Properties

Label 325.2.n.b.101.1
Level $325$
Weight $2$
Character 325.101
Analytic conductor $2.595$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(101,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-3,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.1
Root \(-0.895644 - 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 325.101
Dual form 325.2.n.b.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.89564 + 1.09445i) q^{2} +(0.500000 + 0.866025i) q^{3} +(1.39564 - 2.41733i) q^{4} +(-1.89564 - 1.09445i) q^{6} +(1.50000 + 0.866025i) q^{7} +1.73205i q^{8} +(1.00000 - 1.73205i) q^{9} +(2.29129 - 1.32288i) q^{11} +2.79129 q^{12} +(1.00000 + 3.46410i) q^{13} -3.79129 q^{14} +(0.895644 + 1.55130i) q^{16} +(2.29129 - 3.96863i) q^{17} +4.37780i q^{18} +(1.50000 + 0.866025i) q^{19} +1.73205i q^{21} +(-2.89564 + 5.01540i) q^{22} +(-2.29129 - 3.96863i) q^{23} +(-1.50000 + 0.866025i) q^{24} +(-5.68693 - 5.47225i) q^{26} +5.00000 q^{27} +(4.18693 - 2.41733i) q^{28} +(2.29129 + 3.96863i) q^{29} +9.66930i q^{31} +(-6.39564 - 3.69253i) q^{32} +(2.29129 + 1.32288i) q^{33} +10.0308i q^{34} +(-2.79129 - 4.83465i) q^{36} +(-6.87386 + 3.96863i) q^{37} -3.79129 q^{38} +(-2.50000 + 2.59808i) q^{39} +(-2.29129 + 1.32288i) q^{41} +(-1.89564 - 3.28335i) q^{42} +(0.708712 - 1.22753i) q^{43} -7.38505i q^{44} +(8.68693 + 5.01540i) q^{46} +8.75560i q^{47} +(-0.895644 + 1.55130i) q^{48} +(-2.00000 - 3.46410i) q^{49} +4.58258 q^{51} +(9.76951 + 2.41733i) q^{52} +1.58258 q^{53} +(-9.47822 + 5.47225i) q^{54} +(-1.50000 + 2.59808i) q^{56} +1.73205i q^{57} +(-8.68693 - 5.01540i) q^{58} +(2.91742 + 1.68438i) q^{59} +(5.29129 - 9.16478i) q^{61} +(-10.5826 - 18.3296i) q^{62} +(3.00000 - 1.73205i) q^{63} +12.5826 q^{64} -5.79129 q^{66} +(12.8739 - 7.43273i) q^{67} +(-6.39564 - 11.0776i) q^{68} +(2.29129 - 3.96863i) q^{69} +(-3.08258 - 1.77973i) q^{71} +(3.00000 + 1.73205i) q^{72} +(8.68693 - 15.0462i) q^{74} +(4.18693 - 2.41733i) q^{76} +4.58258 q^{77} +(1.89564 - 7.66115i) q^{78} -6.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} +(2.89564 - 5.01540i) q^{82} -11.3060i q^{83} +(4.18693 + 2.41733i) q^{84} +3.10260i q^{86} +(-2.29129 + 3.96863i) q^{87} +(2.29129 + 3.96863i) q^{88} +(-3.70871 + 2.14123i) q^{89} +(-1.50000 + 6.06218i) q^{91} -12.7913 q^{92} +(-8.37386 + 4.83465i) q^{93} +(-9.58258 - 16.5975i) q^{94} -7.38505i q^{96} +(-3.87386 - 2.23658i) q^{97} +(7.58258 + 4.37780i) q^{98} -5.29150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} + 2 q^{3} + q^{4} - 3 q^{6} + 6 q^{7} + 4 q^{9} + 2 q^{12} + 4 q^{13} - 6 q^{14} - q^{16} + 6 q^{19} - 7 q^{22} - 6 q^{24} - 9 q^{26} + 20 q^{27} + 3 q^{28} - 21 q^{32} - 2 q^{36} - 6 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.89564 + 1.09445i −1.34042 + 0.773893i −0.986869 0.161521i \(-0.948360\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 1.39564 2.41733i 0.697822 1.20866i
\(5\) 0 0
\(6\) −1.89564 1.09445i −0.773893 0.446808i
\(7\) 1.50000 + 0.866025i 0.566947 + 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 1.73205i 0.612372i
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) 2.29129 1.32288i 0.690849 0.398862i −0.113081 0.993586i \(-0.536072\pi\)
0.803930 + 0.594724i \(0.202739\pi\)
\(12\) 2.79129 0.805775
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) −3.79129 −1.01326
\(15\) 0 0
\(16\) 0.895644 + 1.55130i 0.223911 + 0.387825i
\(17\) 2.29129 3.96863i 0.555719 0.962533i −0.442128 0.896952i \(-0.645776\pi\)
0.997847 0.0655816i \(-0.0208903\pi\)
\(18\) 4.37780i 1.03186i
\(19\) 1.50000 + 0.866025i 0.344124 + 0.198680i 0.662094 0.749421i \(-0.269668\pi\)
−0.317970 + 0.948101i \(0.603001\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) −2.89564 + 5.01540i −0.617353 + 1.06929i
\(23\) −2.29129 3.96863i −0.477767 0.827516i 0.521909 0.853001i \(-0.325220\pi\)
−0.999675 + 0.0254855i \(0.991887\pi\)
\(24\) −1.50000 + 0.866025i −0.306186 + 0.176777i
\(25\) 0 0
\(26\) −5.68693 5.47225i −1.11530 1.07320i
\(27\) 5.00000 0.962250
\(28\) 4.18693 2.41733i 0.791256 0.456832i
\(29\) 2.29129 + 3.96863i 0.425481 + 0.736956i 0.996465 0.0840058i \(-0.0267714\pi\)
−0.570984 + 0.820961i \(0.693438\pi\)
\(30\) 0 0
\(31\) 9.66930i 1.73666i 0.495988 + 0.868329i \(0.334806\pi\)
−0.495988 + 0.868329i \(0.665194\pi\)
\(32\) −6.39564 3.69253i −1.13060 0.652753i
\(33\) 2.29129 + 1.32288i 0.398862 + 0.230283i
\(34\) 10.0308i 1.72027i
\(35\) 0 0
\(36\) −2.79129 4.83465i −0.465215 0.805775i
\(37\) −6.87386 + 3.96863i −1.13006 + 0.652438i −0.943949 0.330091i \(-0.892920\pi\)
−0.186107 + 0.982529i \(0.559587\pi\)
\(38\) −3.79129 −0.615028
\(39\) −2.50000 + 2.59808i −0.400320 + 0.416025i
\(40\) 0 0
\(41\) −2.29129 + 1.32288i −0.357839 + 0.206598i −0.668132 0.744042i \(-0.732906\pi\)
0.310293 + 0.950641i \(0.399573\pi\)
\(42\) −1.89564 3.28335i −0.292504 0.506632i
\(43\) 0.708712 1.22753i 0.108078 0.187196i −0.806914 0.590669i \(-0.798864\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 7.38505i 1.11334i
\(45\) 0 0
\(46\) 8.68693 + 5.01540i 1.28082 + 0.739481i
\(47\) 8.75560i 1.27714i 0.769565 + 0.638568i \(0.220473\pi\)
−0.769565 + 0.638568i \(0.779527\pi\)
\(48\) −0.895644 + 1.55130i −0.129275 + 0.223911i
\(49\) −2.00000 3.46410i −0.285714 0.494872i
\(50\) 0 0
\(51\) 4.58258 0.641689
\(52\) 9.76951 + 2.41733i 1.35479 + 0.335223i
\(53\) 1.58258 0.217383 0.108692 0.994076i \(-0.465334\pi\)
0.108692 + 0.994076i \(0.465334\pi\)
\(54\) −9.47822 + 5.47225i −1.28982 + 0.744679i
\(55\) 0 0
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) 1.73205i 0.229416i
\(58\) −8.68693 5.01540i −1.14065 0.658555i
\(59\) 2.91742 + 1.68438i 0.379816 + 0.219287i 0.677738 0.735303i \(-0.262960\pi\)
−0.297922 + 0.954590i \(0.596294\pi\)
\(60\) 0 0
\(61\) 5.29129 9.16478i 0.677480 1.17343i −0.298257 0.954485i \(-0.596405\pi\)
0.975737 0.218944i \(-0.0702613\pi\)
\(62\) −10.5826 18.3296i −1.34399 2.32786i
\(63\) 3.00000 1.73205i 0.377964 0.218218i
\(64\) 12.5826 1.57282
\(65\) 0 0
\(66\) −5.79129 −0.712858
\(67\) 12.8739 7.43273i 1.57279 0.908052i 0.576968 0.816767i \(-0.304236\pi\)
0.995825 0.0912856i \(-0.0290976\pi\)
\(68\) −6.39564 11.0776i −0.775586 1.34335i
\(69\) 2.29129 3.96863i 0.275839 0.477767i
\(70\) 0 0
\(71\) −3.08258 1.77973i −0.365834 0.211215i 0.305803 0.952095i \(-0.401075\pi\)
−0.671637 + 0.740880i \(0.734409\pi\)
\(72\) 3.00000 + 1.73205i 0.353553 + 0.204124i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 8.68693 15.0462i 1.00984 1.74909i
\(75\) 0 0
\(76\) 4.18693 2.41733i 0.480274 0.277286i
\(77\) 4.58258 0.522233
\(78\) 1.89564 7.66115i 0.214639 0.867455i
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.89564 5.01540i 0.319770 0.553859i
\(83\) 11.3060i 1.24100i −0.784208 0.620498i \(-0.786931\pi\)
0.784208 0.620498i \(-0.213069\pi\)
\(84\) 4.18693 + 2.41733i 0.456832 + 0.263752i
\(85\) 0 0
\(86\) 3.10260i 0.334562i
\(87\) −2.29129 + 3.96863i −0.245652 + 0.425481i
\(88\) 2.29129 + 3.96863i 0.244252 + 0.423057i
\(89\) −3.70871 + 2.14123i −0.393123 + 0.226969i −0.683512 0.729939i \(-0.739548\pi\)
0.290390 + 0.956909i \(0.406215\pi\)
\(90\) 0 0
\(91\) −1.50000 + 6.06218i −0.157243 + 0.635489i
\(92\) −12.7913 −1.33358
\(93\) −8.37386 + 4.83465i −0.868329 + 0.501330i
\(94\) −9.58258 16.5975i −0.988367 1.71190i
\(95\) 0 0
\(96\) 7.38505i 0.753734i
\(97\) −3.87386 2.23658i −0.393331 0.227090i 0.290271 0.956944i \(-0.406254\pi\)
−0.683603 + 0.729854i \(0.739588\pi\)
\(98\) 7.58258 + 4.37780i 0.765956 + 0.442225i
\(99\) 5.29150i 0.531816i
\(100\) 0 0
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) −8.68693 + 5.01540i −0.860134 + 0.496599i
\(103\) 15.1652 1.49427 0.747133 0.664674i \(-0.231430\pi\)
0.747133 + 0.664674i \(0.231430\pi\)
\(104\) −6.00000 + 1.73205i −0.588348 + 0.169842i
\(105\) 0 0
\(106\) −3.00000 + 1.73205i −0.291386 + 0.168232i
\(107\) −0.708712 1.22753i −0.0685138 0.118669i 0.829733 0.558160i \(-0.188492\pi\)
−0.898247 + 0.439490i \(0.855159\pi\)
\(108\) 6.97822 12.0866i 0.671479 1.16304i
\(109\) 2.74110i 0.262550i 0.991346 + 0.131275i \(0.0419071\pi\)
−0.991346 + 0.131275i \(0.958093\pi\)
\(110\) 0 0
\(111\) −6.87386 3.96863i −0.652438 0.376685i
\(112\) 3.10260i 0.293168i
\(113\) −8.29129 + 14.3609i −0.779979 + 1.35096i 0.151975 + 0.988384i \(0.451437\pi\)
−0.931953 + 0.362578i \(0.881897\pi\)
\(114\) −1.89564 3.28335i −0.177543 0.307514i
\(115\) 0 0
\(116\) 12.7913 1.18764
\(117\) 7.00000 + 1.73205i 0.647150 + 0.160128i
\(118\) −7.37386 −0.678819
\(119\) 6.87386 3.96863i 0.630126 0.363803i
\(120\) 0 0
\(121\) −2.00000 + 3.46410i −0.181818 + 0.314918i
\(122\) 23.1642i 2.09719i
\(123\) −2.29129 1.32288i −0.206598 0.119280i
\(124\) 23.3739 + 13.4949i 2.09903 + 1.21188i
\(125\) 0 0
\(126\) −3.79129 + 6.56670i −0.337755 + 0.585008i
\(127\) −4.87386 8.44178i −0.432485 0.749087i 0.564601 0.825364i \(-0.309030\pi\)
−0.997087 + 0.0762771i \(0.975697\pi\)
\(128\) −11.0608 + 6.38595i −0.977645 + 0.564444i
\(129\) 1.41742 0.124797
\(130\) 0 0
\(131\) 1.58258 0.138270 0.0691351 0.997607i \(-0.477976\pi\)
0.0691351 + 0.997607i \(0.477976\pi\)
\(132\) 6.39564 3.69253i 0.556669 0.321393i
\(133\) 1.50000 + 2.59808i 0.130066 + 0.225282i
\(134\) −16.2695 + 28.1796i −1.40547 + 2.43435i
\(135\) 0 0
\(136\) 6.87386 + 3.96863i 0.589429 + 0.340307i
\(137\) 0.0825757 + 0.0476751i 0.00705492 + 0.00407316i 0.503523 0.863982i \(-0.332037\pi\)
−0.496468 + 0.868055i \(0.665370\pi\)
\(138\) 10.0308i 0.853879i
\(139\) −2.87386 + 4.97768i −0.243758 + 0.422201i −0.961782 0.273817i \(-0.911714\pi\)
0.718024 + 0.696019i \(0.245047\pi\)
\(140\) 0 0
\(141\) −7.58258 + 4.37780i −0.638568 + 0.368677i
\(142\) 7.79129 0.653830
\(143\) 6.87386 + 6.61438i 0.574821 + 0.553122i
\(144\) 3.58258 0.298548
\(145\) 0 0
\(146\) 0 0
\(147\) 2.00000 3.46410i 0.164957 0.285714i
\(148\) 22.1552i 1.82114i
\(149\) −8.45644 4.88233i −0.692778 0.399976i 0.111874 0.993722i \(-0.464315\pi\)
−0.804652 + 0.593747i \(0.797648\pi\)
\(150\) 0 0
\(151\) 6.20520i 0.504972i −0.967601 0.252486i \(-0.918752\pi\)
0.967601 0.252486i \(-0.0812482\pi\)
\(152\) −1.50000 + 2.59808i −0.121666 + 0.210732i
\(153\) −4.58258 7.93725i −0.370479 0.641689i
\(154\) −8.68693 + 5.01540i −0.700013 + 0.404153i
\(155\) 0 0
\(156\) 2.79129 + 9.66930i 0.223482 + 0.774164i
\(157\) 9.16515 0.731459 0.365729 0.930721i \(-0.380820\pi\)
0.365729 + 0.930721i \(0.380820\pi\)
\(158\) 11.3739 6.56670i 0.904856 0.522419i
\(159\) 0.791288 + 1.37055i 0.0627532 + 0.108692i
\(160\) 0 0
\(161\) 7.93725i 0.625543i
\(162\) 1.89564 + 1.09445i 0.148936 + 0.0859882i
\(163\) −9.24773 5.33918i −0.724338 0.418197i 0.0920093 0.995758i \(-0.470671\pi\)
−0.816347 + 0.577561i \(0.804004\pi\)
\(164\) 7.38505i 0.576676i
\(165\) 0 0
\(166\) 12.3739 + 21.4322i 0.960398 + 1.66346i
\(167\) −3.70871 + 2.14123i −0.286989 + 0.165693i −0.636583 0.771208i \(-0.719653\pi\)
0.349594 + 0.936901i \(0.386319\pi\)
\(168\) −3.00000 −0.231455
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 3.00000 1.73205i 0.229416 0.132453i
\(172\) −1.97822 3.42638i −0.150838 0.261259i
\(173\) −3.70871 + 6.42368i −0.281968 + 0.488383i −0.971869 0.235520i \(-0.924321\pi\)
0.689901 + 0.723903i \(0.257654\pi\)
\(174\) 10.0308i 0.760433i
\(175\) 0 0
\(176\) 4.10436 + 2.36965i 0.309377 + 0.178619i
\(177\) 3.36875i 0.253211i
\(178\) 4.68693 8.11800i 0.351300 0.608470i
\(179\) 0.0825757 + 0.143025i 0.00617200 + 0.0106902i 0.869095 0.494645i \(-0.164702\pi\)
−0.862923 + 0.505336i \(0.831369\pi\)
\(180\) 0 0
\(181\) −18.7477 −1.39351 −0.696754 0.717310i \(-0.745373\pi\)
−0.696754 + 0.717310i \(0.745373\pi\)
\(182\) −3.79129 13.1334i −0.281029 0.973513i
\(183\) 10.5826 0.782287
\(184\) 6.87386 3.96863i 0.506748 0.292571i
\(185\) 0 0
\(186\) 10.5826 18.3296i 0.775952 1.34399i
\(187\) 12.1244i 0.886621i
\(188\) 21.1652 + 12.2197i 1.54363 + 0.891214i
\(189\) 7.50000 + 4.33013i 0.545545 + 0.314970i
\(190\) 0 0
\(191\) 3.70871 6.42368i 0.268353 0.464801i −0.700084 0.714061i \(-0.746854\pi\)
0.968437 + 0.249260i \(0.0801873\pi\)
\(192\) 6.29129 + 10.8968i 0.454035 + 0.786411i
\(193\) 0.873864 0.504525i 0.0629021 0.0363165i −0.468219 0.883612i \(-0.655104\pi\)
0.531121 + 0.847296i \(0.321771\pi\)
\(194\) 9.79129 0.702973
\(195\) 0 0
\(196\) −11.1652 −0.797511
\(197\) −17.2913 + 9.98313i −1.23195 + 0.711269i −0.967437 0.253113i \(-0.918546\pi\)
−0.264516 + 0.964381i \(0.585212\pi\)
\(198\) 5.79129 + 10.0308i 0.411569 + 0.712858i
\(199\) −0.708712 + 1.22753i −0.0502393 + 0.0870170i −0.890051 0.455860i \(-0.849332\pi\)
0.839812 + 0.542877i \(0.182665\pi\)
\(200\) 0 0
\(201\) 12.8739 + 7.43273i 0.908052 + 0.524264i
\(202\) 17.0608 + 9.85005i 1.20039 + 0.693047i
\(203\) 7.93725i 0.557086i
\(204\) 6.39564 11.0776i 0.447785 0.775586i
\(205\) 0 0
\(206\) −28.7477 + 16.5975i −2.00295 + 1.15640i
\(207\) −9.16515 −0.637022
\(208\) −4.47822 + 4.65390i −0.310509 + 0.322690i
\(209\) 4.58258 0.316983
\(210\) 0 0
\(211\) −9.08258 15.7315i −0.625270 1.08300i −0.988489 0.151296i \(-0.951655\pi\)
0.363218 0.931704i \(-0.381678\pi\)
\(212\) 2.20871 3.82560i 0.151695 0.262743i
\(213\) 3.55945i 0.243890i
\(214\) 2.68693 + 1.55130i 0.183675 + 0.106045i
\(215\) 0 0
\(216\) 8.66025i 0.589256i
\(217\) −8.37386 + 14.5040i −0.568455 + 0.984593i
\(218\) −3.00000 5.19615i −0.203186 0.351928i
\(219\) 0 0
\(220\) 0 0
\(221\) 16.0390 + 3.96863i 1.07890 + 0.266959i
\(222\) 17.3739 1.16606
\(223\) 7.50000 4.33013i 0.502237 0.289967i −0.227400 0.973801i \(-0.573022\pi\)
0.729637 + 0.683835i \(0.239689\pi\)
\(224\) −6.39564 11.0776i −0.427327 0.740152i
\(225\) 0 0
\(226\) 36.2976i 2.41448i
\(227\) −5.29129 3.05493i −0.351195 0.202763i 0.314016 0.949418i \(-0.398325\pi\)
−0.665212 + 0.746655i \(0.731659\pi\)
\(228\) 4.18693 + 2.41733i 0.277286 + 0.160091i
\(229\) 5.48220i 0.362274i −0.983458 0.181137i \(-0.942022\pi\)
0.983458 0.181137i \(-0.0579778\pi\)
\(230\) 0 0
\(231\) 2.29129 + 3.96863i 0.150756 + 0.261116i
\(232\) −6.87386 + 3.96863i −0.451291 + 0.260553i
\(233\) −21.1652 −1.38658 −0.693288 0.720661i \(-0.743838\pi\)
−0.693288 + 0.720661i \(0.743838\pi\)
\(234\) −15.1652 + 4.37780i −0.991377 + 0.286186i
\(235\) 0 0
\(236\) 8.14337 4.70158i 0.530088 0.306047i
\(237\) −3.00000 5.19615i −0.194871 0.337526i
\(238\) −8.68693 + 15.0462i −0.563090 + 0.975301i
\(239\) 20.9753i 1.35678i −0.734702 0.678390i \(-0.762678\pi\)
0.734702 0.678390i \(-0.237322\pi\)
\(240\) 0 0
\(241\) −1.50000 0.866025i −0.0966235 0.0557856i 0.450910 0.892570i \(-0.351100\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 8.75560i 0.562832i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) −14.7695 25.5815i −0.945521 1.63769i
\(245\) 0 0
\(246\) 5.79129 0.369239
\(247\) −1.50000 + 6.06218i −0.0954427 + 0.385727i
\(248\) −16.7477 −1.06348
\(249\) 9.79129 5.65300i 0.620498 0.358244i
\(250\) 0 0
\(251\) −9.08258 + 15.7315i −0.573287 + 0.992962i 0.422938 + 0.906158i \(0.360999\pi\)
−0.996225 + 0.0868039i \(0.972335\pi\)
\(252\) 9.66930i 0.609109i
\(253\) −10.5000 6.06218i −0.660129 0.381126i
\(254\) 18.4782 + 10.6684i 1.15943 + 0.669395i
\(255\) 0 0
\(256\) 1.39564 2.41733i 0.0872277 0.151083i
\(257\) 0.0825757 + 0.143025i 0.00515093 + 0.00892167i 0.868589 0.495533i \(-0.165027\pi\)
−0.863438 + 0.504454i \(0.831694\pi\)
\(258\) −2.68693 + 1.55130i −0.167281 + 0.0965798i
\(259\) −13.7477 −0.854242
\(260\) 0 0
\(261\) 9.16515 0.567309
\(262\) −3.00000 + 1.73205i −0.185341 + 0.107006i
\(263\) 4.50000 + 7.79423i 0.277482 + 0.480613i 0.970758 0.240059i \(-0.0771668\pi\)
−0.693276 + 0.720672i \(0.743833\pi\)
\(264\) −2.29129 + 3.96863i −0.141019 + 0.244252i
\(265\) 0 0
\(266\) −5.68693 3.28335i −0.348688 0.201315i
\(267\) −3.70871 2.14123i −0.226969 0.131041i
\(268\) 41.4938i 2.53464i
\(269\) 7.50000 12.9904i 0.457283 0.792038i −0.541533 0.840679i \(-0.682156\pi\)
0.998816 + 0.0486418i \(0.0154893\pi\)
\(270\) 0 0
\(271\) 7.50000 4.33013i 0.455593 0.263036i −0.254597 0.967047i \(-0.581943\pi\)
0.710189 + 0.704011i \(0.248609\pi\)
\(272\) 8.20871 0.497726
\(273\) −6.00000 + 1.73205i −0.363137 + 0.104828i
\(274\) −0.208712 −0.0126088
\(275\) 0 0
\(276\) −6.39564 11.0776i −0.384973 0.666792i
\(277\) −8.29129 + 14.3609i −0.498175 + 0.862865i −0.999998 0.00210581i \(-0.999330\pi\)
0.501823 + 0.864971i \(0.332663\pi\)
\(278\) 12.5812i 0.754571i
\(279\) 16.7477 + 9.66930i 1.00266 + 0.578886i
\(280\) 0 0
\(281\) 17.5112i 1.04463i 0.852752 + 0.522316i \(0.174932\pi\)
−0.852752 + 0.522316i \(0.825068\pi\)
\(282\) 9.58258 16.5975i 0.570634 0.988367i
\(283\) −0.126136 0.218475i −0.00749803 0.0129870i 0.862252 0.506479i \(-0.169053\pi\)
−0.869750 + 0.493492i \(0.835720\pi\)
\(284\) −8.60436 + 4.96773i −0.510575 + 0.294780i
\(285\) 0 0
\(286\) −20.2695 5.01540i −1.19856 0.296567i
\(287\) −4.58258 −0.270501
\(288\) −12.7913 + 7.38505i −0.753734 + 0.435168i
\(289\) −2.00000 3.46410i −0.117647 0.203771i
\(290\) 0 0
\(291\) 4.47315i 0.262221i
\(292\) 0 0
\(293\) −20.2913 11.7152i −1.18543 0.684408i −0.228165 0.973622i \(-0.573273\pi\)
−0.957264 + 0.289214i \(0.906606\pi\)
\(294\) 8.75560i 0.510637i
\(295\) 0 0
\(296\) −6.87386 11.9059i −0.399535 0.692015i
\(297\) 11.4564 6.61438i 0.664770 0.383805i
\(298\) 21.3739 1.23815
\(299\) 11.4564 11.9059i 0.662543 0.688535i
\(300\) 0 0
\(301\) 2.12614 1.22753i 0.122548 0.0707534i
\(302\) 6.79129 + 11.7629i 0.390795 + 0.676876i
\(303\) 4.50000 7.79423i 0.258518 0.447767i
\(304\) 3.10260i 0.177946i
\(305\) 0 0
\(306\) 17.3739 + 10.0308i 0.993198 + 0.573423i
\(307\) 24.2487i 1.38395i −0.721923 0.691974i \(-0.756741\pi\)
0.721923 0.691974i \(-0.243259\pi\)
\(308\) 6.39564 11.0776i 0.364426 0.631204i
\(309\) 7.58258 + 13.1334i 0.431358 + 0.747133i
\(310\) 0 0
\(311\) −1.58258 −0.0897396 −0.0448698 0.998993i \(-0.514287\pi\)
−0.0448698 + 0.998993i \(0.514287\pi\)
\(312\) −4.50000 4.33013i −0.254762 0.245145i
\(313\) 30.7477 1.73796 0.868982 0.494843i \(-0.164775\pi\)
0.868982 + 0.494843i \(0.164775\pi\)
\(314\) −17.3739 + 10.0308i −0.980464 + 0.566071i
\(315\) 0 0
\(316\) −8.37386 + 14.5040i −0.471067 + 0.815911i
\(317\) 20.9753i 1.17809i −0.808100 0.589045i \(-0.799504\pi\)
0.808100 0.589045i \(-0.200496\pi\)
\(318\) −3.00000 1.73205i −0.168232 0.0971286i
\(319\) 10.5000 + 6.06218i 0.587887 + 0.339417i
\(320\) 0 0
\(321\) 0.708712 1.22753i 0.0395565 0.0685138i
\(322\) 8.68693 + 15.0462i 0.484104 + 0.838492i
\(323\) 6.87386 3.96863i 0.382472 0.220820i
\(324\) −2.79129 −0.155072
\(325\) 0 0
\(326\) 23.3739 1.29456
\(327\) −2.37386 + 1.37055i −0.131275 + 0.0757916i
\(328\) −2.29129 3.96863i −0.126515 0.219131i
\(329\) −7.58258 + 13.1334i −0.418041 + 0.724068i
\(330\) 0 0
\(331\) 9.87386 + 5.70068i 0.542717 + 0.313338i 0.746179 0.665745i \(-0.231886\pi\)
−0.203463 + 0.979083i \(0.565220\pi\)
\(332\) −27.3303 15.7792i −1.49995 0.865994i
\(333\) 15.8745i 0.869918i
\(334\) 4.68693 8.11800i 0.256457 0.444197i
\(335\) 0 0
\(336\) −2.68693 + 1.55130i −0.146584 + 0.0846304i
\(337\) −3.25227 −0.177163 −0.0885813 0.996069i \(-0.528233\pi\)
−0.0885813 + 0.996069i \(0.528233\pi\)
\(338\) 13.2695 25.1724i 0.721766 1.36920i
\(339\) −16.5826 −0.900642
\(340\) 0 0
\(341\) 12.7913 + 22.1552i 0.692687 + 1.19977i
\(342\) −3.79129 + 6.56670i −0.205009 + 0.355087i
\(343\) 19.0526i 1.02874i
\(344\) 2.12614 + 1.22753i 0.114634 + 0.0661837i
\(345\) 0 0
\(346\) 16.2360i 0.872853i
\(347\) 7.66515 13.2764i 0.411487 0.712716i −0.583566 0.812066i \(-0.698343\pi\)
0.995053 + 0.0993497i \(0.0316763\pi\)
\(348\) 6.39564 + 11.0776i 0.342843 + 0.593821i
\(349\) −15.8739 + 9.16478i −0.849708 + 0.490579i −0.860552 0.509362i \(-0.829882\pi\)
0.0108440 + 0.999941i \(0.496548\pi\)
\(350\) 0 0
\(351\) 5.00000 + 17.3205i 0.266880 + 0.924500i
\(352\) −19.5390 −1.04143
\(353\) −15.0826 + 8.70793i −0.802765 + 0.463476i −0.844437 0.535655i \(-0.820065\pi\)
0.0416724 + 0.999131i \(0.486731\pi\)
\(354\) −3.68693 6.38595i −0.195958 0.339410i
\(355\) 0 0
\(356\) 11.9536i 0.633537i
\(357\) 6.87386 + 3.96863i 0.363803 + 0.210042i
\(358\) −0.313068 0.180750i −0.0165462 0.00955294i
\(359\) 33.3857i 1.76203i 0.473088 + 0.881015i \(0.343139\pi\)
−0.473088 + 0.881015i \(0.656861\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) 35.5390 20.5185i 1.86789 1.07843i
\(363\) −4.00000 −0.209946
\(364\) 12.5608 + 12.0866i 0.658365 + 0.633512i
\(365\) 0 0
\(366\) −20.0608 + 11.5821i −1.04859 + 0.605406i
\(367\) 12.8739 + 22.2982i 0.672010 + 1.16396i 0.977333 + 0.211707i \(0.0679022\pi\)
−0.305323 + 0.952249i \(0.598764\pi\)
\(368\) 4.10436 7.10895i 0.213954 0.370580i
\(369\) 5.29150i 0.275465i
\(370\) 0 0
\(371\) 2.37386 + 1.37055i 0.123245 + 0.0711554i
\(372\) 26.9898i 1.39936i
\(373\) −6.50000 + 11.2583i −0.336557 + 0.582934i −0.983783 0.179364i \(-0.942596\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(374\) 13.2695 + 22.9835i 0.686150 + 1.18845i
\(375\) 0 0
\(376\) −15.1652 −0.782083
\(377\) −11.4564 + 11.9059i −0.590037 + 0.613184i
\(378\) −18.9564 −0.975014
\(379\) −18.2477 + 10.5353i −0.937323 + 0.541164i −0.889120 0.457674i \(-0.848683\pi\)
−0.0482027 + 0.998838i \(0.515349\pi\)
\(380\) 0 0
\(381\) 4.87386 8.44178i 0.249696 0.432485i
\(382\) 16.2360i 0.830706i
\(383\) −2.45644 1.41823i −0.125518 0.0724680i 0.435926 0.899982i \(-0.356421\pi\)
−0.561444 + 0.827514i \(0.689754\pi\)
\(384\) −11.0608 6.38595i −0.564444 0.325882i
\(385\) 0 0
\(386\) −1.10436 + 1.91280i −0.0562102 + 0.0973590i
\(387\) −1.41742 2.45505i −0.0720517 0.124797i
\(388\) −10.8131 + 6.24293i −0.548950 + 0.316937i
\(389\) 15.1652 0.768904 0.384452 0.923145i \(-0.374390\pi\)
0.384452 + 0.923145i \(0.374390\pi\)
\(390\) 0 0
\(391\) −21.0000 −1.06202
\(392\) 6.00000 3.46410i 0.303046 0.174964i
\(393\) 0.791288 + 1.37055i 0.0399152 + 0.0691351i
\(394\) 21.8521 37.8489i 1.10089 1.90680i
\(395\) 0 0
\(396\) −12.7913 7.38505i −0.642786 0.371113i
\(397\) −23.6216 13.6379i −1.18553 0.684468i −0.228245 0.973604i \(-0.573299\pi\)
−0.957288 + 0.289135i \(0.906632\pi\)
\(398\) 3.10260i 0.155519i
\(399\) −1.50000 + 2.59808i −0.0750939 + 0.130066i
\(400\) 0 0
\(401\) 10.8303 6.25288i 0.540840 0.312254i −0.204580 0.978850i \(-0.565583\pi\)
0.745419 + 0.666596i \(0.232249\pi\)
\(402\) −32.5390 −1.62290
\(403\) −33.4955 + 9.66930i −1.66853 + 0.481662i
\(404\) −25.1216 −1.24985
\(405\) 0 0
\(406\) −8.68693 15.0462i −0.431125 0.746731i
\(407\) −10.5000 + 18.1865i −0.520466 + 0.901473i
\(408\) 7.93725i 0.392953i
\(409\) −7.50000 4.33013i −0.370851 0.214111i 0.302979 0.952997i \(-0.402019\pi\)
−0.673830 + 0.738886i \(0.735352\pi\)
\(410\) 0 0
\(411\) 0.0953502i 0.00470328i
\(412\) 21.1652 36.6591i 1.04273 1.80607i
\(413\) 2.91742 + 5.05313i 0.143557 + 0.248648i
\(414\) 17.3739 10.0308i 0.853879 0.492987i
\(415\) 0 0
\(416\) 6.39564 25.8477i 0.313572 1.26729i
\(417\) −5.74773 −0.281467
\(418\) −8.68693 + 5.01540i −0.424892 + 0.245311i
\(419\) 12.0826 + 20.9276i 0.590272 + 1.02238i 0.994195 + 0.107589i \(0.0343130\pi\)
−0.403923 + 0.914793i \(0.632354\pi\)
\(420\) 0 0
\(421\) 26.2668i 1.28017i 0.768306 + 0.640083i \(0.221100\pi\)
−0.768306 + 0.640083i \(0.778900\pi\)
\(422\) 34.4347 + 19.8809i 1.67625 + 0.967785i
\(423\) 15.1652 + 8.75560i 0.737355 + 0.425712i
\(424\) 2.74110i 0.133120i
\(425\) 0 0
\(426\) 3.89564 + 6.74745i 0.188745 + 0.326915i
\(427\) 15.8739 9.16478i 0.768190 0.443515i
\(428\) −3.95644 −0.191242
\(429\) −2.29129 + 9.26013i −0.110624 + 0.447083i
\(430\) 0 0
\(431\) 25.6652 14.8178i 1.23625 0.713747i 0.267922 0.963441i \(-0.413663\pi\)
0.968325 + 0.249693i \(0.0803298\pi\)
\(432\) 4.47822 + 7.75650i 0.215458 + 0.373185i
\(433\) −8.87386 + 15.3700i −0.426451 + 0.738634i −0.996555 0.0829383i \(-0.973570\pi\)
0.570104 + 0.821573i \(0.306903\pi\)
\(434\) 36.6591i 1.75969i
\(435\) 0 0
\(436\) 6.62614 + 3.82560i 0.317334 + 0.183213i
\(437\) 7.93725i 0.379690i
\(438\) 0 0
\(439\) −20.2477 35.0701i −0.966371 1.67380i −0.705885 0.708327i \(-0.749450\pi\)
−0.260487 0.965477i \(-0.583883\pi\)
\(440\) 0 0
\(441\) −8.00000 −0.380952
\(442\) −34.7477 + 10.0308i −1.65278 + 0.477117i
\(443\) 25.9129 1.23116 0.615579 0.788075i \(-0.288922\pi\)
0.615579 + 0.788075i \(0.288922\pi\)
\(444\) −19.1869 + 11.0776i −0.910571 + 0.525719i
\(445\) 0 0
\(446\) −9.47822 + 16.4168i −0.448807 + 0.777356i
\(447\) 9.76465i 0.461852i
\(448\) 18.8739 + 10.8968i 0.891706 + 0.514827i
\(449\) −32.4564 18.7387i −1.53171 0.884336i −0.999283 0.0378622i \(-0.987945\pi\)
−0.532431 0.846473i \(-0.678721\pi\)
\(450\) 0 0
\(451\) −3.50000 + 6.06218i −0.164809 + 0.285457i
\(452\) 23.1434 + 40.0855i 1.08857 + 1.88546i
\(453\) 5.37386 3.10260i 0.252486 0.145773i
\(454\) 13.3739 0.627667
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) 1.50000 0.866025i 0.0701670 0.0405110i −0.464506 0.885570i \(-0.653768\pi\)
0.534673 + 0.845059i \(0.320435\pi\)
\(458\) 6.00000 + 10.3923i 0.280362 + 0.485601i
\(459\) 11.4564 19.8431i 0.534741 0.926198i
\(460\) 0 0
\(461\) −1.03901 0.599876i −0.0483917 0.0279390i 0.475609 0.879657i \(-0.342228\pi\)
−0.524001 + 0.851718i \(0.675561\pi\)
\(462\) −8.68693 5.01540i −0.404153 0.233338i
\(463\) 8.22330i 0.382169i −0.981574 0.191085i \(-0.938799\pi\)
0.981574 0.191085i \(-0.0612005\pi\)
\(464\) −4.10436 + 7.10895i −0.190540 + 0.330025i
\(465\) 0 0
\(466\) 40.1216 23.1642i 1.85860 1.07306i
\(467\) −12.3303 −0.570578 −0.285289 0.958441i \(-0.592090\pi\)
−0.285289 + 0.958441i \(0.592090\pi\)
\(468\) 13.9564 14.5040i 0.645137 0.670446i
\(469\) 25.7477 1.18892
\(470\) 0 0
\(471\) 4.58258 + 7.93725i 0.211154 + 0.365729i
\(472\) −2.91742 + 5.05313i −0.134285 + 0.232589i
\(473\) 3.75015i 0.172432i
\(474\) 11.3739 + 6.56670i 0.522419 + 0.301619i
\(475\) 0 0
\(476\) 22.1552i 1.01548i
\(477\) 1.58258 2.74110i 0.0724612 0.125506i
\(478\) 22.9564 + 39.7617i 1.05000 + 1.81866i
\(479\) 28.0390 16.1883i 1.28114 0.739664i 0.304079 0.952647i \(-0.401651\pi\)
0.977056 + 0.212983i \(0.0683179\pi\)
\(480\) 0 0
\(481\) −20.6216 19.8431i −0.940264 0.904769i
\(482\) 3.79129 0.172688
\(483\) 6.87386 3.96863i 0.312772 0.180579i
\(484\) 5.58258 + 9.66930i 0.253753 + 0.439514i
\(485\) 0 0
\(486\) 35.0224i 1.58865i
\(487\) 18.2477 + 10.5353i 0.826883 + 0.477401i 0.852784 0.522263i \(-0.174912\pi\)
−0.0259009 + 0.999665i \(0.508245\pi\)
\(488\) 15.8739 + 9.16478i 0.718576 + 0.414870i
\(489\) 10.6784i 0.482892i
\(490\) 0 0
\(491\) −14.2913 24.7532i −0.644957 1.11710i −0.984311 0.176439i \(-0.943542\pi\)
0.339355 0.940658i \(-0.389791\pi\)
\(492\) −6.39564 + 3.69253i −0.288338 + 0.166472i
\(493\) 21.0000 0.945792
\(494\) −3.79129 13.1334i −0.170578 0.590900i
\(495\) 0 0
\(496\) −15.0000 + 8.66025i −0.673520 + 0.388857i
\(497\) −3.08258 5.33918i −0.138272 0.239495i
\(498\) −12.3739 + 21.4322i −0.554486 + 0.960398i
\(499\) 16.5975i 0.743006i 0.928432 + 0.371503i \(0.121158\pi\)
−0.928432 + 0.371503i \(0.878842\pi\)
\(500\) 0 0
\(501\) −3.70871 2.14123i −0.165693 0.0956629i
\(502\) 39.7617i 1.77465i
\(503\) −9.08258 + 15.7315i −0.404972 + 0.701432i −0.994318 0.106448i \(-0.966052\pi\)
0.589346 + 0.807881i \(0.299385\pi\)
\(504\) 3.00000 + 5.19615i 0.133631 + 0.231455i
\(505\) 0 0
\(506\) 26.5390 1.17980
\(507\) −11.5000 6.06218i −0.510733 0.269231i
\(508\) −27.2087 −1.20719
\(509\) 25.6652 14.8178i 1.13759 0.656787i 0.191756 0.981443i \(-0.438582\pi\)
0.945832 + 0.324656i \(0.105249\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 19.4340i 0.858868i
\(513\) 7.50000 + 4.33013i 0.331133 + 0.191180i
\(514\) −0.313068 0.180750i −0.0138088 0.00797254i
\(515\) 0 0
\(516\) 1.97822 3.42638i 0.0870863 0.150838i
\(517\) 11.5826 + 20.0616i 0.509401 + 0.882309i
\(518\) 26.0608 15.0462i 1.14505 0.661092i
\(519\) −7.41742 −0.325589
\(520\) 0 0
\(521\) −27.4955 −1.20460 −0.602299 0.798271i \(-0.705748\pi\)
−0.602299 + 0.798271i \(0.705748\pi\)
\(522\) −17.3739 + 10.0308i −0.760433 + 0.439036i
\(523\) −9.08258 15.7315i −0.397153 0.687890i 0.596220 0.802821i \(-0.296669\pi\)
−0.993373 + 0.114931i \(0.963335\pi\)
\(524\) 2.20871 3.82560i 0.0964880 0.167122i
\(525\) 0 0
\(526\) −17.0608 9.85005i −0.743886 0.429483i
\(527\) 38.3739 + 22.1552i 1.67159 + 0.965094i
\(528\) 4.73930i 0.206252i
\(529\) 1.00000 1.73205i 0.0434783 0.0753066i
\(530\) 0 0
\(531\) 5.83485 3.36875i 0.253211 0.146191i
\(532\) 8.37386 0.363053
\(533\) −6.87386 6.61438i −0.297740 0.286501i
\(534\) 9.37386 0.405647
\(535\) 0 0
\(536\) 12.8739 + 22.2982i 0.556066 + 0.963135i
\(537\) −0.0825757 + 0.143025i −0.00356340 + 0.00617200i
\(538\) 32.8335i 1.41555i
\(539\) −9.16515 5.29150i −0.394771 0.227921i
\(540\) 0 0
\(541\) 10.3923i 0.446800i 0.974727 + 0.223400i \(0.0717156\pi\)
−0.974727 + 0.223400i \(0.928284\pi\)
\(542\) −9.47822 + 16.4168i −0.407124 + 0.705160i
\(543\) −9.37386 16.2360i −0.402271 0.696754i
\(544\) −29.3085 + 16.9213i −1.25659 + 0.725494i
\(545\) 0 0
\(546\) 9.47822 9.85005i 0.405630 0.421543i
\(547\) −1.25227 −0.0535433 −0.0267717 0.999642i \(-0.508523\pi\)
−0.0267717 + 0.999642i \(0.508523\pi\)
\(548\) 0.230493 0.133075i 0.00984615 0.00568468i
\(549\) −10.5826 18.3296i −0.451653 0.782287i
\(550\) 0 0
\(551\) 7.93725i 0.338138i
\(552\) 6.87386 + 3.96863i 0.292571 + 0.168916i
\(553\) −9.00000 5.19615i −0.382719 0.220963i
\(554\) 36.2976i 1.54214i
\(555\) 0 0
\(556\) 8.02178 + 13.8941i 0.340199 + 0.589242i
\(557\) 11.2913 6.51903i 0.478427 0.276220i −0.241334 0.970442i \(-0.577585\pi\)
0.719761 + 0.694222i \(0.244251\pi\)
\(558\) −42.3303 −1.79198
\(559\) 4.96099 + 1.22753i 0.209827 + 0.0519188i
\(560\) 0 0
\(561\) 10.5000 6.06218i 0.443310 0.255945i
\(562\) −19.1652 33.1950i −0.808433 1.40025i
\(563\) −4.50000 + 7.79423i −0.189652 + 0.328488i −0.945134 0.326682i \(-0.894069\pi\)
0.755482 + 0.655169i \(0.227403\pi\)
\(564\) 24.4394i 1.02908i
\(565\) 0 0
\(566\) 0.478220 + 0.276100i 0.0201011 + 0.0116054i
\(567\) 1.73205i 0.0727393i
\(568\) 3.08258 5.33918i 0.129342 0.224027i
\(569\) 9.87386 + 17.1020i 0.413934 + 0.716955i 0.995316 0.0966762i \(-0.0308211\pi\)
−0.581382 + 0.813631i \(0.697488\pi\)
\(570\) 0 0
\(571\) 29.0780 1.21688 0.608439 0.793601i \(-0.291796\pi\)
0.608439 + 0.793601i \(0.291796\pi\)
\(572\) 25.5826 7.38505i 1.06966 0.308785i
\(573\) 7.41742 0.309867
\(574\) 8.68693 5.01540i 0.362586 0.209339i
\(575\) 0 0
\(576\) 12.5826 21.7937i 0.524274 0.908069i
\(577\) 6.92820i 0.288425i 0.989547 + 0.144212i \(0.0460649\pi\)
−0.989547 + 0.144212i \(0.953935\pi\)
\(578\) 7.58258 + 4.37780i 0.315394 + 0.182093i
\(579\) 0.873864 + 0.504525i 0.0363165 + 0.0209674i
\(580\) 0 0
\(581\) 9.79129 16.9590i 0.406211 0.703578i
\(582\) 4.89564 + 8.47950i 0.202931 + 0.351487i
\(583\) 3.62614 2.09355i 0.150179 0.0867060i
\(584\) 0 0
\(585\) 0 0
\(586\) 51.2867 2.11864
\(587\) −16.2042 + 9.35548i −0.668818 + 0.386142i −0.795628 0.605785i \(-0.792859\pi\)
0.126811 + 0.991927i \(0.459526\pi\)
\(588\) −5.58258 9.66930i −0.230222 0.398755i
\(589\) −8.37386 + 14.5040i −0.345039 + 0.597625i
\(590\) 0 0
\(591\) −17.2913 9.98313i −0.711269 0.410651i
\(592\) −12.3131 7.10895i −0.506064 0.292176i
\(593\) 21.1660i 0.869184i 0.900627 + 0.434592i \(0.143107\pi\)
−0.900627 + 0.434592i \(0.856893\pi\)
\(594\) −14.4782 + 25.0770i −0.594049 + 1.02892i
\(595\) 0 0
\(596\) −23.6044 + 13.6280i −0.966872 + 0.558224i
\(597\) −1.41742 −0.0580113
\(598\) −8.68693 + 35.1078i −0.355235 + 1.43567i
\(599\) −39.4955 −1.61374 −0.806870 0.590729i \(-0.798840\pi\)
−0.806870 + 0.590729i \(0.798840\pi\)
\(600\) 0 0
\(601\) 14.4564 + 25.0393i 0.589690 + 1.02137i 0.994273 + 0.106872i \(0.0340836\pi\)
−0.404582 + 0.914502i \(0.632583\pi\)
\(602\) −2.68693 + 4.65390i −0.109511 + 0.189679i
\(603\) 29.7309i 1.21074i
\(604\) −15.0000 8.66025i −0.610341 0.352381i
\(605\) 0 0
\(606\) 19.7001i 0.800262i
\(607\) −9.87386 + 17.1020i −0.400768 + 0.694150i −0.993819 0.111015i \(-0.964590\pi\)
0.593051 + 0.805165i \(0.297923\pi\)
\(608\) −6.39564 11.0776i −0.259378 0.449255i
\(609\) −6.87386 + 3.96863i −0.278543 + 0.160817i
\(610\) 0 0
\(611\) −30.3303 + 8.75560i −1.22703 + 0.354214i
\(612\) −25.5826 −1.03411
\(613\) 18.8739 10.8968i 0.762308 0.440119i −0.0678157 0.997698i \(-0.521603\pi\)
0.830124 + 0.557579i \(0.188270\pi\)
\(614\) 26.5390 + 45.9669i 1.07103 + 1.85507i
\(615\) 0 0
\(616\) 7.93725i 0.319801i
\(617\) 2.91742 + 1.68438i 0.117451 + 0.0678104i 0.557575 0.830127i \(-0.311732\pi\)
−0.440124 + 0.897937i \(0.645065\pi\)
\(618\) −28.7477 16.5975i −1.15640 0.667650i
\(619\) 2.01810i 0.0811143i 0.999177 + 0.0405572i \(0.0129133\pi\)
−0.999177 + 0.0405572i \(0.987087\pi\)
\(620\) 0 0
\(621\) −11.4564 19.8431i −0.459731 0.796278i
\(622\) 3.00000 1.73205i 0.120289 0.0694489i
\(623\) −7.41742 −0.297173
\(624\) −6.26951 1.55130i −0.250981 0.0621017i
\(625\) 0 0
\(626\) −58.2867 + 33.6519i −2.32961 + 1.34500i
\(627\) 2.29129 + 3.96863i 0.0915052 + 0.158492i
\(628\) 12.7913 22.1552i 0.510428 0.884087i
\(629\) 36.3731i 1.45029i
\(630\) 0 0
\(631\) −18.8739 10.8968i −0.751357 0.433796i 0.0748272 0.997197i \(-0.476159\pi\)
−0.826184 + 0.563401i \(0.809493\pi\)
\(632\) 10.3923i 0.413384i
\(633\) 9.08258 15.7315i 0.361000 0.625270i
\(634\) 22.9564 + 39.7617i 0.911717 + 1.57914i
\(635\) 0 0
\(636\) 4.41742 0.175162
\(637\) 10.0000 10.3923i 0.396214 0.411758i
\(638\) −26.5390 −1.05069
\(639\) −6.16515 + 3.55945i −0.243890 + 0.140810i
\(640\) 0 0
\(641\) 0.0825757 0.143025i 0.00326154 0.00564916i −0.864390 0.502822i \(-0.832295\pi\)
0.867652 + 0.497173i \(0.165628\pi\)
\(642\) 3.10260i 0.122450i
\(643\) −5.12614 2.95958i −0.202155 0.116714i 0.395505 0.918464i \(-0.370570\pi\)
−0.597660 + 0.801749i \(0.703903\pi\)
\(644\) −19.1869 11.0776i −0.756071 0.436518i
\(645\) 0 0
\(646\) −8.68693 + 15.0462i −0.341783 + 0.591985i
\(647\) 13.5000 + 23.3827i 0.530740 + 0.919268i 0.999357 + 0.0358667i \(0.0114192\pi\)
−0.468617 + 0.883402i \(0.655247\pi\)
\(648\) 1.50000 0.866025i 0.0589256 0.0340207i
\(649\) 8.91288 0.349861
\(650\) 0 0
\(651\) −16.7477 −0.656395
\(652\) −25.8131 + 14.9032i −1.01092 + 0.583654i
\(653\) 24.4129 + 42.2843i 0.955350 + 1.65471i 0.733566 + 0.679619i \(0.237855\pi\)
0.221784 + 0.975096i \(0.428812\pi\)
\(654\) 3.00000 5.19615i 0.117309 0.203186i
\(655\) 0 0
\(656\) −4.10436 2.36965i −0.160248 0.0925193i
\(657\) 0 0
\(658\) 33.1950i 1.29408i
\(659\) 12.2477 21.2137i 0.477104 0.826368i −0.522552 0.852607i \(-0.675020\pi\)
0.999656 + 0.0262396i \(0.00835327\pi\)
\(660\) 0 0
\(661\) 2.12614 1.22753i 0.0826971 0.0477452i −0.458081 0.888910i \(-0.651463\pi\)
0.540778 + 0.841165i \(0.318130\pi\)
\(662\) −24.9564 −0.969960
\(663\) 4.58258 + 15.8745i 0.177972 + 0.616515i
\(664\) 19.5826 0.759951
\(665\) 0 0
\(666\) −17.3739 30.0924i −0.673224 1.16606i
\(667\) 10.5000 18.1865i 0.406562 0.704185i
\(668\) 11.9536i 0.462497i
\(669\) 7.50000 + 4.33013i 0.289967 + 0.167412i
\(670\) 0 0
\(671\) 27.9989i 1.08088i
\(672\) 6.39564 11.0776i 0.246717 0.427327i
\(673\) −2.91742 5.05313i −0.112458 0.194784i 0.804302 0.594220i \(-0.202539\pi\)
−0.916761 + 0.399436i \(0.869206\pi\)
\(674\) 6.16515 3.55945i 0.237473 0.137105i
\(675\) 0 0
\(676\) 1.39564 + 36.2599i 0.0536786 + 1.39461i
\(677\) 21.1652 0.813443 0.406721 0.913552i \(-0.366672\pi\)
0.406721 + 0.913552i \(0.366672\pi\)
\(678\) 31.4347 18.1488i 1.20724 0.697001i
\(679\) −3.87386 6.70973i −0.148665 0.257496i
\(680\) 0 0
\(681\) 6.10985i 0.234130i
\(682\) −48.4955 27.9989i −1.85699 1.07213i
\(683\) 10.3348 + 5.96683i 0.395452 + 0.228314i 0.684520 0.728994i \(-0.260012\pi\)
−0.289068 + 0.957309i \(0.593345\pi\)
\(684\) 9.66930i 0.369715i
\(685\) 0 0
\(686\) 20.8521 + 36.1169i 0.796136 + 1.37895i
\(687\) 4.74773 2.74110i 0.181137 0.104580i
\(688\) 2.53901 0.0967990
\(689\) 1.58258 + 5.48220i 0.0602913 + 0.208855i
\(690\) 0 0
\(691\) 30.8739 17.8250i 1.17450 0.678096i 0.219762 0.975554i \(-0.429472\pi\)
0.954735 + 0.297457i \(0.0961386\pi\)
\(692\) 10.3521 + 17.9303i 0.393527 + 0.681609i
\(693\) 4.58258 7.93725i 0.174078 0.301511i
\(694\) 33.5565i 1.27379i
\(695\) 0 0
\(696\) −6.87386 3.96863i −0.260553 0.150430i
\(697\) 12.1244i 0.459243i
\(698\) 20.0608 34.7463i 0.759312 1.31517i
\(699\) −10.5826 18.3296i −0.400270 0.693288i
\(700\) 0 0
\(701\) −2.83485 −0.107071 −0.0535354 0.998566i \(-0.517049\pi\)
−0.0535354 + 0.998566i \(0.517049\pi\)
\(702\) −28.4347 27.3613i −1.07320 1.03268i
\(703\) −13.7477 −0.518505
\(704\) 28.8303 16.6452i 1.08658 0.627339i
\(705\) 0 0
\(706\) 19.0608 33.0143i 0.717362 1.24251i
\(707\) 15.5885i 0.586264i
\(708\) 8.14337 + 4.70158i 0.306047 + 0.176696i
\(709\) −31.5000 18.1865i −1.18301 0.683010i −0.226299 0.974058i \(-0.572663\pi\)
−0.956708 + 0.291048i \(0.905996\pi\)
\(710\) 0 0
\(711\) −6.00000 + 10.3923i −0.225018 + 0.389742i
\(712\) −3.70871 6.42368i −0.138990 0.240738i
\(713\) 38.3739 22.1552i 1.43711 0.829717i
\(714\) −17.3739 −0.650201
\(715\) 0 0
\(716\) 0.460985 0.0172278
\(717\) 18.1652 10.4877i 0.678390 0.391669i
\(718\) −36.5390 63.2874i −1.36362 2.36187i
\(719\) −15.2477 + 26.4098i −0.568644 + 0.984921i 0.428056 + 0.903752i \(0.359199\pi\)
−0.996700 + 0.0811686i \(0.974135\pi\)
\(720\) 0 0
\(721\) 22.7477 + 13.1334i 0.847170 + 0.489114i
\(722\) 30.3303 + 17.5112i 1.12878 + 0.651700i
\(723\) 1.73205i 0.0644157i
\(724\) −26.1652 + 45.3194i −0.972420 + 1.68428i
\(725\) 0 0
\(726\) 7.58258 4.37780i 0.281416 0.162475i
\(727\) 42.7477 1.58543 0.792713 0.609595i \(-0.208668\pi\)
0.792713 + 0.609595i \(0.208668\pi\)
\(728\) −10.5000 2.59808i −0.389156 0.0962911i
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −3.24773 5.62523i −0.120122 0.208057i
\(732\) 14.7695 25.5815i 0.545897 0.945521i
\(733\) 8.94630i 0.330439i −0.986257 0.165220i \(-0.947167\pi\)
0.986257 0.165220i \(-0.0528333\pi\)
\(734\) −48.8085 28.1796i −1.80156 1.04013i
\(735\) 0 0
\(736\) 33.8426i 1.24745i
\(737\) 19.6652 34.0610i 0.724375 1.25465i
\(738\) −5.79129 10.0308i −0.213180 0.369239i
\(739\) 42.2477 24.3917i 1.55411 0.897265i 0.556307 0.830977i \(-0.312218\pi\)
0.997801 0.0662878i \(-0.0211156\pi\)
\(740\) 0 0
\(741\) −6.00000 + 1.73205i −0.220416 + 0.0636285i
\(742\) −6.00000 −0.220267
\(743\) −37.0390 + 21.3845i −1.35883 + 0.784521i −0.989466 0.144764i \(-0.953758\pi\)
−0.369364 + 0.929285i \(0.620424\pi\)
\(744\) −8.37386 14.5040i −0.307001 0.531741i
\(745\) 0 0
\(746\) 28.4557i 1.04184i
\(747\) −19.5826 11.3060i −0.716489 0.413665i
\(748\) −29.3085 16.9213i −1.07163 0.618703i
\(749\) 2.45505i 0.0897056i
\(750\) 0 0
\(751\) 7.87386 + 13.6379i 0.287321 + 0.497655i 0.973169 0.230090i \(-0.0739019\pi\)
−0.685848 + 0.727745i \(0.740569\pi\)
\(752\) −13.5826 + 7.84190i −0.495306 + 0.285965i
\(753\) −18.1652 −0.661975
\(754\) 8.68693 35.1078i 0.316359 1.27855i
\(755\) 0 0
\(756\) 20.9347 12.0866i 0.761386 0.439587i
\(757\) −8.87386 15.3700i −0.322526 0.558632i 0.658482 0.752596i \(-0.271199\pi\)
−0.981009 + 0.193965i \(0.937865\pi\)
\(758\) 23.0608 39.9425i 0.837606 1.45078i
\(759\) 12.1244i 0.440086i
\(760\) 0 0
\(761\) −35.2913 20.3754i −1.27931 0.738609i −0.302587 0.953122i \(-0.597850\pi\)
−0.976721 + 0.214513i \(0.931184\pi\)
\(762\) 21.3368i 0.772951i
\(763\) −2.37386 + 4.11165i −0.0859396 + 0.148852i
\(764\) −10.3521 17.9303i −0.374525 0.648697i
\(765\) 0 0
\(766\) 6.20871 0.224330
\(767\) −2.91742 + 11.7906i −0.105342 + 0.425735i
\(768\) 2.79129 0.100722
\(769\) 13.5000 7.79423i 0.486822 0.281067i −0.236433 0.971648i \(-0.575978\pi\)
0.723255 + 0.690581i \(0.242645\pi\)
\(770\) 0 0
\(771\) −0.0825757 + 0.143025i −0.00297389 + 0.00515093i
\(772\) 2.81655i 0.101370i
\(773\) −30.0826 17.3682i −1.08200 0.624690i −0.150561 0.988601i \(-0.548108\pi\)
−0.931434 + 0.363911i \(0.881441\pi\)
\(774\) 5.37386 + 3.10260i 0.193160 + 0.111521i
\(775\) 0 0
\(776\) 3.87386 6.70973i 0.139064 0.240865i
\(777\) −6.87386 11.9059i −0.246598 0.427121i
\(778\) −28.7477 + 16.5975i −1.03066 + 0.595049i
\(779\) −4.58258 −0.164188
\(780\) 0 0
\(781\) −9.41742 −0.336982
\(782\) 39.8085 22.9835i 1.42355 0.821887i
\(783\) 11.4564 + 19.8431i 0.409420 + 0.709136i
\(784\) 3.58258 6.20520i 0.127949 0.221614i
\(785\) 0 0
\(786\) −3.00000 1.73205i −0.107006 0.0617802i
\(787\) −27.8739 16.0930i −0.993596 0.573653i −0.0872487 0.996187i \(-0.527807\pi\)
−0.906347 + 0.422534i \(0.861141\pi\)
\(788\) 55.7316i 1.98536i
\(789\) −4.50000 + 7.79423i −0.160204 + 0.277482i
\(790\) 0 0
\(791\) −24.8739 + 14.3609i −0.884413 + 0.510616i
\(792\) 9.16515 0.325669
\(793\) 37.0390 + 9.16478i 1.31529 + 0.325451i
\(794\) 59.7042 2.11882
\(795\) 0 0
\(796\) 1.97822 + 3.42638i 0.0701161 + 0.121445i
\(797\) −10.0390 + 17.3881i −0.355600 + 0.615918i −0.987220 0.159360i \(-0.949057\pi\)
0.631620 + 0.775278i \(0.282390\pi\)
\(798\) 6.56670i 0.232459i
\(799\) 34.7477 + 20.0616i 1.22929 + 0.709729i
\(800\) 0 0
\(801\) 8.56490i 0.302626i
\(802\) −13.6869 + 23.7065i −0.483302 + 0.837104i
\(803\) 0 0
\(804\) 35.9347 20.7469i 1.26732 0.731686i
\(805\) 0 0
\(806\) 52.9129 54.9887i 1.86378 1.93689i
\(807\) 15.0000 0.528025
\(808\) 13.5000 7.79423i 0.474928 0.274200i
\(809\) −18.4129 31.8920i −0.647362 1.12126i −0.983750 0.179541i \(-0.942539\pi\)
0.336388 0.941723i \(-0.390795\pi\)
\(810\) 0 0
\(811\) 18.7665i 0.658981i 0.944159 + 0.329491i \(0.106877\pi\)
−0.944159 + 0.329491i \(0.893123\pi\)
\(812\) 19.1869 + 11.0776i 0.673329 + 0.388747i
\(813\) 7.50000 + 4.33013i 0.263036 + 0.151864i
\(814\) 45.9669i 1.61114i
\(815\) 0 0
\(816\) 4.10436 + 7.10895i 0.143681 + 0.248863i
\(817\) 2.12614 1.22753i 0.0743841 0.0429457i
\(818\) 18.9564 0.662796
\(819\) 9.00000 + 8.66025i 0.314485 + 0.302614i
\(820\) 0 0
\(821\) 20.2913 11.7152i 0.708171 0.408863i −0.102213 0.994763i \(-0.532592\pi\)
0.810383 + 0.585900i \(0.199259\pi\)
\(822\) −0.104356 0.180750i −0.00363984 0.00630438i
\(823\) −20.2913 + 35.1455i −0.707310 + 1.22510i 0.258542 + 0.966000i \(0.416758\pi\)
−0.965851 + 0.259096i \(0.916575\pi\)
\(824\) 26.2668i 0.915048i
\(825\) 0 0
\(826\) −11.0608 6.38595i −0.384854 0.222196i
\(827\) 31.5583i 1.09739i 0.836023 + 0.548695i \(0.184875\pi\)
−0.836023 + 0.548695i \(0.815125\pi\)
\(828\) −12.7913 + 22.1552i −0.444528 + 0.769945i
\(829\) −1.66515 2.88413i −0.0578331 0.100170i 0.835659 0.549248i \(-0.185086\pi\)
−0.893492 + 0.449078i \(0.851752\pi\)
\(830\) 0 0
\(831\) −16.5826 −0.575243
\(832\) 12.5826 + 43.5873i 0.436222 + 1.51112i
\(833\) −18.3303 −0.635107
\(834\) 10.8956 6.29060i 0.377285 0.217826i
\(835\) 0 0
\(836\) 6.39564 11.0776i 0.221198 0.383126i
\(837\) 48.3465i 1.67110i
\(838\) −45.8085 26.4476i −1.58243 0.913616i
\(839\) −1.16970 0.675325i −0.0403824 0.0233148i 0.479673 0.877447i \(-0.340755\pi\)
−0.520055 + 0.854133i \(0.674089\pi\)
\(840\) 0 0
\(841\) 4.00000 6.92820i 0.137931 0.238904i
\(842\) −28.7477 49.7925i −0.990712 1.71596i
\(843\) −15.1652 + 8.75560i −0.522316 + 0.301559i
\(844\) −50.7042 −1.74531
\(845\) 0 0
\(846\) −38.3303 −1.31782
\(847\) −6.00000 + 3.46410i −0.206162 + 0.119028i
\(848\) 1.41742 + 2.45505i 0.0486746 + 0.0843068i
\(849\) 0.126136 0.218475i 0.00432899 0.00749803i
\(850\) 0 0
\(851\) 31.5000 + 18.1865i 1.07981 + 0.623426i
\(852\) −8.60436 4.96773i −0.294780 0.170192i
\(853\) 53.2566i 1.82347i −0.410777 0.911736i \(-0.634742\pi\)
0.410777 0.911736i \(-0.365258\pi\)
\(854\) −20.0608 + 34.7463i −0.686466 + 1.18899i
\(855\) 0 0
\(856\) 2.12614 1.22753i 0.0726698 0.0419560i
\(857\) −22.7477 −0.777048 −0.388524 0.921439i \(-0.627015\pi\)
−0.388524 + 0.921439i \(0.627015\pi\)
\(858\) −5.79129 20.0616i −0.197711 0.684892i
\(859\) 38.2432 1.30484 0.652420 0.757857i \(-0.273754\pi\)
0.652420 + 0.757857i \(0.273754\pi\)
\(860\) 0 0
\(861\) −2.29129 3.96863i −0.0780869 0.135250i
\(862\) −32.4347 + 56.1785i −1.10473 + 1.91345i
\(863\) 34.8317i 1.18569i 0.805318 + 0.592843i \(0.201994\pi\)
−0.805318 + 0.592843i \(0.798006\pi\)
\(864\) −31.9782 18.4626i −1.08792 0.628112i
\(865\) 0 0
\(866\) 38.8480i 1.32011i
\(867\) 2.00000 3.46410i 0.0679236 0.117647i
\(868\) 23.3739 + 40.4847i 0.793361 + 1.37414i
\(869\) −13.7477 + 7.93725i −0.466360 + 0.269253i
\(870\) 0 0
\(871\) 38.6216 + 37.1636i 1.30864 + 1.25924i
\(872\) −4.74773 −0.160778
\(873\) −7.74773 + 4.47315i −0.262221 + 0.151393i
\(874\) 8.68693 + 15.0462i 0.293840 + 0.508946i
\(875\) 0 0
\(876\) 0 0
\(877\) −6.87386 3.96863i −0.232114 0.134011i 0.379433 0.925219i \(-0.376119\pi\)
−0.611547 + 0.791208i \(0.709452\pi\)
\(878\) 76.7650 + 44.3203i 2.59069 + 1.49574i
\(879\) 23.4304i 0.790286i
\(880\) 0 0
\(881\) 9.24773 + 16.0175i 0.311564 + 0.539644i 0.978701 0.205290i \(-0.0658139\pi\)
−0.667137 + 0.744935i \(0.732481\pi\)
\(882\) 15.1652 8.75560i 0.510637 0.294817i
\(883\) 46.2432 1.55621 0.778103 0.628136i \(-0.216182\pi\)
0.778103 + 0.628136i \(0.216182\pi\)
\(884\) 31.9782 33.2327i 1.07554 1.11774i
\(885\) 0 0
\(886\) −49.1216 + 28.3604i −1.65027 + 0.952785i
\(887\) −0.247727 0.429076i −0.00831786 0.0144070i 0.861837 0.507186i \(-0.169314\pi\)
−0.870154 + 0.492779i \(0.835981\pi\)
\(888\) 6.87386 11.9059i 0.230672 0.399535i
\(889\) 16.8836i 0.566256i
\(890\) 0 0
\(891\) −2.29129 1.32288i −0.0767610 0.0443180i
\(892\) 24.1733i 0.809381i
\(893\) −7.58258 + 13.1334i −0.253741 + 0.439493i
\(894\) 10.6869 + 18.5103i 0.357424 + 0.619077i
\(895\) 0 0
\(896\) −22.1216 −0.739030
\(897\) 16.0390 + 3.96863i 0.535527 + 0.132509i
\(898\) 82.0345 2.73753
\(899\) −38.3739 + 22.1552i −1.27984 + 0.738916i
\(900\) 0 0
\(901\) 3.62614 6.28065i 0.120804 0.209239i
\(902\) 15.3223i 0.510177i
\(903\) 2.12614 + 1.22753i 0.0707534 + 0.0408495i
\(904\) −24.8739 14.3609i −0.827292 0.477637i
\(905\) 0 0
\(906\) −6.79129 + 11.7629i −0.225625 + 0.390795i
\(907\) −16.8739 29.2264i −0.560287 0.970446i −0.997471 0.0710740i \(-0.977357\pi\)
0.437184 0.899372i \(-0.355976\pi\)
\(908\) −14.7695 + 8.52718i −0.490143 + 0.282984i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 37.9129 1.25611 0.628055 0.778169i \(-0.283851\pi\)
0.628055 + 0.778169i \(0.283851\pi\)
\(912\) −2.68693 + 1.55130i −0.0889732 + 0.0513687i
\(913\) −14.9564 25.9053i −0.494986 0.857341i
\(914\) −1.89564 + 3.28335i −0.0627023 + 0.108604i
\(915\) 0 0
\(916\) −13.2523 7.65120i −0.437867 0.252803i
\(917\) 2.37386 + 1.37055i 0.0783919 + 0.0452596i
\(918\) 50.1540i 1.65533i
\(919\) −17.9174 + 31.0339i −0.591041 + 1.02371i 0.403051 + 0.915177i \(0.367950\pi\)
−0.994093 + 0.108536i \(0.965384\pi\)
\(920\) 0 0
\(921\) 21.0000 12.1244i 0.691974 0.399511i
\(922\) 2.62614 0.0864872
\(923\) 3.08258 12.4581i 0.101464 0.410063i
\(924\) 12.7913 0.420802
\(925\) 0 0
\(926\) 9.00000 + 15.5885i 0.295758 + 0.512268i
\(927\) 15.1652 26.2668i 0.498089 0.862715i
\(928\) 33.8426i 1.11094i
\(929\) 13.8303 + 7.98493i 0.453758 + 0.261977i 0.709416 0.704790i \(-0.248959\pi\)
−0.255658 + 0.966767i \(0.582292\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) −29.5390 + 51.1631i −0.967583 + 1.67590i
\(933\) −0.791288 1.37055i −0.0259056 0.0448698i
\(934\) 23.3739 13.4949i 0.764816 0.441567i
\(935\) 0 0
\(936\) −3.00000 + 12.1244i −0.0980581 + 0.396297i
\(937\) 23.4955 0.767563 0.383782 0.923424i \(-0.374622\pi\)
0.383782 + 0.923424i \(0.374622\pi\)
\(938\) −48.8085 + 28.1796i −1.59365 + 0.920097i
\(939\) 15.3739 + 26.6283i 0.501707 + 0.868982i
\(940\) 0 0
\(941\) 26.4575i 0.862490i −0.902235 0.431245i \(-0.858074\pi\)
0.902235 0.431245i \(-0.141926\pi\)
\(942\) −17.3739 10.0308i −0.566071 0.326821i
\(943\) 10.5000 + 6.06218i 0.341927 + 0.197412i
\(944\) 6.03440i 0.196403i
\(945\) 0 0
\(946\) 4.10436 + 7.10895i 0.133444 + 0.231132i
\(947\) −33.4129 + 19.2909i −1.08577 + 0.626871i −0.932448 0.361305i \(-0.882331\pi\)
−0.153325 + 0.988176i \(0.548998\pi\)
\(948\) −16.7477 −0.543941
\(949\) 0 0
\(950\) 0 0
\(951\) 18.1652 10.4877i 0.589045 0.340086i
\(952\) 6.87386 + 11.9059i 0.222783 + 0.385872i
\(953\) 28.0390 48.5650i 0.908273 1.57317i 0.0918100 0.995777i \(-0.470735\pi\)
0.816463 0.577398i \(-0.195932\pi\)
\(954\) 6.92820i 0.224309i
\(955\) 0 0
\(956\) −50.7042 29.2741i −1.63989 0.946791i
\(957\) 12.1244i 0.391925i
\(958\) −35.4347 + 61.3746i −1.14484 + 1.98292i
\(959\) 0.0825757 + 0.143025i 0.00266651 + 0.00461853i
\(960\) 0 0
\(961\) −62.4955 −2.01598
\(962\) 60.8085 + 15.0462i 1.96055 + 0.485109i
\(963\) −2.83485 −0.0913517
\(964\) −4.18693 + 2.41733i −0.134852 + 0.0778568i
\(965\) 0 0
\(966\) −8.68693 + 15.0462i −0.279497 + 0.484104i
\(967\) 21.5076i 0.691638i 0.938301 + 0.345819i \(0.112399\pi\)
−0.938301 + 0.345819i \(0.887601\pi\)
\(968\) −6.00000 3.46410i −0.192847 0.111340i
\(969\) 6.87386 + 3.96863i 0.220820 + 0.127491i
\(970\) 0 0
\(971\) −18.2477 + 31.6060i −0.585597 + 1.01428i 0.409203 + 0.912443i \(0.365807\pi\)
−0.994801 + 0.101841i \(0.967527\pi\)
\(972\) −22.3303 38.6772i −0.716245 1.24057i
\(973\) −8.62159 + 4.97768i −0.276396 + 0.159577i
\(974\) −46.1216 −1.47783
\(975\) 0 0
\(976\) 18.9564 0.606781
\(977\) 33.5780 19.3863i 1.07426 0.620222i 0.144915 0.989444i \(-0.453709\pi\)
0.929341 + 0.369222i \(0.120376\pi\)
\(978\) 11.6869 + 20.2424i 0.373707 + 0.647279i
\(979\) −5.66515 + 9.81233i −0.181059 + 0.313603i
\(980\) 0 0
\(981\) 4.74773 + 2.74110i 0.151583 + 0.0875166i
\(982\) 54.1824 + 31.2822i 1.72903 + 0.998256i
\(983\) 3.12250i 0.0995924i −0.998759 0.0497962i \(-0.984143\pi\)
0.998759 0.0497962i \(-0.0158572\pi\)
\(984\) 2.29129 3.96863i 0.0730436 0.126515i
\(985\) 0 0
\(986\) −39.8085 + 22.9835i −1.26776 + 0.731943i
\(987\) −15.1652 −0.482712
\(988\) 12.5608 + 12.0866i 0.399612 + 0.384527i
\(989\) −6.49545 −0.206543
\(990\) 0 0
\(991\) 6.50000 + 11.2583i 0.206479 + 0.357633i 0.950603 0.310409i \(-0.100466\pi\)
−0.744124 + 0.668042i \(0.767133\pi\)
\(992\) 35.7042 61.8414i 1.13361 1.96347i
\(993\) 11.4014i 0.361811i
\(994\) 11.6869 + 6.74745i 0.370687 + 0.214016i
\(995\) 0 0
\(996\) 31.5583i 0.999963i
\(997\) −9.08258 + 15.7315i −0.287648 + 0.498221i −0.973248 0.229758i \(-0.926207\pi\)
0.685600 + 0.727979i \(0.259540\pi\)
\(998\) −18.1652 31.4630i −0.575008 0.995943i
\(999\) −34.3693 + 19.8431i −1.08740 + 0.627809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.n.b.101.1 4
5.2 odd 4 65.2.l.a.49.1 yes 8
5.3 odd 4 65.2.l.a.49.4 yes 8
5.4 even 2 325.2.n.c.101.2 4
13.2 odd 12 4225.2.a.bj.1.1 4
13.4 even 6 inner 325.2.n.b.251.1 4
13.11 odd 12 4225.2.a.bj.1.4 4
15.2 even 4 585.2.bf.a.244.4 8
15.8 even 4 585.2.bf.a.244.1 8
20.3 even 4 1040.2.df.b.49.3 8
20.7 even 4 1040.2.df.b.49.2 8
65.2 even 12 845.2.b.f.339.2 8
65.3 odd 12 845.2.d.c.844.1 8
65.4 even 6 325.2.n.c.251.2 4
65.7 even 12 845.2.n.c.529.1 8
65.8 even 4 845.2.n.c.484.1 8
65.12 odd 4 845.2.l.c.699.4 8
65.17 odd 12 65.2.l.a.4.4 yes 8
65.18 even 4 845.2.n.d.484.3 8
65.22 odd 12 845.2.l.c.654.1 8
65.23 odd 12 845.2.d.c.844.7 8
65.24 odd 12 4225.2.a.bk.1.1 4
65.28 even 12 845.2.b.f.339.7 8
65.32 even 12 845.2.n.d.529.3 8
65.33 even 12 845.2.n.d.529.4 8
65.37 even 12 845.2.b.f.339.8 8
65.38 odd 4 845.2.l.c.699.1 8
65.42 odd 12 845.2.d.c.844.8 8
65.43 odd 12 65.2.l.a.4.1 8
65.47 even 4 845.2.n.d.484.4 8
65.48 odd 12 845.2.l.c.654.4 8
65.54 odd 12 4225.2.a.bk.1.4 4
65.57 even 4 845.2.n.c.484.2 8
65.58 even 12 845.2.n.c.529.2 8
65.62 odd 12 845.2.d.c.844.2 8
65.63 even 12 845.2.b.f.339.1 8
195.17 even 12 585.2.bf.a.199.1 8
195.173 even 12 585.2.bf.a.199.4 8
260.43 even 12 1040.2.df.b.849.2 8
260.147 even 12 1040.2.df.b.849.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.1 8 65.43 odd 12
65.2.l.a.4.4 yes 8 65.17 odd 12
65.2.l.a.49.1 yes 8 5.2 odd 4
65.2.l.a.49.4 yes 8 5.3 odd 4
325.2.n.b.101.1 4 1.1 even 1 trivial
325.2.n.b.251.1 4 13.4 even 6 inner
325.2.n.c.101.2 4 5.4 even 2
325.2.n.c.251.2 4 65.4 even 6
585.2.bf.a.199.1 8 195.17 even 12
585.2.bf.a.199.4 8 195.173 even 12
585.2.bf.a.244.1 8 15.8 even 4
585.2.bf.a.244.4 8 15.2 even 4
845.2.b.f.339.1 8 65.63 even 12
845.2.b.f.339.2 8 65.2 even 12
845.2.b.f.339.7 8 65.28 even 12
845.2.b.f.339.8 8 65.37 even 12
845.2.d.c.844.1 8 65.3 odd 12
845.2.d.c.844.2 8 65.62 odd 12
845.2.d.c.844.7 8 65.23 odd 12
845.2.d.c.844.8 8 65.42 odd 12
845.2.l.c.654.1 8 65.22 odd 12
845.2.l.c.654.4 8 65.48 odd 12
845.2.l.c.699.1 8 65.38 odd 4
845.2.l.c.699.4 8 65.12 odd 4
845.2.n.c.484.1 8 65.8 even 4
845.2.n.c.484.2 8 65.57 even 4
845.2.n.c.529.1 8 65.7 even 12
845.2.n.c.529.2 8 65.58 even 12
845.2.n.d.484.3 8 65.18 even 4
845.2.n.d.484.4 8 65.47 even 4
845.2.n.d.529.3 8 65.32 even 12
845.2.n.d.529.4 8 65.33 even 12
1040.2.df.b.49.2 8 20.7 even 4
1040.2.df.b.49.3 8 20.3 even 4
1040.2.df.b.849.2 8 260.43 even 12
1040.2.df.b.849.3 8 260.147 even 12
4225.2.a.bj.1.1 4 13.2 odd 12
4225.2.a.bj.1.4 4 13.11 odd 12
4225.2.a.bk.1.1 4 65.24 odd 12
4225.2.a.bk.1.4 4 65.54 odd 12