 12.4859i 0.633873i
\(389\) 15.1652 0.768904 0.384452 0.923145i \(-0.374390\pi\)
0.384452 + 0.923145i \(0.374390\pi\)
\(390\) 0 0
\(391\) −21.0000 −1.06202
\(392\) 6.92820i 0.349927i
\(393\) 1.58258i 0.0798304i
\(394\) −43.7042 −2.20178
\(395\) 13.1334 + 2.74110i 0.660813 + 0.137920i
\(396\) −14.7701 −0.742226
\(397\) 27.2759i 1.36894i 0.729043 + 0.684468i \(0.239966\pi\)
−0.729043 + 0.684468i \(0.760034\pi\)
\(398\) 3.10260i 0.155519i
\(399\) −3.00000 −0.150188
\(400\) −8.20871 3.58258i −0.410436 0.179129i
\(401\) 12.5058 0.624508 0.312254 0.949999i \(-0.398916\pi\)
0.312254 + 0.949999i \(0.398916\pi\)
\(402\) 32.5390i 1.62290i
\(403\) 0 0
\(404\) 25.1216 1.24985
\(405\) 2.18890 + 0.456850i 0.108767 + 0.0227011i
\(406\) 17.3739 0.862250
\(407\) 21.0000i 1.04093i
\(408\) 7.93725i 0.392953i
\(409\) 8.66025 0.428222 0.214111 0.976809i \(-0.431315\pi\)
0.214111 + 0.976809i \(0.431315\pi\)
\(410\) −2.64575 + 12.6766i −0.130664 + 0.626050i
\(411\) 0.0953502 0.00470328
\(412\) 42.3303i 2.08546i
\(413\) 5.83485i 0.287114i
\(414\) −20.0616 −0.985974
\(415\) 5.16515 24.7477i 0.253547 1.21482i
\(416\) 0 0
\(417\) 5.74773i 0.281467i
\(418\) 10.0308i 0.490623i
\(419\) 24.1652 1.18054 0.590272 0.807204i \(-0.299020\pi\)
0.590272 + 0.807204i \(0.299020\pi\)
\(420\) −10.5826 2.20871i −0.516377 0.107774i
\(421\) −26.2668 −1.28017 −0.640083 0.768306i \(-0.721100\pi\)
−0.640083 + 0.768306i \(0.721100\pi\)
\(422\) 39.7617i 1.93557i
\(423\) 17.5112i 0.851424i
\(424\) −2.74110 −0.133120
\(425\) −9.16515 + 21.0000i −0.444575 + 1.01865i
\(426\) 7.79129 0.377489
\(427\) 18.3296i 0.887030i
\(428\) 3.95644i 0.191242i
\(429\) 0 0
\(430\) 6.79129 + 1.41742i 0.327505 + 0.0683543i
\(431\) −29.6356 −1.42749 −0.713747 0.700403i \(-0.753004\pi\)
−0.713747 + 0.700403i \(0.753004\pi\)
\(432\) 8.95644i 0.430917i
\(433\) 17.7477i 0.852901i 0.904511 + 0.426451i \(0.140236\pi\)
−0.904511 + 0.426451i \(0.859764\pi\)
\(434\) −36.6591 −1.75969
\(435\) −2.09355 + 10.0308i −0.100378 + 0.480940i
\(436\) −7.65120 −0.366426
\(437\) 7.93725i 0.379690i
\(438\) 0 0
\(439\) 40.4955 1.93274 0.966371 0.257151i \(-0.0827837\pi\)
0.966371 + 0.257151i \(0.0827837\pi\)
\(440\) 2.09355 10.0308i 0.0998061 0.478200i
\(441\) 8.00000 0.380952
\(442\) 0 0
\(443\) 25.9129i 1.23116i −0.788075 0.615579i \(-0.788922\pi\)
0.788075 0.615579i \(-0.211078\pi\)
\(444\) −22.1552 −1.05144
\(445\) 9.37386 + 1.95644i 0.444364 + 0.0927441i
\(446\) −18.9564 −0.897613
\(447\) 9.76465i 0.461852i
\(448\) 21.7937i 1.02965i
\(449\) −37.4775 −1.76867 −0.884336 0.466852i \(-0.845388\pi\)
−0.884336 + 0.466852i \(0.845388\pi\)
\(450\) −8.75560 + 20.0616i −0.412743 + 0.945713i
\(451\) 7.00000 0.329617
\(452\) 46.2867i 2.17715i
\(453\) 6.20520i 0.291546i
\(454\) 13.3739 0.627667
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) 1.73205i 0.0810219i −0.999179 0.0405110i \(-0.987101\pi\)
0.999179 0.0405110i \(-0.0128986\pi\)
\(458\) 12.0000i 0.560723i
\(459\) −22.9129 −1.06948
\(460\) 5.84370 27.9989i 0.272464 1.30545i
\(461\) −1.19975 −0.0558780 −0.0279390 0.999610i \(-0.508894\pi\)
−0.0279390 + 0.999610i \(0.508894\pi\)
\(462\) 10.0308i 0.466675i
\(463\) 8.22330i 0.382169i 0.981574 + 0.191085i \(0.0612005\pi\)
−0.981574 + 0.191085i \(0.938799\pi\)
\(464\) −8.20871 −0.381080
\(465\) 4.41742 21.1652i 0.204853 0.981510i
\(466\) 46.3284 2.14612
\(467\) 12.3303i 0.570578i 0.958441 + 0.285289i \(0.0920896\pi\)
−0.958441 + 0.285289i \(0.907910\pi\)
\(468\) 0 0
\(469\) −25.7477 −1.18892
\(470\) −41.9506 8.75560i −1.93504 0.403866i
\(471\) −9.16515 −0.422308
\(472\) 5.83485i 0.268571i
\(473\) 3.75015i 0.172432i
\(474\) −13.1334 −0.603237
\(475\) −7.93725 3.46410i −0.364186 0.158944i
\(476\) −22.1552 −1.01548
\(477\) 3.16515i 0.144922i
\(478\) 45.9129i 2.10001i
\(479\) −32.3767 −1.47933 −0.739664 0.672977i \(-0.765015\pi\)
−0.739664 + 0.672977i \(0.765015\pi\)
\(480\) 16.1652 + 3.37386i 0.737835 + 0.153995i
\(481\) 0 0
\(482\) 3.79129i 0.172688i
\(483\) 7.93725i 0.361158i
\(484\) 11.1652 0.507507
\(485\) 2.04356 9.79129i 0.0927933 0.444599i
\(486\) −35.0224 −1.58865
\(487\) 21.0707i 0.954803i 0.878685 + 0.477401i \(0.158421\pi\)
−0.878685 + 0.477401i \(0.841579\pi\)
\(488\) 18.3296i 0.829740i
\(489\) 10.6784 0.482892
\(490\) −4.00000 + 19.1652i −0.180702 + 0.865793i
\(491\) −28.5826 −1.28991 −0.644957 0.764219i \(-0.723125\pi\)
−0.644957 + 0.764219i \(0.723125\pi\)
\(492\) 7.38505i 0.332944i
\(493\) 21.0000i 0.945792i
\(494\) 0 0
\(495\) 11.5826 + 2.41742i 0.520598 + 0.108655i
\(496\) 17.3205 0.777714
\(497\) 6.16515i 0.276545i
\(498\) 24.7477i 1.10897i
\(499\) 16.5975 0.743006 0.371503 0.928432i \(-0.378842\pi\)
0.371503 + 0.928432i \(0.378842\pi\)
\(500\) −25.4485 18.0634i −1.13809 0.807820i
\(501\) 4.28245 0.191326
\(502\) 39.7617i 1.77465i
\(503\) 18.1652i 0.809944i −0.914329 0.404972i \(-0.867281\pi\)
0.914329 0.404972i \(-0.132719\pi\)
\(504\) −6.00000 −0.267261
\(505\) −19.7001 4.11165i −0.876643 0.182966i
\(506\) −26.5390 −1.17980
\(507\) 0 0
\(508\) 27.2087i 1.20719i
\(509\) 29.6356 1.31357 0.656787 0.754076i \(-0.271915\pi\)
0.656787 + 0.754076i \(0.271915\pi\)
\(510\) 4.58258 21.9564i 0.202920 0.972247i
\(511\) 0 0
\(512\) 19.4340i 0.858868i
\(513\) 8.66025i 0.382360i
\(514\) −0.361500 −0.0159451
\(515\) −6.92820 + 33.1950i −0.305293 + 1.46275i
\(516\) −3.95644 −0.174173
\(517\) 23.1652i 1.01880i
\(518\) 30.0924i 1.32218i
\(519\) −7.41742 −0.325589
\(520\) 0 0
\(521\) −27.4955 −1.20460 −0.602299 0.798271i \(-0.705748\pi\)
−0.602299 + 0.798271i \(0.705748\pi\)
\(522\) 20.0616i 0.878073i
\(523\) 18.1652i 0.794307i −0.917752 0.397153i \(-0.869998\pi\)
0.917752 0.397153i \(-0.130002\pi\)
\(524\) −4.41742 −0.192976
\(525\) 7.93725 + 3.46410i 0.346410 + 0.151186i
\(526\) −19.7001 −0.858966
\(527\) 44.3103i 1.93019i
\(528\) 4.73930i 0.206252i
\(529\) 2.00000 0.0869565
\(530\) 7.58258 + 1.58258i 0.329366 + 0.0687427i
\(531\) 6.73750 0.292383
\(532\) 8.37386i 0.363053i
\(533\) 0 0
\(534\) −9.37386 −0.405647
\(535\) −0.647551 + 3.10260i −0.0279961 + 0.134137i
\(536\) −25.7477 −1.11213
\(537\) 0.165151i 0.00712681i
\(538\) 32.8335i 1.41555i
\(539\) 10.5830 0.455842
\(540\) 6.37600 30.5493i 0.274379 1.31463i
\(541\) 10.3923 0.446800 0.223400 0.974727i \(-0.428284\pi\)
0.223400 + 0.974727i \(0.428284\pi\)
\(542\) 18.9564i 0.814249i
\(543\) 18.7477i 0.804542i
\(544\) 33.8426 1.45099
\(545\) 6.00000 + 1.25227i 0.257012 + 0.0536415i
\(546\) 0 0
\(547\) 1.25227i 0.0535433i −0.999642 0.0267717i \(-0.991477\pi\)
0.999642 0.0267717i \(-0.00852270\pi\)
\(548\) 0.266150i 0.0113694i
\(549\) −21.1652 −0.903307
\(550\) −11.5826 + 26.5390i −0.493883 + 1.13163i
\(551\) −7.93725 −0.338138
\(552\) 7.93725i 0.337832i
\(553\) 10.3923i 0.441926i
\(554\) 36.2976 1.54214
\(555\) 17.3739 + 3.62614i 0.737479 + 0.153921i
\(556\) 16.0436 0.680399
\(557\) 13.0381i 0.552440i 0.961094 + 0.276220i \(0.0890819\pi\)
−0.961094 + 0.276220i \(0.910918\pi\)
\(558\) 42.3303i 1.79198i
\(559\) 0 0
\(560\) −1.41742 + 6.79129i −0.0598971 + 0.286984i
\(561\) −12.1244 −0.511891
\(562\) 38.3303i 1.61687i
\(563\) 9.00000i 0.379305i 0.981851 + 0.189652i \(0.0607361\pi\)
−0.981851 + 0.189652i \(0.939264\pi\)
\(564\) 24.4394 1.02908
\(565\) 7.57575 36.2976i 0.318714 1.52705i
\(566\) −0.552200 −0.0232107
\(567\) 1.73205i 0.0727393i
\(568\) 6.16515i 0.258684i
\(569\) −19.7477 −0.827868 −0.413934 0.910307i \(-0.635846\pi\)
−0.413934 + 0.910307i \(0.635846\pi\)
\(570\) 8.29875 + 1.73205i 0.347597 + 0.0725476i
\(571\) −29.0780 −1.21688 −0.608439 0.793601i \(-0.708204\pi\)
−0.608439 + 0.793601i \(0.708204\pi\)
\(572\) 0 0
\(573\) 7.41742i 0.309867i
\(574\) 10.0308 0.418678
\(575\) −9.16515 + 21.0000i −0.382213 + 0.875761i
\(576\) 25.1652 1.04855
\(577\) 6.92820i 0.288425i −0.989547 0.144212i \(-0.953935\pi\)
0.989547 0.144212i \(-0.0460649\pi\)
\(578\) 8.75560i 0.364185i
\(579\) 1.00905 0.0419347
\(580\) −27.9989 5.84370i −1.16259 0.242647i
\(581\) −19.5826 −0.812422
\(582\) 9.79129i 0.405862i
\(583\) 4.18710i 0.173412i
\(584\) 0 0
\(585\) 0 0
\(586\) 51.2867 2.11864
\(587\) 18.7110i 0.772284i 0.922439 + 0.386142i \(0.126193\pi\)
−0.922439 + 0.386142i \(0.873807\pi\)
\(588\) 11.1652i 0.460443i
\(589\) 16.7477 0.690078
\(590\) −3.36875 + 16.1407i −0.138689 + 0.664500i
\(591\) −19.9663 −0.821302
\(592\) 14.2179i 0.584352i
\(593\) 21.1660i 0.869184i −0.900627 0.434592i \(-0.856893\pi\)
0.900627 0.434592i \(-0.143107\pi\)
\(594\) −28.9564 −1.18810
\(595\) 17.3739 + 3.62614i 0.712259 + 0.148657i
\(596\) −27.2560 −1.11645
\(597\) 1.41742i 0.0580113i
\(598\) 0 0
\(599\) 39.4955 1.61374 0.806870 0.590729i \(-0.201160\pi\)
0.806870 + 0.590729i \(0.201160\pi\)
\(600\) 7.93725 + 3.46410i 0.324037 + 0.141421i
\(601\) −28.9129 −1.17938 −0.589690 0.807629i \(-0.700750\pi\)
−0.589690 + 0.807629i \(0.700750\pi\)
\(602\) 5.37386i 0.219022i
\(603\) 29.7309i 1.21074i
\(604\) 17.3205 0.704761
\(605\) −8.75560 1.82740i −0.355966 0.0742944i
\(606\) 19.7001 0.800262
\(607\) 19.7477i 0.801536i 0.916180 + 0.400768i \(0.131257\pi\)
−0.916180 + 0.400768i \(0.868743\pi\)
\(608\) 12.7913i 0.518755i
\(609\) 7.93725 0.321634
\(610\) 10.5826 50.7042i 0.428476 2.05295i
\(611\) 0 0
\(612\) 25.5826i 1.03411i
\(613\) 21.7937i 0.880238i 0.897940 + 0.440119i \(0.145064\pi\)
−0.897940 + 0.440119i \(0.854936\pi\)
\(614\) 53.0780 2.14205
\(615\) −1.20871 + 5.79129i −0.0487400 + 0.233527i
\(616\) −7.93725 −0.319801
\(617\) 3.36875i 0.135621i 0.997698 + 0.0678104i \(0.0216013\pi\)
−0.997698 + 0.0678104i \(0.978399\pi\)
\(618\) 33.1950i 1.33530i
\(619\) −2.01810 −0.0811143 −0.0405572 0.999177i \(-0.512913\pi\)
−0.0405572 + 0.999177i \(0.512913\pi\)
\(620\) 59.0780 + 12.3303i 2.37263 + 0.495197i
\(621\) −22.9129 −0.919462
\(622\) 3.46410i 0.138898i
\(623\) 7.41742i 0.297173i
\(624\) 0 0
\(625\) 17.0000 + 18.3303i 0.680000 + 0.733212i
\(626\) 67.3037 2.69000
\(627\) 4.58258i 0.183010i
\(628\) 25.5826i 1.02086i
\(629\) 36.3731 1.45029
\(630\) 16.5975 + 3.46410i 0.661261 + 0.138013i
\(631\) 21.7937 0.867592 0.433796 0.901011i \(-0.357174\pi\)
0.433796 + 0.901011i \(0.357174\pi\)
\(632\) 10.3923i 0.413384i
\(633\) 18.1652i 0.722000i
\(634\) −45.9129 −1.82343
\(635\) 4.45325 21.3368i 0.176722 0.846725i
\(636\) −4.41742 −0.175162
\(637\) 0 0
\(638\) 26.5390i 1.05069i
\(639\) −7.11890 −0.281619
\(640\) −5.83485 + 27.9564i −0.230643 + 1.10508i
\(641\) 0.165151 0.00652309 0.00326154 0.999995i \(-0.498962\pi\)
0.00326154 + 0.999995i \(0.498962\pi\)
\(642\) 3.10260i 0.122450i
\(643\) 5.91915i 0.233429i 0.993166 + 0.116714i \(0.0372362\pi\)
−0.993166 + 0.116714i \(0.962764\pi\)
\(644\) −22.1552 −0.873036
\(645\) 3.10260 + 0.647551i 0.122165 + 0.0254973i
\(646\) 17.3739 0.683566
\(647\) 27.0000i 1.06148i 0.847535 + 0.530740i \(0.178086\pi\)
−0.847535 + 0.530740i \(0.821914\pi\)
\(648\) 1.73205i 0.0680414i
\(649\) 8.91288 0.349861
\(650\) 0 0
\(651\) −16.7477 −0.656395
\(652\) 29.8064i 1.16731i
\(653\) 48.8258i 1.91070i 0.295477 + 0.955350i \(0.404521\pi\)
−0.295477 + 0.955350i \(0.595479\pi\)
\(654\) −6.00000 −0.234619
\(655\) 3.46410 + 0.723000i 0.135354 + 0.0282500i
\(656\) −4.73930 −0.185039
\(657\) 0 0
\(658\) 33.1950i 1.29408i
\(659\) 24.4955 0.954207 0.477104 0.878847i \(-0.341687\pi\)
0.477104 + 0.878847i \(0.341687\pi\)
\(660\) 3.37386 16.1652i 0.131327 0.629228i
\(661\) 2.45505 0.0954904 0.0477452 0.998860i \(-0.484796\pi\)
0.0477452 + 0.998860i \(0.484796\pi\)
\(662\) 24.9564i 0.969960i
\(663\) 0 0
\(664\) −19.5826 −0.759951
\(665\) −1.37055 + 6.56670i −0.0531477 + 0.254646i
\(666\) 34.7477 1.34645
\(667\) 21.0000i 0.813123i
\(668\) 11.9536i 0.462497i
\(669\) −8.66025 −0.334825
\(670\) 71.2247 + 14.8655i 2.75165 + 0.574303i
\(671\) −27.9989 −1.08088
\(672\) 12.7913i 0.493435i
\(673\) 5.83485i 0.224917i 0.993656 + 0.112458i \(0.0358725\pi\)
−0.993656 + 0.112458i \(0.964127\pi\)
\(674\) −7.11890 −0.274210
\(675\) −10.0000 + 22.9129i −0.384900 + 0.881917i
\(676\) 0 0
\(677\) 21.1652i 0.813443i 0.913552 + 0.406721i \(0.133328\pi\)
−0.913552 + 0.406721i \(0.866672\pi\)
\(678\) 36.2976i 1.39400i
\(679\) −7.74773 −0.297330
\(680\) 17.3739 + 3.62614i 0.666257 + 0.139056i
\(681\) 6.10985 0.234130
\(682\) 55.9977i 2.14426i
\(683\) 11.9337i 0.456629i 0.973587 + 0.228314i \(0.0733214\pi\)
−0.973587 + 0.228314i \(0.926679\pi\)
\(684\) 9.66930 0.369715
\(685\) 0.0435608 0.208712i 0.00166437 0.00797448i
\(686\) 41.7042 1.59227
\(687\) 5.48220i 0.209159i
\(688\) 2.53901i 0.0967990i
\(689\) 0 0
\(690\) 4.58258 21.9564i 0.174456 0.835867i
\(691\) −35.6501 −1.35619 −0.678096 0.734973i \(-0.737195\pi\)
−0.678096 + 0.734973i \(0.737195\pi\)
\(692\) 20.7042i 0.787054i
\(693\) 9.16515i 0.348155i
\(694\) 33.5565 1.27379
\(695\) −12.5812 2.62585i −0.477232 0.0996042i
\(696\) 7.93725 0.300861
\(697\) 12.1244i 0.459243i
\(698\) 40.1216i 1.51862i
\(699\) 21.1652 0.800540
\(700\) −9.66930 + 22.1552i −0.365465 + 0.837386i
\(701\) 2.83485 0.107071 0.0535354 0.998566i \(-0.482951\pi\)
0.0535354 + 0.998566i \(0.482951\pi\)
\(702\) 0 0
\(703\) 13.7477i 0.518505i
\(704\) 33.2904 1.25468
\(705\) −19.1652 4.00000i −0.721801 0.150649i
\(706\) 38.1216 1.43472
\(707\) 15.5885i 0.586264i
\(708\) 9.40315i 0.353392i
\(709\) −36.3731 −1.36602 −0.683010 0.730409i \(-0.739329\pi\)
−0.683010 + 0.730409i \(0.739329\pi\)
\(710\) 3.55945 17.0544i 0.133584 0.640039i
\(711\) 12.0000 0.450035
\(712\) 7.41742i 0.277980i
\(713\) 44.3103i 1.65943i
\(714\) −17.3739 −0.650201
\(715\) 0 0
\(716\) 0.460985 0.0172278
\(717\) 20.9753i 0.783337i
\(718\) 73.0780i 2.72725i
\(719\) 30.4955 1.13729 0.568644 0.822584i \(-0.307468\pi\)
0.568644 + 0.822584i \(0.307468\pi\)
\(720\) −7.84190 1.63670i −0.292250 0.0609962i
\(721\) 26.2668 0.978227
\(722\) 35.0224i 1.30340i
\(723\) 1.73205i 0.0644157i
\(724\) −52.3303 −1.94484
\(725\) 21.0000 + 9.16515i 0.779920 + 0.340385i
\(726\) 8.75560 0.324951
\(727\) 42.7477i 1.58543i −0.609595 0.792713i \(-0.708668\pi\)
0.609595 0.792713i \(-0.291332\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 6.49545 0.240243
\(732\) 29.5390i 1.09179i
\(733\) 8.94630i 0.330439i −0.986257 0.165220i \(-0.947167\pi\)
0.986257 0.165220i \(-0.0528333\pi\)
\(734\) 56.3592 2.08026
\(735\) −1.82740 + 8.75560i −0.0674047 + 0.322955i
\(736\) 33.8426 1.24745
\(737\) 39.3303i 1.44875i
\(738\) 11.5826i 0.426361i
\(739\) −48.7835 −1.79453 −0.897265 0.441493i \(-0.854449\pi\)
−0.897265 + 0.441493i \(0.854449\pi\)
\(740\) −10.1216 + 48.4955i −0.372077 + 1.78273i
\(741\) 0 0
\(742\) 6.00000i 0.220267i
\(743\) 42.7690i 1.56904i −0.620103 0.784521i \(-0.712909\pi\)
0.620103 0.784521i \(-0.287091\pi\)
\(744\) −16.7477 −0.614001
\(745\) 21.3739 + 4.46099i 0.783078 + 0.163438i
\(746\) 28.4557 1.04184
\(747\) 22.6120i 0.827330i
\(748\) 33.8426i 1.23741i
\(749\) 2.45505 0.0897056
\(750\) −19.9564 14.1652i −0.728706 0.517238i
\(751\) 15.7477 0.574643 0.287321 0.957834i \(-0.407235\pi\)
0.287321 + 0.957834i \(0.407235\pi\)
\(752\) 15.6838i 0.571930i
\(753\) 18.1652i 0.661975i
\(754\) 0 0
\(755\) −13.5826 2.83485i −0.494321 0.103171i
\(756\) −24.1733 −0.879173
\(757\) 17.7477i 0.645052i 0.946561 + 0.322526i \(0.104532\pi\)
−0.946561 + 0.322526i \(0.895468\pi\)
\(758\) 46.1216i 1.67521i
\(759\) −12.1244 −0.440086
\(760\) −1.37055 + 6.56670i −0.0497151 + 0.238199i
\(761\) 40.7509 1.47722 0.738609 0.674134i \(-0.235483\pi\)
0.738609 + 0.674134i \(0.235483\pi\)
\(762\) 21.3368i 0.772951i
\(763\) 4.74773i 0.171879i
\(764\) 20.7042 0.749050
\(765\) −4.18710 + 20.0616i −0.151385 + 0.725329i
\(766\) −6.20871 −0.224330
\(767\) 0 0
\(768\) 2.79129i 0.100722i
\(769\) 15.5885 0.562134 0.281067 0.959688i \(-0.409312\pi\)
0.281067 + 0.959688i \(0.409312\pi\)
\(770\) 21.9564 + 4.58258i 0.791255 + 0.165145i
\(771\) −0.165151 −0.00594778
\(772\) 2.81655i 0.101370i
\(773\) 34.7364i 1.24938i 0.780873 + 0.624690i \(0.214775\pi\)
−0.780873 + 0.624690i \(0.785225\pi\)
\(774\) 6.20520 0.223041
\(775\) −44.3103 19.3386i −1.59167 0.694663i
\(776\) −7.74773 −0.278127
\(777\) 13.7477i 0.493197i
\(778\) 33.1950i 1.19010i
\(779\) −4.58258 −0.164188
\(780\) 0 0
\(781\) −9.41742 −0.336982
\(782\) 45.9669i 1.64377i
\(783\) 22.9129i 0.818839i
\(784\) −7.16515 −0.255898
\(785\) −4.18710 + 20.0616i −0.149444 + 0.716030i
\(786\) −3.46410 −0.123560
\(787\) 32.1860i 1.14731i 0.819099 + 0.573653i \(0.194474\pi\)
−0.819099 + 0.573653i \(0.805526\pi\)
\(788\) 55.7316i 1.98536i
\(789\) −9.00000 −0.320408
\(790\) −6.00000 + 28.7477i −0.213470 + 1.02280i
\(791\) −28.7219 −1.02123
\(792\) 9.16515i 0.325669i
\(793\) 0 0
\(794\) −59.7042 −2.11882
\(795\) 3.46410 + 0.723000i 0.122859 + 0.0256422i
\(796\) −3.95644 −0.140232
\(797\) 20.0780i 0.711200i −0.934638 0.355600i \(-0.884276\pi\)
0.934638 0.355600i \(-0.115724\pi\)
\(798\) 6.56670i 0.232459i
\(799\) −40.1232 −1.41946
\(800\) 14.7701 33.8426i 0.522202 1.19652i
\(801\) 8.56490 0.302626
\(802\) 27.3739i 0.966605i
\(803\) 0 0
\(804\) −41.4938 −1.46337
\(805\) 17.3739 + 3.62614i 0.612348 + 0.127805i
\(806\) 0 0
\(807\) 15.0000i 0.528025i
\(808\) 15.5885i 0.548400i
\(809\) −36.8258 −1.29472 −0.647362 0.762182i \(-0.724128\pi\)
−0.647362 + 0.762182i \(0.724128\pi\)
\(810\) −1.00000 + 4.79129i −0.0351364 + 0.168349i
\(811\) −18.7665 −0.658981 −0.329491 0.944159i \(-0.606877\pi\)
−0.329491 + 0.944159i \(0.606877\pi\)
\(812\) 22.1552i 0.777494i
\(813\) 8.66025i 0.303728i
\(814\) 45.9669 1.61114
\(815\) 4.87841 23.3739i 0.170883 0.818751i
\(816\) 8.20871 0.287362
\(817\) 2.45505i 0.0858914i
\(818\) 18.9564i 0.662796i
\(819\) 0 0
\(820\) −16.1652 3.37386i −0.564512 0.117820i
\(821\) −23.4304 −0.817725 −0.408863 0.912596i \(-0.634074\pi\)
−0.408863 + 0.912596i \(0.634074\pi\)
\(822\) 0.208712i 0.00727967i
\(823\) 40.5826i 1.41462i 0.706904 + 0.707310i \(0.250091\pi\)
−0.706904 + 0.707310i \(0.749909\pi\)
\(824\) 26.2668 0.915048
\(825\) −5.29150 + 12.1244i −0.184226 + 0.422116i
\(826\) 12.7719 0.444391
\(827\) 31.5583i 1.09739i 0.836023 + 0.548695i \(0.184875\pi\)
−0.836023 + 0.548695i \(0.815125\pi\)
\(828\) 25.5826i 0.889056i
\(829\) 3.33030 0.115666 0.0578331 0.998326i \(-0.481581\pi\)
0.0578331 + 0.998326i \(0.481581\pi\)
\(830\) 54.1703 + 11.3060i 1.88028 + 0.392437i
\(831\) 16.5826 0.575243
\(832\) 0 0
\(833\) 18.3303i 0.635107i
\(834\) 12.5812 0.435652
\(835\) 1.95644 9.37386i 0.0677054 0.324396i
\(836\) 12.7913 0.442396
\(837\) 48.3465i 1.67110i
\(838\) 52.8951i 1.82723i
\(839\) −1.35065 −0.0466296 −0.0233148 0.999728i \(-0.507422\pi\)
−0.0233148 + 0.999728i \(0.507422\pi\)
\(840\) 1.37055 6.56670i 0.0472885 0.226573i
\(841\) −8.00000 −0.275862
\(842\) 57.4955i 1.98142i
\(843\) 17.5112i 0.603118i
\(844\) −50.7042 −1.74531
\(845\) 0 0
\(846\) −38.3303 −1.31782
\(847\) 6.92820i 0.238056i
\(848\) 2.83485i 0.0973491i
\(849\) −0.252273 −0.00865798
\(850\) −45.9669 20.0616i −1.57665 0.688108i
\(851\) 36.3731 1.24685
\(852\) 9.93545i 0.340383i
\(853\) 53.2566i 1.82347i 0.410777 + 0.911736i \(0.365258\pi\)
−0.410777 + 0.911736i \(0.634742\pi\)
\(854\) −40.1216 −1.37293
\(855\) −7.58258 1.58258i −0.259319 0.0541229i
\(856\) 2.45505 0.0839119
\(857\) 22.7477i 0.777048i 0.921439 + 0.388524i \(0.127015\pi\)
−0.921439 + 0.388524i \(0.872985\pi\)
\(858\) 0 0
\(859\) −38.2432 −1.30484 −0.652420 0.757857i \(-0.726246\pi\)
−0.652420 + 0.757857i \(0.726246\pi\)
\(860\) −1.80750 + 8.66025i −0.0616352 + 0.295312i
\(861\) 4.58258 0.156174
\(862\) 64.8693i 2.20946i
\(863\) 34.8317i 1.18569i 0.805318 + 0.592843i \(0.201994\pi\)
−0.805318 + 0.592843i \(0.798006\pi\)
\(864\) 36.9253 1.25622
\(865\) −3.38865 + 16.2360i −0.115218 + 0.552041i
\(866\) −38.8480 −1.32011
\(867\) 4.00000i 0.135847i
\(868\) 46.7477i 1.58672i
\(869\) 15.8745 0.538506
\(870\) −21.9564 4.58258i −0.744393 0.155364i
\(871\) 0 0
\(872\) 4.74773i 0.160778i
\(873\) 8.94630i 0.302787i
\(874\) 17.3739 0.587680
\(875\) 11.2087 15.7913i 0.378924 0.533843i
\(876\) 0 0
\(877\) 7.93725i 0.268022i −0.990980 0.134011i \(-0.957214\pi\)
0.990980 0.134011i \(-0.0427858\pi\)
\(878\) 88.6405i 2.99147i
\(879\) 23.4304 0.790286
\(880\) −10.3739 2.16515i −0.349703 0.0729872i
\(881\) 18.4955 0.623128 0.311564 0.950225i \(-0.399147\pi\)
0.311564 + 0.950225i \(0.399147\pi\)
\(882\) 17.5112i 0.589633i
\(883\) 46.2432i 1.55621i 0.628136 + 0.778103i \(0.283818\pi\)
−0.628136 + 0.778103i \(0.716182\pi\)
\(884\) 0 0
\(885\) −1.53901 + 7.37386i −0.0517334 + 0.247870i
\(886\) 56.7207 1.90557
\(887\) 0.495454i 0.0166357i 0.999965 + 0.00831786i \(0.00264769\pi\)
−0.999965 + 0.00831786i \(0.997352\pi\)
\(888\) 13.7477i 0.461344i
\(889\) −16.8836 −0.566256
\(890\) −4.28245 + 20.5185i −0.143548 + 0.687780i
\(891\) 2.64575 0.0886360
\(892\) 24.1733i 0.809381i
\(893\) 15.1652i 0.507482i
\(894\) −21.3739 −0.714849
\(895\) −0.361500 0.0754495i −0.0120836 0.00252200i
\(896\) 22.1216 0.739030
\(897\) 0 0
\(898\) 82.0345i 2.73753i
\(899\) −44.3103 −1.47783
\(900\) −25.5826 11.1652i −0.852753 0.372172i
\(901\) 7.25227 0.241608
\(902\) 15.3223i 0.510177i
\(903\) 2.45505i 0.0816990i
\(904\) −28.7219 −0.955275
\(905\) 41.0369 + 8.56490i 1.36411 + 0.284707i
\(906\) 13.5826 0.451251
\(907\) 33.7477i 1.12057i −0.828298 0.560287i \(-0.810691\pi\)
0.828298 0.560287i \(-0.189309\pi\)
\(908\) 17.0544i 0.565969i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 37.9129 1.25611 0.628055 0.778169i \(-0.283851\pi\)
0.628055 + 0.778169i \(0.283851\pi\)
\(912\) 3.10260i 0.102737i
\(913\) 29.9129i 0.989972i
\(914\) 3.79129 0.125405
\(915\) 4.83465 23.1642i 0.159829 0.765785i
\(916\) −15.3024 −0.505606
\(917\) 2.74110i 0.0905191i
\(918\) 50.1540i 1.65533i
\(919\) −35.8348 −1.18208 −0.591041 0.806641i \(-0.701283\pi\)
−0.591041 + 0.806641i \(0.701283\pi\)
\(920\) 17.3739 + 3.62614i 0.572799 + 0.119550i
\(921\) 24.2487 0.799022
\(922\) 2.62614i 0.0864872i
\(923\) 0 0
\(924\) −12.7913 −0.420802
\(925\) 15.8745 36.3731i 0.521951 1.19594i
\(926\) −18.0000 −0.591517
\(927\) 30.3303i 0.996178i
\(928\) 33.8426i 1.11094i
\(929\) −15.9699 −0.523954 −0.261977 0.965074i \(-0.584374\pi\)
−0.261977 + 0.965074i \(0.584374\pi\)
\(930\) 46.3284 + 9.66930i 1.51917 + 0.317069i
\(931\) −6.92820 −0.227063
\(932\) 59.0780i 1.93517i
\(933\) 1.58258i 0.0518112i
\(934\) −26.9898 −0.883134
\(935\) −5.53901 + 26.5390i −0.181145 + 0.867919i
\(936\) 0 0
\(937\) 23.4955i 0.767563i 0.923424 + 0.383782i \(0.125378\pi\)
−0.923424 + 0.383782i \(0.874622\pi\)
\(938\) 56.3592i 1.84019i
\(939\) 30.7477 1.00341
\(940\) 11.1652 53.4955i 0.364167 1.74483i
\(941\) 26.4575 0.862490 0.431245 0.902235i \(-0.358074\pi\)
0.431245 + 0.902235i \(0.358074\pi\)
\(942\) 20.0616i 0.653643i
\(943\) 12.1244i 0.394823i
\(944\) −6.03440 −0.196403
\(945\) 18.9564 + 3.95644i 0.616653 + 0.128703i
\(946\) 8.20871 0.266888
\(947\) 38.5819i 1.25374i −0.779123 0.626871i \(-0.784335\pi\)
0.779123 0.626871i \(-0.215665\pi\)
\(948\) 16.7477i 0.543941i
\(949\) 0 0
\(950\) 7.58258 17.3739i 0.246011 0.563683i
\(951\) −20.9753 −0.680171
\(952\) 13.7477i 0.445566i
\(953\) 56.0780i 1.81655i −0.418378 0.908273i \(-0.637401\pi\)
0.418378 0.908273i \(-0.362599\pi\)
\(954\) 6.92820 0.224309
\(955\) −16.2360 3.38865i −0.525385 0.109654i
\(956\) 58.5481 1.89358
\(957\) 12.1244i 0.391925i
\(958\) 70.8693i 2.28968i
\(959\) −0.165151 −0.00533302
\(960\) −5.74835 + 27.5420i −0.185527 + 0.888915i
\(961\) 62.4955 2.01598
\(962\) 0 0
\(963\) 2.83485i 0.0913517i
\(964\) −4.83465 −0.155714
\(965\) 0.460985 2.20871i 0.0148396 0.0711010i
\(966\) −17.3739 −0.558995
\(967\) 21.5076i 0.691638i −0.938301 0.345819i \(-0.887601\pi\)
0.938301 0.345819i \(-0.112399\pi\)
\(968\) 6.92820i 0.222681i
\(969\) 7.93725 0.254981
\(970\) 21.4322 + 4.47315i 0.688145 + 0.143624i
\(971\) 36.4955 1.17119 0.585597 0.810602i \(-0.300860\pi\)
0.585597 + 0.810602i \(0.300860\pi\)
\(972\) 44.6606i 1.43249i
\(973\) 9.95536i 0.319154i
\(974\) −46.1216 −1.47783
\(975\) 0 0
\(976\) 18.9564 0.606781
\(977\) 38.7726i 1.24044i −0.784426 0.620222i \(-0.787042\pi\)
0.784426 0.620222i \(-0.212958\pi\)
\(978\) 23.3739i 0.747414i
\(979\) 11.3303 0.362118
\(980\) −24.4394 5.10080i −0.780688 0.162939i
\(981\) 5.48220 0.175033
\(982\) 62.5644i 1.99651i
\(983\) 3.12250i 0.0995924i 0.998759 + 0.0497962i \(0.0158572\pi\)
−0.998759 + 0.0497962i \(0.984143\pi\)
\(984\) 4.58258 0.146087
\(985\) −9.12159 + 43.7042i −0.290638 + 1.39253i
\(986\) −45.9669 −1.46389
\(987\) 15.1652i 0.482712i
\(988\) 0 0
\(989\) 6.49545 0.206543
\(990\) −5.29150 + 25.3531i −0.168175 + 0.805775i
\(991\) −13.0000 −0.412959 −0.206479 0.978451i \(-0.566201\pi\)
−0.206479 + 0.978451i \(0.566201\pi\)
\(992\) 71.4083i 2.26722i
\(993\) 11.4014i 0.361811i
\(994\) −13.4949 −0.428032
\(995\) 3.10260 + 0.647551i 0.0983591 + 0.0205287i
\(996\) −31.5583 −0.999963
\(997\) 18.1652i 0.575296i 0.957736 + 0.287648i \(0.0928733\pi\)
−0.957736 + 0.287648i \(0.907127\pi\)
\(998\) 36.3303i 1.15002i
\(999\) 39.6863 1.25562
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.b.f.339.8 8
5.2 odd 4 4225.2.a.bk.1.1 4
5.3 odd 4 4225.2.a.bj.1.4 4
5.4 even 2 inner 845.2.b.f.339.1 8
13.2 odd 12 845.2.l.c.654.1 8
13.3 even 3 845.2.n.c.529.1 8
13.4 even 6 845.2.n.c.484.2 8
13.5 odd 4 845.2.d.c.844.8 8
13.6 odd 12 65.2.l.a.49.1 yes 8
13.7 odd 12 845.2.l.c.699.4 8
13.8 odd 4 845.2.d.c.844.2 8
13.9 even 3 845.2.n.d.484.4 8
13.10 even 6 845.2.n.d.529.3 8
13.11 odd 12 65.2.l.a.4.4 yes 8
13.12 even 2 inner 845.2.b.f.339.2 8
39.11 even 12 585.2.bf.a.199.1 8
39.32 even 12 585.2.bf.a.244.4 8
52.11 even 12 1040.2.df.b.849.3 8
52.19 even 12 1040.2.df.b.49.2 8
65.4 even 6 845.2.n.d.484.3 8
65.9 even 6 845.2.n.c.484.1 8
65.12 odd 4 4225.2.a.bk.1.4 4
65.19 odd 12 65.2.l.a.49.4 yes 8
65.24 odd 12 65.2.l.a.4.1 8
65.29 even 6 845.2.n.d.529.4 8
65.32 even 12 325.2.n.c.101.2 4
65.34 odd 4 845.2.d.c.844.7 8
65.37 even 12 325.2.n.c.251.2 4
65.38 odd 4 4225.2.a.bj.1.1 4
65.44 odd 4 845.2.d.c.844.1 8
65.49 even 6 845.2.n.c.529.2 8
65.54 odd 12 845.2.l.c.654.4 8
65.58 even 12 325.2.n.b.101.1 4
65.59 odd 12 845.2.l.c.699.1 8
65.63 even 12 325.2.n.b.251.1 4
65.64 even 2 inner 845.2.b.f.339.7 8
195.89 even 12 585.2.bf.a.199.4 8
195.149 even 12 585.2.bf.a.244.1 8
260.19 even 12 1040.2.df.b.49.3 8
260.219 even 12 1040.2.df.b.849.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.1 8 65.24 odd 12
65.2.l.a.4.4 yes 8 13.11 odd 12
65.2.l.a.49.1 yes 8 13.6 odd 12
65.2.l.a.49.4 yes 8 65.19 odd 12
325.2.n.b.101.1 4 65.58 even 12
325.2.n.b.251.1 4 65.63 even 12
325.2.n.c.101.2 4 65.32 even 12
325.2.n.c.251.2 4 65.37 even 12
585.2.bf.a.199.1 8 39.11 even 12
585.2.bf.a.199.4 8 195.89 even 12
585.2.bf.a.244.1 8 195.149 even 12
585.2.bf.a.244.4 8 39.32 even 12
845.2.b.f.339.1 8 5.4 even 2 inner
845.2.b.f.339.2 8 13.12 even 2 inner
845.2.b.f.339.7 8 65.64 even 2 inner
845.2.b.f.339.8 8 1.1 even 1 trivial
845.2.d.c.844.1 8 65.44 odd 4
845.2.d.c.844.2 8 13.8 odd 4
845.2.d.c.844.7 8 65.34 odd 4
845.2.d.c.844.8 8 13.5 odd 4
845.2.l.c.654.1 8 13.2 odd 12
845.2.l.c.654.4 8 65.54 odd 12
845.2.l.c.699.1 8 65.59 odd 12
845.2.l.c.699.4 8 13.7 odd 12
845.2.n.c.484.1 8 65.9 even 6
845.2.n.c.484.2 8 13.4 even 6
845.2.n.c.529.1 8 13.3 even 3
845.2.n.c.529.2 8 65.49 even 6
845.2.n.d.484.3 8 65.4 even 6
845.2.n.d.484.4 8 13.9 even 3
845.2.n.d.529.3 8 13.10 even 6
845.2.n.d.529.4 8 65.29 even 6
1040.2.df.b.49.2 8 52.19 even 12
1040.2.df.b.49.3 8 260.19 even 12
1040.2.df.b.849.2 8 260.219 even 12
1040.2.df.b.849.3 8 52.11 even 12
4225.2.a.bj.1.1 4 65.38 odd 4
4225.2.a.bj.1.4 4 5.3 odd 4
4225.2.a.bk.1.1 4 5.2 odd 4
4225.2.a.bk.1.4 4 65.12 odd 4