Properties

Label 585.2.bf.a.199.1
Level $585$
Weight $2$
Character 585.199
Analytic conductor $4.671$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(199,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.1
Root \(-1.09445 + 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 585.199
Dual form 585.2.bf.a.244.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09445 + 1.89564i) q^{2} +(-1.39564 - 2.41733i) q^{4} +(0.456850 - 2.18890i) q^{5} +(0.866025 + 1.50000i) q^{7} +1.73205 q^{8} +(3.64938 + 3.26167i) q^{10} +(-2.29129 - 1.32288i) q^{11} +(-3.46410 - 1.00000i) q^{13} -3.79129 q^{14} +(0.895644 - 1.55130i) q^{16} +(3.96863 - 2.29129i) q^{17} +(-1.50000 + 0.866025i) q^{19} +(-5.92889 + 1.95057i) q^{20} +(5.01540 - 2.89564i) q^{22} +(-3.96863 - 2.29129i) q^{23} +(-4.58258 - 2.00000i) q^{25} +(5.68693 - 5.47225i) q^{26} +(2.41733 - 4.18693i) q^{28} +(2.29129 - 3.96863i) q^{29} -9.66930i q^{31} +(3.69253 + 6.39564i) q^{32} +10.0308i q^{34} +(3.67900 - 1.21037i) q^{35} +(3.96863 - 6.87386i) q^{37} -3.79129i q^{38} +(0.791288 - 3.79129i) q^{40} +(2.29129 + 1.32288i) q^{41} +(1.22753 - 0.708712i) q^{43} +7.38505i q^{44} +(8.68693 - 5.01540i) q^{46} -8.75560 q^{47} +(2.00000 - 3.46410i) q^{49} +(8.80669 - 6.49803i) q^{50} +(2.41733 + 9.76951i) q^{52} +1.58258i q^{53} +(-3.94242 + 4.41105i) q^{55} +(1.50000 + 2.59808i) q^{56} +(5.01540 + 8.68693i) q^{58} +(2.91742 - 1.68438i) q^{59} +(5.29129 + 9.16478i) q^{61} +(18.3296 + 10.5826i) q^{62} -12.5826 q^{64} +(-3.77148 + 7.12573i) q^{65} +(-7.43273 + 12.8739i) q^{67} +(-11.0776 - 6.39564i) q^{68} +(-1.73205 + 8.29875i) q^{70} +(3.08258 - 1.77973i) q^{71} +(8.68693 + 15.0462i) q^{74} +(4.18693 + 2.41733i) q^{76} -4.58258i q^{77} +6.00000 q^{79} +(-2.98647 - 2.66919i) q^{80} +(-5.01540 + 2.89564i) q^{82} -11.3060 q^{83} +(-3.20233 - 9.73371i) q^{85} +3.10260i q^{86} +(-3.96863 - 2.29129i) q^{88} +(-3.70871 - 2.14123i) q^{89} +(-1.50000 - 6.06218i) q^{91} +12.7913i q^{92} +(9.58258 - 16.5975i) q^{94} +(1.21037 + 3.67900i) q^{95} +(-2.23658 - 3.87386i) q^{97} +(4.37780 + 7.58258i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} - 4 q^{10} - 12 q^{14} - 2 q^{16} - 12 q^{19} - 24 q^{20} + 18 q^{26} - 6 q^{35} - 12 q^{40} + 42 q^{46} + 16 q^{49} + 12 q^{50} - 14 q^{55} + 12 q^{56} + 60 q^{59} + 24 q^{61} - 64 q^{64}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09445 + 1.89564i −0.773893 + 1.34042i 0.161521 + 0.986869i \(0.448360\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 0 0
\(4\) −1.39564 2.41733i −0.697822 1.20866i
\(5\) 0.456850 2.18890i 0.204310 0.978906i
\(6\) 0 0
\(7\) 0.866025 + 1.50000i 0.327327 + 0.566947i 0.981981 0.188982i \(-0.0605189\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 3.64938 + 3.26167i 1.15403 + 1.03143i
\(11\) −2.29129 1.32288i −0.690849 0.398862i 0.113081 0.993586i \(-0.463928\pi\)
−0.803930 + 0.594724i \(0.797261\pi\)
\(12\) 0 0
\(13\) −3.46410 1.00000i −0.960769 0.277350i
\(14\) −3.79129 −1.01326
\(15\) 0 0
\(16\) 0.895644 1.55130i 0.223911 0.387825i
\(17\) 3.96863 2.29129i 0.962533 0.555719i 0.0655816 0.997847i \(-0.479110\pi\)
0.896952 + 0.442128i \(0.145776\pi\)
\(18\) 0 0
\(19\) −1.50000 + 0.866025i −0.344124 + 0.198680i −0.662094 0.749421i \(-0.730332\pi\)
0.317970 + 0.948101i \(0.396999\pi\)
\(20\) −5.92889 + 1.95057i −1.32574 + 0.436161i
\(21\) 0 0
\(22\) 5.01540 2.89564i 1.06929 0.617353i
\(23\) −3.96863 2.29129i −0.827516 0.477767i 0.0254855 0.999675i \(-0.491887\pi\)
−0.853001 + 0.521909i \(0.825220\pi\)
\(24\) 0 0
\(25\) −4.58258 2.00000i −0.916515 0.400000i
\(26\) 5.68693 5.47225i 1.11530 1.07320i
\(27\) 0 0
\(28\) 2.41733 4.18693i 0.456832 0.791256i
\(29\) 2.29129 3.96863i 0.425481 0.736956i −0.570984 0.820961i \(-0.693438\pi\)
0.996465 + 0.0840058i \(0.0267714\pi\)
\(30\) 0 0
\(31\) 9.66930i 1.73666i −0.495988 0.868329i \(-0.665194\pi\)
0.495988 0.868329i \(-0.334806\pi\)
\(32\) 3.69253 + 6.39564i 0.652753 + 1.13060i
\(33\) 0 0
\(34\) 10.0308i 1.72027i
\(35\) 3.67900 1.21037i 0.621864 0.204590i
\(36\) 0 0
\(37\) 3.96863 6.87386i 0.652438 1.13006i −0.330091 0.943949i \(-0.607080\pi\)
0.982529 0.186107i \(-0.0595872\pi\)
\(38\) 3.79129i 0.615028i
\(39\) 0 0
\(40\) 0.791288 3.79129i 0.125114 0.599455i
\(41\) 2.29129 + 1.32288i 0.357839 + 0.206598i 0.668132 0.744042i \(-0.267094\pi\)
−0.310293 + 0.950641i \(0.600427\pi\)
\(42\) 0 0
\(43\) 1.22753 0.708712i 0.187196 0.108078i −0.403473 0.914991i \(-0.632197\pi\)
0.590669 + 0.806914i \(0.298864\pi\)
\(44\) 7.38505i 1.11334i
\(45\) 0 0
\(46\) 8.68693 5.01540i 1.28082 0.739481i
\(47\) −8.75560 −1.27714 −0.638568 0.769565i \(-0.720473\pi\)
−0.638568 + 0.769565i \(0.720473\pi\)
\(48\) 0 0
\(49\) 2.00000 3.46410i 0.285714 0.494872i
\(50\) 8.80669 6.49803i 1.24545 0.918960i
\(51\) 0 0
\(52\) 2.41733 + 9.76951i 0.335223 + 1.35479i
\(53\) 1.58258i 0.217383i 0.994076 + 0.108692i \(0.0346661\pi\)
−0.994076 + 0.108692i \(0.965334\pi\)
\(54\) 0 0
\(55\) −3.94242 + 4.41105i −0.531596 + 0.594785i
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) 0 0
\(58\) 5.01540 + 8.68693i 0.658555 + 1.14065i
\(59\) 2.91742 1.68438i 0.379816 0.219287i −0.297922 0.954590i \(-0.596294\pi\)
0.677738 + 0.735303i \(0.262960\pi\)
\(60\) 0 0
\(61\) 5.29129 + 9.16478i 0.677480 + 1.17343i 0.975737 + 0.218944i \(0.0702613\pi\)
−0.298257 + 0.954485i \(0.596405\pi\)
\(62\) 18.3296 + 10.5826i 2.32786 + 1.34399i
\(63\) 0 0
\(64\) −12.5826 −1.57282
\(65\) −3.77148 + 7.12573i −0.467794 + 0.883837i
\(66\) 0 0
\(67\) −7.43273 + 12.8739i −0.908052 + 1.57279i −0.0912856 + 0.995825i \(0.529098\pi\)
−0.816767 + 0.576968i \(0.804236\pi\)
\(68\) −11.0776 6.39564i −1.34335 0.775586i
\(69\) 0 0
\(70\) −1.73205 + 8.29875i −0.207020 + 0.991891i
\(71\) 3.08258 1.77973i 0.365834 0.211215i −0.305803 0.952095i \(-0.598925\pi\)
0.671637 + 0.740880i \(0.265591\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 8.68693 + 15.0462i 1.00984 + 1.74909i
\(75\) 0 0
\(76\) 4.18693 + 2.41733i 0.480274 + 0.277286i
\(77\) 4.58258i 0.522233i
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) −2.98647 2.66919i −0.333897 0.298424i
\(81\) 0 0
\(82\) −5.01540 + 2.89564i −0.553859 + 0.319770i
\(83\) −11.3060 −1.24100 −0.620498 0.784208i \(-0.713069\pi\)
−0.620498 + 0.784208i \(0.713069\pi\)
\(84\) 0 0
\(85\) −3.20233 9.73371i −0.347342 1.05577i
\(86\) 3.10260i 0.334562i
\(87\) 0 0
\(88\) −3.96863 2.29129i −0.423057 0.244252i
\(89\) −3.70871 2.14123i −0.393123 0.226969i 0.290390 0.956909i \(-0.406215\pi\)
−0.683512 + 0.729939i \(0.739548\pi\)
\(90\) 0 0
\(91\) −1.50000 6.06218i −0.157243 0.635489i
\(92\) 12.7913i 1.33358i
\(93\) 0 0
\(94\) 9.58258 16.5975i 0.988367 1.71190i
\(95\) 1.21037 + 3.67900i 0.124181 + 0.377457i
\(96\) 0 0
\(97\) −2.23658 3.87386i −0.227090 0.393331i 0.729854 0.683603i \(-0.239588\pi\)
−0.956944 + 0.290271i \(0.906254\pi\)
\(98\) 4.37780 + 7.58258i 0.442225 + 0.765956i
\(99\) 0 0
\(100\) 1.56099 + 13.8689i 0.156099 + 1.38689i
\(101\) 4.50000 7.79423i 0.447767 0.775555i −0.550474 0.834853i \(-0.685553\pi\)
0.998240 + 0.0592978i \(0.0188862\pi\)
\(102\) 0 0
\(103\) 15.1652i 1.49427i −0.664674 0.747133i \(-0.731430\pi\)
0.664674 0.747133i \(-0.268570\pi\)
\(104\) −6.00000 1.73205i −0.588348 0.169842i
\(105\) 0 0
\(106\) −3.00000 1.73205i −0.291386 0.168232i
\(107\) 1.22753 + 0.708712i 0.118669 + 0.0685138i 0.558160 0.829733i \(-0.311508\pi\)
−0.439490 + 0.898247i \(0.644841\pi\)
\(108\) 0 0
\(109\) 2.74110i 0.262550i 0.991346 + 0.131275i \(0.0419071\pi\)
−0.991346 + 0.131275i \(0.958093\pi\)
\(110\) −4.04699 12.3011i −0.385865 1.17286i
\(111\) 0 0
\(112\) 3.10260 0.293168
\(113\) 14.3609 8.29129i 1.35096 0.779979i 0.362578 0.931953i \(-0.381897\pi\)
0.988384 + 0.151975i \(0.0485632\pi\)
\(114\) 0 0
\(115\) −6.82847 + 7.64016i −0.636758 + 0.712448i
\(116\) −12.7913 −1.18764
\(117\) 0 0
\(118\) 7.37386i 0.678819i
\(119\) 6.87386 + 3.96863i 0.630126 + 0.363803i
\(120\) 0 0
\(121\) −2.00000 3.46410i −0.181818 0.314918i
\(122\) −23.1642 −2.09719
\(123\) 0 0
\(124\) −23.3739 + 13.4949i −2.09903 + 1.21188i
\(125\) −6.47135 + 9.11710i −0.578815 + 0.815459i
\(126\) 0 0
\(127\) −8.44178 4.87386i −0.749087 0.432485i 0.0762771 0.997087i \(-0.475697\pi\)
−0.825364 + 0.564601i \(0.809030\pi\)
\(128\) 6.38595 11.0608i 0.564444 0.977645i
\(129\) 0 0
\(130\) −9.38014 14.9481i −0.822693 1.31104i
\(131\) −1.58258 −0.138270 −0.0691351 0.997607i \(-0.522024\pi\)
−0.0691351 + 0.997607i \(0.522024\pi\)
\(132\) 0 0
\(133\) −2.59808 1.50000i −0.225282 0.130066i
\(134\) −16.2695 28.1796i −1.40547 2.43435i
\(135\) 0 0
\(136\) 6.87386 3.96863i 0.589429 0.340307i
\(137\) −0.0476751 0.0825757i −0.00407316 0.00705492i 0.863982 0.503523i \(-0.167963\pi\)
−0.868055 + 0.496468i \(0.834630\pi\)
\(138\) 0 0
\(139\) 2.87386 + 4.97768i 0.243758 + 0.422201i 0.961782 0.273817i \(-0.0882864\pi\)
−0.718024 + 0.696019i \(0.754953\pi\)
\(140\) −8.06042 7.20409i −0.681230 0.608857i
\(141\) 0 0
\(142\) 7.79129i 0.653830i
\(143\) 6.61438 + 6.87386i 0.553122 + 0.574821i
\(144\) 0 0
\(145\) −7.64016 6.82847i −0.634480 0.567074i
\(146\) 0 0
\(147\) 0 0
\(148\) −22.1552 −1.82114
\(149\) −8.45644 + 4.88233i −0.692778 + 0.399976i −0.804652 0.593747i \(-0.797648\pi\)
0.111874 + 0.993722i \(0.464315\pi\)
\(150\) 0 0
\(151\) 6.20520i 0.504972i 0.967601 + 0.252486i \(0.0812482\pi\)
−0.967601 + 0.252486i \(0.918752\pi\)
\(152\) −2.59808 + 1.50000i −0.210732 + 0.121666i
\(153\) 0 0
\(154\) 8.68693 + 5.01540i 0.700013 + 0.404153i
\(155\) −21.1652 4.41742i −1.70003 0.354816i
\(156\) 0 0
\(157\) 9.16515i 0.731459i 0.930721 + 0.365729i \(0.119180\pi\)
−0.930721 + 0.365729i \(0.880820\pi\)
\(158\) −6.56670 + 11.3739i −0.522419 + 0.904856i
\(159\) 0 0
\(160\) 15.6864 5.16072i 1.24012 0.407991i
\(161\) 7.93725i 0.625543i
\(162\) 0 0
\(163\) 5.33918 + 9.24773i 0.418197 + 0.724338i 0.995758 0.0920093i \(-0.0293290\pi\)
−0.577561 + 0.816347i \(0.695996\pi\)
\(164\) 7.38505i 0.576676i
\(165\) 0 0
\(166\) 12.3739 21.4322i 0.960398 1.66346i
\(167\) −2.14123 + 3.70871i −0.165693 + 0.286989i −0.936901 0.349594i \(-0.886319\pi\)
0.771208 + 0.636583i \(0.219653\pi\)
\(168\) 0 0
\(169\) 11.0000 + 6.92820i 0.846154 + 0.532939i
\(170\) 21.9564 + 4.58258i 1.68398 + 0.351468i
\(171\) 0 0
\(172\) −3.42638 1.97822i −0.261259 0.150838i
\(173\) 6.42368 3.70871i 0.488383 0.281968i −0.235520 0.971869i \(-0.575679\pi\)
0.723903 + 0.689901i \(0.242346\pi\)
\(174\) 0 0
\(175\) −0.968627 8.60591i −0.0732213 0.650546i
\(176\) −4.10436 + 2.36965i −0.309377 + 0.178619i
\(177\) 0 0
\(178\) 8.11800 4.68693i 0.608470 0.351300i
\(179\) 0.0825757 0.143025i 0.00617200 0.0106902i −0.862923 0.505336i \(-0.831369\pi\)
0.869095 + 0.494645i \(0.164702\pi\)
\(180\) 0 0
\(181\) −18.7477 −1.39351 −0.696754 0.717310i \(-0.745373\pi\)
−0.696754 + 0.717310i \(0.745373\pi\)
\(182\) 13.1334 + 3.79129i 0.973513 + 0.281029i
\(183\) 0 0
\(184\) −6.87386 3.96863i −0.506748 0.292571i
\(185\) −13.2331 11.8273i −0.972920 0.869557i
\(186\) 0 0
\(187\) −12.1244 −0.886621
\(188\) 12.2197 + 21.1652i 0.891214 + 1.54363i
\(189\) 0 0
\(190\) −8.29875 1.73205i −0.602055 0.125656i
\(191\) −3.70871 6.42368i −0.268353 0.464801i 0.700084 0.714061i \(-0.253146\pi\)
−0.968437 + 0.249260i \(0.919813\pi\)
\(192\) 0 0
\(193\) 0.504525 0.873864i 0.0363165 0.0629021i −0.847296 0.531121i \(-0.821771\pi\)
0.883612 + 0.468219i \(0.155104\pi\)
\(194\) 9.79129 0.702973
\(195\) 0 0
\(196\) −11.1652 −0.797511
\(197\) −9.98313 + 17.2913i −0.711269 + 1.23195i 0.253113 + 0.967437i \(0.418546\pi\)
−0.964381 + 0.264516i \(0.914788\pi\)
\(198\) 0 0
\(199\) 0.708712 + 1.22753i 0.0502393 + 0.0870170i 0.890051 0.455860i \(-0.150668\pi\)
−0.839812 + 0.542877i \(0.817335\pi\)
\(200\) −7.93725 3.46410i −0.561249 0.244949i
\(201\) 0 0
\(202\) 9.85005 + 17.0608i 0.693047 + 1.20039i
\(203\) 7.93725 0.557086
\(204\) 0 0
\(205\) 3.94242 4.41105i 0.275351 0.308081i
\(206\) 28.7477 + 16.5975i 2.00295 + 1.15640i
\(207\) 0 0
\(208\) −4.65390 + 4.47822i −0.322690 + 0.310509i
\(209\) 4.58258 0.316983
\(210\) 0 0
\(211\) −9.08258 + 15.7315i −0.625270 + 1.08300i 0.363218 + 0.931704i \(0.381678\pi\)
−0.988489 + 0.151296i \(0.951655\pi\)
\(212\) 3.82560 2.20871i 0.262743 0.151695i
\(213\) 0 0
\(214\) −2.68693 + 1.55130i −0.183675 + 0.106045i
\(215\) −0.990505 3.01071i −0.0675519 0.205329i
\(216\) 0 0
\(217\) 14.5040 8.37386i 0.984593 0.568455i
\(218\) −5.19615 3.00000i −0.351928 0.203186i
\(219\) 0 0
\(220\) 16.1652 + 3.37386i 1.08985 + 0.227466i
\(221\) −16.0390 + 3.96863i −1.07890 + 0.266959i
\(222\) 0 0
\(223\) 4.33013 7.50000i 0.289967 0.502237i −0.683835 0.729637i \(-0.739689\pi\)
0.973801 + 0.227400i \(0.0730224\pi\)
\(224\) −6.39564 + 11.0776i −0.427327 + 0.740152i
\(225\) 0 0
\(226\) 36.2976i 2.41448i
\(227\) 3.05493 + 5.29129i 0.202763 + 0.351195i 0.949418 0.314016i \(-0.101675\pi\)
−0.746655 + 0.665212i \(0.768341\pi\)
\(228\) 0 0
\(229\) 5.48220i 0.362274i −0.983458 0.181137i \(-0.942022\pi\)
0.983458 0.181137i \(-0.0579778\pi\)
\(230\) −7.00959 21.3061i −0.462199 1.40488i
\(231\) 0 0
\(232\) 3.96863 6.87386i 0.260553 0.451291i
\(233\) 21.1652i 1.38658i −0.720661 0.693288i \(-0.756162\pi\)
0.720661 0.693288i \(-0.243838\pi\)
\(234\) 0 0
\(235\) −4.00000 + 19.1652i −0.260931 + 1.25020i
\(236\) −8.14337 4.70158i −0.530088 0.306047i
\(237\) 0 0
\(238\) −15.0462 + 8.68693i −0.975301 + 0.563090i
\(239\) 20.9753i 1.35678i 0.734702 + 0.678390i \(0.237322\pi\)
−0.734702 + 0.678390i \(0.762678\pi\)
\(240\) 0 0
\(241\) −1.50000 + 0.866025i −0.0966235 + 0.0557856i −0.547533 0.836784i \(-0.684433\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 8.75560 0.562832
\(243\) 0 0
\(244\) 14.7695 25.5815i 0.945521 1.63769i
\(245\) −6.66888 5.96038i −0.426059 0.380795i
\(246\) 0 0
\(247\) 6.06218 1.50000i 0.385727 0.0954427i
\(248\) 16.7477i 1.06348i
\(249\) 0 0
\(250\) −10.2002 22.2456i −0.645118 1.40694i
\(251\) 9.08258 + 15.7315i 0.573287 + 0.992962i 0.996225 + 0.0868039i \(0.0276654\pi\)
−0.422938 + 0.906158i \(0.639001\pi\)
\(252\) 0 0
\(253\) 6.06218 + 10.5000i 0.381126 + 0.660129i
\(254\) 18.4782 10.6684i 1.15943 0.669395i
\(255\) 0 0
\(256\) 1.39564 + 2.41733i 0.0872277 + 0.151083i
\(257\) −0.143025 0.0825757i −0.00892167 0.00515093i 0.495533 0.868589i \(-0.334973\pi\)
−0.504454 + 0.863438i \(0.668306\pi\)
\(258\) 0 0
\(259\) 13.7477 0.854242
\(260\) 22.4888 0.828086i 1.39470 0.0513557i
\(261\) 0 0
\(262\) 1.73205 3.00000i 0.107006 0.185341i
\(263\) 7.79423 + 4.50000i 0.480613 + 0.277482i 0.720672 0.693276i \(-0.243833\pi\)
−0.240059 + 0.970758i \(0.577167\pi\)
\(264\) 0 0
\(265\) 3.46410 + 0.723000i 0.212798 + 0.0444135i
\(266\) 5.68693 3.28335i 0.348688 0.201315i
\(267\) 0 0
\(268\) 41.4938 2.53464
\(269\) 7.50000 + 12.9904i 0.457283 + 0.792038i 0.998816 0.0486418i \(-0.0154893\pi\)
−0.541533 + 0.840679i \(0.682156\pi\)
\(270\) 0 0
\(271\) 7.50000 + 4.33013i 0.455593 + 0.263036i 0.710189 0.704011i \(-0.248609\pi\)
−0.254597 + 0.967047i \(0.581943\pi\)
\(272\) 8.20871i 0.497726i
\(273\) 0 0
\(274\) 0.208712 0.0126088
\(275\) 7.85425 + 10.6448i 0.473629 + 0.641903i
\(276\) 0 0
\(277\) 14.3609 8.29129i 0.862865 0.498175i −0.00210581 0.999998i \(-0.500670\pi\)
0.864971 + 0.501823i \(0.167337\pi\)
\(278\) −12.5812 −0.754571
\(279\) 0 0
\(280\) 6.37221 2.09642i 0.380812 0.125285i
\(281\) 17.5112i 1.04463i 0.852752 + 0.522316i \(0.174932\pi\)
−0.852752 + 0.522316i \(0.825068\pi\)
\(282\) 0 0
\(283\) 0.218475 + 0.126136i 0.0129870 + 0.00749803i 0.506479 0.862252i \(-0.330947\pi\)
−0.493492 + 0.869750i \(0.664280\pi\)
\(284\) −8.60436 4.96773i −0.510575 0.294780i
\(285\) 0 0
\(286\) −20.2695 + 5.01540i −1.19856 + 0.296567i
\(287\) 4.58258i 0.270501i
\(288\) 0 0
\(289\) 2.00000 3.46410i 0.117647 0.203771i
\(290\) 21.3061 7.00959i 1.25114 0.411617i
\(291\) 0 0
\(292\) 0 0
\(293\) −11.7152 20.2913i −0.684408 1.18543i −0.973622 0.228165i \(-0.926727\pi\)
0.289214 0.957264i \(-0.406606\pi\)
\(294\) 0 0
\(295\) −2.35411 7.15546i −0.137061 0.416607i
\(296\) 6.87386 11.9059i 0.399535 0.692015i
\(297\) 0 0
\(298\) 21.3739i 1.23815i
\(299\) 11.4564 + 11.9059i 0.662543 + 0.688535i
\(300\) 0 0
\(301\) 2.12614 + 1.22753i 0.122548 + 0.0707534i
\(302\) −11.7629 6.79129i −0.676876 0.390795i
\(303\) 0 0
\(304\) 3.10260i 0.177946i
\(305\) 22.4781 7.39517i 1.28709 0.423446i
\(306\) 0 0
\(307\) −24.2487 −1.38395 −0.691974 0.721923i \(-0.743259\pi\)
−0.691974 + 0.721923i \(0.743259\pi\)
\(308\) −11.0776 + 6.39564i −0.631204 + 0.364426i
\(309\) 0 0
\(310\) 31.5381 35.2869i 1.79124 2.00416i
\(311\) 1.58258 0.0897396 0.0448698 0.998993i \(-0.485713\pi\)
0.0448698 + 0.998993i \(0.485713\pi\)
\(312\) 0 0
\(313\) 30.7477i 1.73796i −0.494843 0.868982i \(-0.664775\pi\)
0.494843 0.868982i \(-0.335225\pi\)
\(314\) −17.3739 10.0308i −0.980464 0.566071i
\(315\) 0 0
\(316\) −8.37386 14.5040i −0.471067 0.815911i
\(317\) 20.9753 1.17809 0.589045 0.808100i \(-0.299504\pi\)
0.589045 + 0.808100i \(0.299504\pi\)
\(318\) 0 0
\(319\) −10.5000 + 6.06218i −0.587887 + 0.339417i
\(320\) −5.74835 + 27.5420i −0.321343 + 1.53965i
\(321\) 0 0
\(322\) 15.0462 + 8.68693i 0.838492 + 0.484104i
\(323\) −3.96863 + 6.87386i −0.220820 + 0.382472i
\(324\) 0 0
\(325\) 13.8745 + 11.5108i 0.769619 + 0.638503i
\(326\) −23.3739 −1.29456
\(327\) 0 0
\(328\) 3.96863 + 2.29129i 0.219131 + 0.126515i
\(329\) −7.58258 13.1334i −0.418041 0.724068i
\(330\) 0 0
\(331\) 9.87386 5.70068i 0.542717 0.313338i −0.203463 0.979083i \(-0.565220\pi\)
0.746179 + 0.665745i \(0.231886\pi\)
\(332\) 15.7792 + 27.3303i 0.865994 + 1.49995i
\(333\) 0 0
\(334\) −4.68693 8.11800i −0.256457 0.444197i
\(335\) 24.7840 + 22.1509i 1.35409 + 1.21023i
\(336\) 0 0
\(337\) 3.25227i 0.177163i −0.996069 0.0885813i \(-0.971767\pi\)
0.996069 0.0885813i \(-0.0282333\pi\)
\(338\) −25.1724 + 13.2695i −1.36920 + 0.721766i
\(339\) 0 0
\(340\) −19.0602 + 21.3259i −1.03369 + 1.15656i
\(341\) −12.7913 + 22.1552i −0.692687 + 1.19977i
\(342\) 0 0
\(343\) 19.0526 1.02874
\(344\) 2.12614 1.22753i 0.114634 0.0661837i
\(345\) 0 0
\(346\) 16.2360i 0.872853i
\(347\) 13.2764 7.66515i 0.712716 0.411487i −0.0993497 0.995053i \(-0.531676\pi\)
0.812066 + 0.583566i \(0.198343\pi\)
\(348\) 0 0
\(349\) 15.8739 + 9.16478i 0.849708 + 0.490579i 0.860552 0.509362i \(-0.170118\pi\)
−0.0108440 + 0.999941i \(0.503452\pi\)
\(350\) 17.3739 + 7.58258i 0.928672 + 0.405306i
\(351\) 0 0
\(352\) 19.5390i 1.04143i
\(353\) 8.70793 15.0826i 0.463476 0.802765i −0.535655 0.844437i \(-0.679935\pi\)
0.999131 + 0.0416724i \(0.0132686\pi\)
\(354\) 0 0
\(355\) −2.48737 7.56052i −0.132016 0.401271i
\(356\) 11.9536i 0.633537i
\(357\) 0 0
\(358\) 0.180750 + 0.313068i 0.00955294 + 0.0165462i
\(359\) 33.3857i 1.76203i −0.473088 0.881015i \(-0.656861\pi\)
0.473088 0.881015i \(-0.343139\pi\)
\(360\) 0 0
\(361\) −8.00000 + 13.8564i −0.421053 + 0.729285i
\(362\) 20.5185 35.5390i 1.07843 1.86789i
\(363\) 0 0
\(364\) −12.5608 + 12.0866i −0.658365 + 0.633512i
\(365\) 0 0
\(366\) 0 0
\(367\) 22.2982 + 12.8739i 1.16396 + 0.672010i 0.952249 0.305323i \(-0.0987644\pi\)
0.211707 + 0.977333i \(0.432098\pi\)
\(368\) −7.10895 + 4.10436i −0.370580 + 0.213954i
\(369\) 0 0
\(370\) 36.9033 12.1410i 1.91851 0.631179i
\(371\) −2.37386 + 1.37055i −0.123245 + 0.0711554i
\(372\) 0 0
\(373\) −11.2583 + 6.50000i −0.582934 + 0.336557i −0.762299 0.647225i \(-0.775929\pi\)
0.179364 + 0.983783i \(0.442596\pi\)
\(374\) 13.2695 22.9835i 0.686150 1.18845i
\(375\) 0 0
\(376\) −15.1652 −0.782083
\(377\) −11.9059 + 11.4564i −0.613184 + 0.590037i
\(378\) 0 0
\(379\) 18.2477 + 10.5353i 0.937323 + 0.541164i 0.889120 0.457674i \(-0.151317\pi\)
0.0482027 + 0.998838i \(0.484651\pi\)
\(380\) 7.20409 8.06042i 0.369562 0.413491i
\(381\) 0 0
\(382\) 16.2360 0.830706
\(383\) −1.41823 2.45644i −0.0724680 0.125518i 0.827514 0.561444i \(-0.189754\pi\)
−0.899982 + 0.435926i \(0.856421\pi\)
\(384\) 0 0
\(385\) −10.0308 2.09355i −0.511217 0.106697i
\(386\) 1.10436 + 1.91280i 0.0562102 + 0.0973590i
\(387\) 0 0
\(388\) −6.24293 + 10.8131i −0.316937 + 0.548950i
\(389\) 15.1652 0.768904 0.384452 0.923145i \(-0.374390\pi\)
0.384452 + 0.923145i \(0.374390\pi\)
\(390\) 0 0
\(391\) −21.0000 −1.06202
\(392\) 3.46410 6.00000i 0.174964 0.303046i
\(393\) 0 0
\(394\) −21.8521 37.8489i −1.10089 1.90680i
\(395\) 2.74110 13.1334i 0.137920 0.660813i
\(396\) 0 0
\(397\) −13.6379 23.6216i −0.684468 1.18553i −0.973604 0.228245i \(-0.926701\pi\)
0.289135 0.957288i \(-0.406632\pi\)
\(398\) −3.10260 −0.155519
\(399\) 0 0
\(400\) −7.20696 + 5.31767i −0.360348 + 0.265883i
\(401\) −10.8303 6.25288i −0.540840 0.312254i 0.204580 0.978850i \(-0.434417\pi\)
−0.745419 + 0.666596i \(0.767751\pi\)
\(402\) 0 0
\(403\) −9.66930 + 33.4955i −0.481662 + 1.66853i
\(404\) −25.1216 −1.24985
\(405\) 0 0
\(406\) −8.68693 + 15.0462i −0.431125 + 0.746731i
\(407\) −18.1865 + 10.5000i −0.901473 + 0.520466i
\(408\) 0 0
\(409\) 7.50000 4.33013i 0.370851 0.214111i −0.302979 0.952997i \(-0.597981\pi\)
0.673830 + 0.738886i \(0.264648\pi\)
\(410\) 4.04699 + 12.3011i 0.199867 + 0.607508i
\(411\) 0 0
\(412\) −36.6591 + 21.1652i −1.80607 + 1.04273i
\(413\) 5.05313 + 2.91742i 0.248648 + 0.143557i
\(414\) 0 0
\(415\) −5.16515 + 24.7477i −0.253547 + 1.21482i
\(416\) −6.39564 25.8477i −0.313572 1.26729i
\(417\) 0 0
\(418\) −5.01540 + 8.68693i −0.245311 + 0.424892i
\(419\) 12.0826 20.9276i 0.590272 1.02238i −0.403923 0.914793i \(-0.632354\pi\)
0.994195 0.107589i \(-0.0343130\pi\)
\(420\) 0 0
\(421\) 26.2668i 1.28017i −0.768306 0.640083i \(-0.778900\pi\)
0.768306 0.640083i \(-0.221100\pi\)
\(422\) −19.8809 34.4347i −0.967785 1.67625i
\(423\) 0 0
\(424\) 2.74110i 0.133120i
\(425\) −22.7691 + 2.56275i −1.10446 + 0.124311i
\(426\) 0 0
\(427\) −9.16478 + 15.8739i −0.443515 + 0.768190i
\(428\) 3.95644i 0.191242i
\(429\) 0 0
\(430\) 6.79129 + 1.41742i 0.327505 + 0.0683543i
\(431\) −25.6652 14.8178i −1.23625 0.713747i −0.267922 0.963441i \(-0.586337\pi\)
−0.968325 + 0.249693i \(0.919670\pi\)
\(432\) 0 0
\(433\) −15.3700 + 8.87386i −0.738634 + 0.426451i −0.821573 0.570104i \(-0.806903\pi\)
0.0829383 + 0.996555i \(0.473570\pi\)
\(434\) 36.6591i 1.75969i
\(435\) 0 0
\(436\) 6.62614 3.82560i 0.317334 0.183213i
\(437\) 7.93725 0.379690
\(438\) 0 0
\(439\) 20.2477 35.0701i 0.966371 1.67380i 0.260487 0.965477i \(-0.416117\pi\)
0.705885 0.708327i \(-0.250550\pi\)
\(440\) −6.82847 + 7.64016i −0.325535 + 0.364230i
\(441\) 0 0
\(442\) 10.0308 34.7477i 0.477117 1.65278i
\(443\) 25.9129i 1.23116i 0.788075 + 0.615579i \(0.211078\pi\)
−0.788075 + 0.615579i \(0.788922\pi\)
\(444\) 0 0
\(445\) −6.38126 + 7.13978i −0.302501 + 0.338458i
\(446\) 9.47822 + 16.4168i 0.448807 + 0.777356i
\(447\) 0 0
\(448\) −10.8968 18.8739i −0.514827 0.891706i
\(449\) −32.4564 + 18.7387i −1.53171 + 0.884336i −0.532431 + 0.846473i \(0.678721\pi\)
−0.999283 + 0.0378622i \(0.987945\pi\)
\(450\) 0 0
\(451\) −3.50000 6.06218i −0.164809 0.285457i
\(452\) −40.0855 23.1434i −1.88546 1.08857i
\(453\) 0 0
\(454\) −13.3739 −0.627667
\(455\) −13.9548 + 0.513844i −0.654210 + 0.0240894i
\(456\) 0 0
\(457\) −0.866025 + 1.50000i −0.0405110 + 0.0701670i −0.885570 0.464506i \(-0.846232\pi\)
0.845059 + 0.534673i \(0.179565\pi\)
\(458\) 10.3923 + 6.00000i 0.485601 + 0.280362i
\(459\) 0 0
\(460\) 27.9989 + 5.84370i 1.30545 + 0.272464i
\(461\) 1.03901 0.599876i 0.0483917 0.0279390i −0.475609 0.879657i \(-0.657772\pi\)
0.524001 + 0.851718i \(0.324439\pi\)
\(462\) 0 0
\(463\) 8.22330 0.382169 0.191085 0.981574i \(-0.438799\pi\)
0.191085 + 0.981574i \(0.438799\pi\)
\(464\) −4.10436 7.10895i −0.190540 0.330025i
\(465\) 0 0
\(466\) 40.1216 + 23.1642i 1.85860 + 1.07306i
\(467\) 12.3303i 0.570578i 0.958441 + 0.285289i \(0.0920896\pi\)
−0.958441 + 0.285289i \(0.907910\pi\)
\(468\) 0 0
\(469\) −25.7477 −1.18892
\(470\) −31.9525 28.5579i −1.47386 1.31728i
\(471\) 0 0
\(472\) 5.05313 2.91742i 0.232589 0.134285i
\(473\) −3.75015 −0.172432
\(474\) 0 0
\(475\) 8.60591 0.968627i 0.394866 0.0444437i
\(476\) 22.1552i 1.01548i
\(477\) 0 0
\(478\) −39.7617 22.9564i −1.81866 1.05000i
\(479\) 28.0390 + 16.1883i 1.28114 + 0.739664i 0.977056 0.212983i \(-0.0683179\pi\)
0.304079 + 0.952647i \(0.401651\pi\)
\(480\) 0 0
\(481\) −20.6216 + 19.8431i −0.940264 + 0.904769i
\(482\) 3.79129i 0.172688i
\(483\) 0 0
\(484\) −5.58258 + 9.66930i −0.253753 + 0.439514i
\(485\) −9.50128 + 3.12587i −0.431431 + 0.141938i
\(486\) 0 0
\(487\) 10.5353 + 18.2477i 0.477401 + 0.826883i 0.999665 0.0259009i \(-0.00824545\pi\)
−0.522263 + 0.852784i \(0.674912\pi\)
\(488\) 9.16478 + 15.8739i 0.414870 + 0.718576i
\(489\) 0 0
\(490\) 18.5975 6.11847i 0.840150 0.276404i
\(491\) 14.2913 24.7532i 0.644957 1.11710i −0.339355 0.940658i \(-0.610209\pi\)
0.984311 0.176439i \(-0.0564580\pi\)
\(492\) 0 0
\(493\) 21.0000i 0.945792i
\(494\) −3.79129 + 13.1334i −0.170578 + 0.590900i
\(495\) 0 0
\(496\) −15.0000 8.66025i −0.673520 0.388857i
\(497\) 5.33918 + 3.08258i 0.239495 + 0.138272i
\(498\) 0 0
\(499\) 16.5975i 0.743006i 0.928432 + 0.371503i \(0.121158\pi\)
−0.928432 + 0.371503i \(0.878842\pi\)
\(500\) 31.0707 + 2.91914i 1.38952 + 0.130548i
\(501\) 0 0
\(502\) −39.7617 −1.77465
\(503\) 15.7315 9.08258i 0.701432 0.404972i −0.106448 0.994318i \(-0.533948\pi\)
0.807881 + 0.589346i \(0.200615\pi\)
\(504\) 0 0
\(505\) −15.0050 13.4109i −0.667712 0.596775i
\(506\) −26.5390 −1.17980
\(507\) 0 0
\(508\) 27.2087i 1.20719i
\(509\) 25.6652 + 14.8178i 1.13759 + 0.656787i 0.945832 0.324656i \(-0.105249\pi\)
0.191756 + 0.981443i \(0.438582\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 19.4340 0.858868
\(513\) 0 0
\(514\) 0.313068 0.180750i 0.0138088 0.00797254i
\(515\) −33.1950 6.92820i −1.46275 0.305293i
\(516\) 0 0
\(517\) 20.0616 + 11.5826i 0.882309 + 0.509401i
\(518\) −15.0462 + 26.0608i −0.661092 + 1.14505i
\(519\) 0 0
\(520\) −6.53239 + 12.3421i −0.286464 + 0.541238i
\(521\) 27.4955 1.20460 0.602299 0.798271i \(-0.294252\pi\)
0.602299 + 0.798271i \(0.294252\pi\)
\(522\) 0 0
\(523\) 15.7315 + 9.08258i 0.687890 + 0.397153i 0.802821 0.596220i \(-0.203331\pi\)
−0.114931 + 0.993373i \(0.536665\pi\)
\(524\) 2.20871 + 3.82560i 0.0964880 + 0.167122i
\(525\) 0 0
\(526\) −17.0608 + 9.85005i −0.743886 + 0.429483i
\(527\) −22.1552 38.3739i −0.965094 1.67159i
\(528\) 0 0
\(529\) −1.00000 1.73205i −0.0434783 0.0753066i
\(530\) −5.16184 + 5.77542i −0.224216 + 0.250868i
\(531\) 0 0
\(532\) 8.37386i 0.363053i
\(533\) −6.61438 6.87386i −0.286501 0.297740i
\(534\) 0 0
\(535\) 2.11210 2.36316i 0.0913139 0.102168i
\(536\) −12.8739 + 22.2982i −0.556066 + 0.963135i
\(537\) 0 0
\(538\) −32.8335 −1.41555
\(539\) −9.16515 + 5.29150i −0.394771 + 0.227921i
\(540\) 0 0
\(541\) 10.3923i 0.446800i −0.974727 0.223400i \(-0.928284\pi\)
0.974727 0.223400i \(-0.0717156\pi\)
\(542\) −16.4168 + 9.47822i −0.705160 + 0.407124i
\(543\) 0 0
\(544\) 29.3085 + 16.9213i 1.25659 + 0.725494i
\(545\) 6.00000 + 1.25227i 0.257012 + 0.0536415i
\(546\) 0 0
\(547\) 1.25227i 0.0535433i −0.999642 0.0267717i \(-0.991477\pi\)
0.999642 0.0267717i \(-0.00852270\pi\)
\(548\) −0.133075 + 0.230493i −0.00568468 + 0.00984615i
\(549\) 0 0
\(550\) −28.7747 + 3.23870i −1.22696 + 0.138099i
\(551\) 7.93725i 0.338138i
\(552\) 0 0
\(553\) 5.19615 + 9.00000i 0.220963 + 0.382719i
\(554\) 36.2976i 1.54214i
\(555\) 0 0
\(556\) 8.02178 13.8941i 0.340199 0.589242i
\(557\) 6.51903 11.2913i 0.276220 0.478427i −0.694222 0.719761i \(-0.744251\pi\)
0.970442 + 0.241334i \(0.0775848\pi\)
\(558\) 0 0
\(559\) −4.96099 + 1.22753i −0.209827 + 0.0519188i
\(560\) 1.41742 6.79129i 0.0598971 0.286984i
\(561\) 0 0
\(562\) −33.1950 19.1652i −1.40025 0.808433i
\(563\) 7.79423 4.50000i 0.328488 0.189652i −0.326682 0.945134i \(-0.605931\pi\)
0.655169 + 0.755482i \(0.272597\pi\)
\(564\) 0 0
\(565\) −11.5880 35.2225i −0.487511 1.48182i
\(566\) −0.478220 + 0.276100i −0.0201011 + 0.0116054i
\(567\) 0 0
\(568\) 5.33918 3.08258i 0.224027 0.129342i
\(569\) 9.87386 17.1020i 0.413934 0.716955i −0.581382 0.813631i \(-0.697488\pi\)
0.995316 + 0.0966762i \(0.0308211\pi\)
\(570\) 0 0
\(571\) 29.0780 1.21688 0.608439 0.793601i \(-0.291796\pi\)
0.608439 + 0.793601i \(0.291796\pi\)
\(572\) 7.38505 25.5826i 0.308785 1.06966i
\(573\) 0 0
\(574\) −8.68693 5.01540i −0.362586 0.209339i
\(575\) 13.6040 + 18.4373i 0.567324 + 0.768887i
\(576\) 0 0
\(577\) 6.92820 0.288425 0.144212 0.989547i \(-0.453935\pi\)
0.144212 + 0.989547i \(0.453935\pi\)
\(578\) 4.37780 + 7.58258i 0.182093 + 0.315394i
\(579\) 0 0
\(580\) −5.84370 + 27.9989i −0.242647 + 1.16259i
\(581\) −9.79129 16.9590i −0.406211 0.703578i
\(582\) 0 0
\(583\) 2.09355 3.62614i 0.0867060 0.150179i
\(584\) 0 0
\(585\) 0 0
\(586\) 51.2867 2.11864
\(587\) −9.35548 + 16.2042i −0.386142 + 0.668818i −0.991927 0.126811i \(-0.959526\pi\)
0.605785 + 0.795628i \(0.292859\pi\)
\(588\) 0 0
\(589\) 8.37386 + 14.5040i 0.345039 + 0.597625i
\(590\) 16.1407 + 3.36875i 0.664500 + 0.138689i
\(591\) 0 0
\(592\) −7.10895 12.3131i −0.292176 0.506064i
\(593\) 21.1660 0.869184 0.434592 0.900627i \(-0.356893\pi\)
0.434592 + 0.900627i \(0.356893\pi\)
\(594\) 0 0
\(595\) 11.8273 13.2331i 0.484870 0.542506i
\(596\) 23.6044 + 13.6280i 0.966872 + 0.558224i
\(597\) 0 0
\(598\) −35.1078 + 8.68693i −1.43567 + 0.355235i
\(599\) −39.4955 −1.61374 −0.806870 0.590729i \(-0.798840\pi\)
−0.806870 + 0.590729i \(0.798840\pi\)
\(600\) 0 0
\(601\) 14.4564 25.0393i 0.589690 1.02137i −0.404582 0.914502i \(-0.632583\pi\)
0.994273 0.106872i \(-0.0340836\pi\)
\(602\) −4.65390 + 2.68693i −0.189679 + 0.109511i
\(603\) 0 0
\(604\) 15.0000 8.66025i 0.610341 0.352381i
\(605\) −8.49628 + 2.79523i −0.345423 + 0.113642i
\(606\) 0 0
\(607\) 17.1020 9.87386i 0.694150 0.400768i −0.111015 0.993819i \(-0.535410\pi\)
0.805165 + 0.593051i \(0.202077\pi\)
\(608\) −11.0776 6.39564i −0.449255 0.259378i
\(609\) 0 0
\(610\) −10.5826 + 50.7042i −0.428476 + 2.05295i
\(611\) 30.3303 + 8.75560i 1.22703 + 0.354214i
\(612\) 0 0
\(613\) 10.8968 18.8739i 0.440119 0.762308i −0.557579 0.830124i \(-0.688270\pi\)
0.997698 + 0.0678157i \(0.0216030\pi\)
\(614\) 26.5390 45.9669i 1.07103 1.85507i
\(615\) 0 0
\(616\) 7.93725i 0.319801i
\(617\) −1.68438 2.91742i −0.0678104 0.117451i 0.830127 0.557575i \(-0.188268\pi\)
−0.897937 + 0.440124i \(0.854935\pi\)
\(618\) 0 0
\(619\) 2.01810i 0.0811143i 0.999177 + 0.0405572i \(0.0129133\pi\)
−0.999177 + 0.0405572i \(0.987087\pi\)
\(620\) 18.8607 + 57.3282i 0.757462 + 2.30236i
\(621\) 0 0
\(622\) −1.73205 + 3.00000i −0.0694489 + 0.120289i
\(623\) 7.41742i 0.297173i
\(624\) 0 0
\(625\) 17.0000 + 18.3303i 0.680000 + 0.733212i
\(626\) 58.2867 + 33.6519i 2.32961 + 1.34500i
\(627\) 0 0
\(628\) 22.1552 12.7913i 0.884087 0.510428i
\(629\) 36.3731i 1.45029i
\(630\) 0 0
\(631\) −18.8739 + 10.8968i −0.751357 + 0.433796i −0.826184 0.563401i \(-0.809493\pi\)
0.0748272 + 0.997197i \(0.476159\pi\)
\(632\) 10.3923 0.413384
\(633\) 0 0
\(634\) −22.9564 + 39.7617i −0.911717 + 1.57914i
\(635\) −14.5250 + 16.2516i −0.576408 + 0.644925i
\(636\) 0 0
\(637\) −10.3923 + 10.0000i −0.411758 + 0.396214i
\(638\) 26.5390i 1.05069i
\(639\) 0 0
\(640\) −21.2936 19.0313i −0.841702 0.752280i
\(641\) −0.0825757 0.143025i −0.00326154 0.00564916i 0.864390 0.502822i \(-0.167705\pi\)
−0.867652 + 0.497173i \(0.834372\pi\)
\(642\) 0 0
\(643\) 2.95958 + 5.12614i 0.116714 + 0.202155i 0.918464 0.395505i \(-0.129430\pi\)
−0.801749 + 0.597660i \(0.796097\pi\)
\(644\) −19.1869 + 11.0776i −0.756071 + 0.436518i
\(645\) 0 0
\(646\) −8.68693 15.0462i −0.341783 0.591985i
\(647\) −23.3827 13.5000i −0.919268 0.530740i −0.0358667 0.999357i \(-0.511419\pi\)
−0.883402 + 0.468617i \(0.844753\pi\)
\(648\) 0 0
\(649\) −8.91288 −0.349861
\(650\) −37.0053 + 13.7031i −1.45147 + 0.537482i
\(651\) 0 0
\(652\) 14.9032 25.8131i 0.583654 1.01092i
\(653\) 42.2843 + 24.4129i 1.65471 + 0.955350i 0.975096 + 0.221784i \(0.0711880\pi\)
0.679619 + 0.733566i \(0.262145\pi\)
\(654\) 0 0
\(655\) −0.723000 + 3.46410i −0.0282500 + 0.135354i
\(656\) 4.10436 2.36965i 0.160248 0.0925193i
\(657\) 0 0
\(658\) 33.1950 1.29408
\(659\) 12.2477 + 21.2137i 0.477104 + 0.826368i 0.999656 0.0262396i \(-0.00835327\pi\)
−0.522552 + 0.852607i \(0.675020\pi\)
\(660\) 0 0
\(661\) 2.12614 + 1.22753i 0.0826971 + 0.0477452i 0.540778 0.841165i \(-0.318130\pi\)
−0.458081 + 0.888910i \(0.651463\pi\)
\(662\) 24.9564i 0.969960i
\(663\) 0 0
\(664\) −19.5826 −0.759951
\(665\) −4.47028 + 5.00166i −0.173350 + 0.193956i
\(666\) 0 0
\(667\) −18.1865 + 10.5000i −0.704185 + 0.406562i
\(668\) 11.9536 0.462497
\(669\) 0 0
\(670\) −69.1151 + 22.7385i −2.67015 + 0.878464i
\(671\) 27.9989i 1.08088i
\(672\) 0 0
\(673\) 5.05313 + 2.91742i 0.194784 + 0.112458i 0.594220 0.804302i \(-0.297461\pi\)
−0.399436 + 0.916761i \(0.630794\pi\)
\(674\) 6.16515 + 3.55945i 0.237473 + 0.137105i
\(675\) 0 0
\(676\) 1.39564 36.2599i 0.0536786 1.39461i
\(677\) 21.1652i 0.813443i −0.913552 0.406721i \(-0.866672\pi\)
0.913552 0.406721i \(-0.133328\pi\)
\(678\) 0 0
\(679\) 3.87386 6.70973i 0.148665 0.257496i
\(680\) −5.54661 16.8593i −0.212703 0.646524i
\(681\) 0 0
\(682\) −27.9989 48.4955i −1.07213 1.85699i
\(683\) 5.96683 + 10.3348i 0.228314 + 0.395452i 0.957309 0.289068i \(-0.0933453\pi\)
−0.728994 + 0.684520i \(0.760012\pi\)
\(684\) 0 0
\(685\) −0.202530 + 0.0666313i −0.00773829 + 0.00254585i
\(686\) −20.8521 + 36.1169i −0.796136 + 1.37895i
\(687\) 0 0
\(688\) 2.53901i 0.0967990i
\(689\) 1.58258 5.48220i 0.0602913 0.208855i
\(690\) 0 0
\(691\) 30.8739 + 17.8250i 1.17450 + 0.678096i 0.954735 0.297457i \(-0.0961386\pi\)
0.219762 + 0.975554i \(0.429472\pi\)
\(692\) −17.9303 10.3521i −0.681609 0.393527i
\(693\) 0 0
\(694\) 33.5565i 1.27379i
\(695\) 12.2086 4.01655i 0.463097 0.152356i
\(696\) 0 0
\(697\) 12.1244 0.459243
\(698\) −34.7463 + 20.0608i −1.31517 + 0.759312i
\(699\) 0 0
\(700\) −19.4514 + 14.3523i −0.735195 + 0.542465i
\(701\) 2.83485 0.107071 0.0535354 0.998566i \(-0.482951\pi\)
0.0535354 + 0.998566i \(0.482951\pi\)
\(702\) 0 0
\(703\) 13.7477i 0.518505i
\(704\) 28.8303 + 16.6452i 1.08658 + 0.627339i
\(705\) 0 0
\(706\) 19.0608 + 33.0143i 0.717362 + 1.24251i
\(707\) 15.5885 0.586264
\(708\) 0 0
\(709\) 31.5000 18.1865i 1.18301 0.683010i 0.226299 0.974058i \(-0.427337\pi\)
0.956708 + 0.291048i \(0.0940040\pi\)
\(710\) 17.0544 + 3.55945i 0.640039 + 0.133584i
\(711\) 0 0
\(712\) −6.42368 3.70871i −0.240738 0.138990i
\(713\) −22.1552 + 38.3739i −0.829717 + 1.43711i
\(714\) 0 0
\(715\) 18.0680 11.3379i 0.675704 0.424013i
\(716\) −0.460985 −0.0172278
\(717\) 0 0
\(718\) 63.2874 + 36.5390i 2.36187 + 1.36362i
\(719\) −15.2477 26.4098i −0.568644 0.984921i −0.996700 0.0811686i \(-0.974135\pi\)
0.428056 0.903752i \(-0.359199\pi\)
\(720\) 0 0
\(721\) 22.7477 13.1334i 0.847170 0.489114i
\(722\) −17.5112 30.3303i −0.651700 1.12878i
\(723\) 0 0
\(724\) 26.1652 + 45.3194i 0.972420 + 1.68428i
\(725\) −18.4373 + 13.6040i −0.684742 + 0.505238i
\(726\) 0 0
\(727\) 42.7477i 1.58543i 0.609595 + 0.792713i \(0.291332\pi\)
−0.609595 + 0.792713i \(0.708668\pi\)
\(728\) −2.59808 10.5000i −0.0962911 0.389156i
\(729\) 0 0
\(730\) 0 0
\(731\) 3.24773 5.62523i 0.120122 0.208057i
\(732\) 0 0
\(733\) 8.94630 0.330439 0.165220 0.986257i \(-0.447167\pi\)
0.165220 + 0.986257i \(0.447167\pi\)
\(734\) −48.8085 + 28.1796i −1.80156 + 1.04013i
\(735\) 0 0
\(736\) 33.8426i 1.24745i
\(737\) 34.0610 19.6652i 1.25465 0.724375i
\(738\) 0 0
\(739\) −42.2477 24.3917i −1.55411 0.897265i −0.997801 0.0662878i \(-0.978884\pi\)
−0.556307 0.830977i \(-0.687782\pi\)
\(740\) −10.1216 + 48.4955i −0.372077 + 1.78273i
\(741\) 0 0
\(742\) 6.00000i 0.220267i
\(743\) 21.3845 37.0390i 0.784521 1.35883i −0.144764 0.989466i \(-0.546242\pi\)
0.929285 0.369364i \(-0.120424\pi\)
\(744\) 0 0
\(745\) 6.82361 + 20.7408i 0.249998 + 0.759884i
\(746\) 28.4557i 1.04184i
\(747\) 0 0
\(748\) 16.9213 + 29.3085i 0.618703 + 1.07163i
\(749\) 2.45505i 0.0897056i
\(750\) 0 0
\(751\) 7.87386 13.6379i 0.287321 0.497655i −0.685848 0.727745i \(-0.740569\pi\)
0.973169 + 0.230090i \(0.0739019\pi\)
\(752\) −7.84190 + 13.5826i −0.285965 + 0.495306i
\(753\) 0 0
\(754\) −8.68693 35.1078i −0.316359 1.27855i
\(755\) 13.5826 + 2.83485i 0.494321 + 0.103171i
\(756\) 0 0
\(757\) −15.3700 8.87386i −0.558632 0.322526i 0.193965 0.981009i \(-0.437865\pi\)
−0.752596 + 0.658482i \(0.771199\pi\)
\(758\) −39.9425 + 23.0608i −1.45078 + 0.837606i
\(759\) 0 0
\(760\) 2.09642 + 6.37221i 0.0760451 + 0.231144i
\(761\) 35.2913 20.3754i 1.27931 0.738609i 0.302587 0.953122i \(-0.402150\pi\)
0.976721 + 0.214513i \(0.0688164\pi\)
\(762\) 0 0
\(763\) −4.11165 + 2.37386i −0.148852 + 0.0859396i
\(764\) −10.3521 + 17.9303i −0.374525 + 0.648697i
\(765\) 0 0
\(766\) 6.20871 0.224330
\(767\) −11.7906 + 2.91742i −0.425735 + 0.105342i
\(768\) 0 0
\(769\) −13.5000 7.79423i −0.486822 0.281067i 0.236433 0.971648i \(-0.424022\pi\)
−0.723255 + 0.690581i \(0.757355\pi\)
\(770\) 14.9468 16.7235i 0.538647 0.602675i
\(771\) 0 0
\(772\) −2.81655 −0.101370
\(773\) −17.3682 30.0826i −0.624690 1.08200i −0.988601 0.150561i \(-0.951892\pi\)
0.363911 0.931434i \(-0.381441\pi\)
\(774\) 0 0
\(775\) −19.3386 + 44.3103i −0.694663 + 1.59167i
\(776\) −3.87386 6.70973i −0.139064 0.240865i
\(777\) 0 0
\(778\) −16.5975 + 28.7477i −0.595049 + 1.03066i
\(779\) −4.58258 −0.164188
\(780\) 0 0
\(781\) −9.41742 −0.336982
\(782\) 22.9835 39.8085i 0.821887 1.42355i
\(783\) 0 0
\(784\) −3.58258 6.20520i −0.127949 0.221614i
\(785\) 20.0616 + 4.18710i 0.716030 + 0.149444i
\(786\) 0 0
\(787\) −16.0930 27.8739i −0.573653 0.993596i −0.996187 0.0872487i \(-0.972193\pi\)
0.422534 0.906347i \(-0.361141\pi\)
\(788\) 55.7316 1.98536
\(789\) 0 0
\(790\) 21.8963 + 19.5700i 0.779034 + 0.696270i
\(791\) 24.8739 + 14.3609i 0.884413 + 0.510616i
\(792\) 0 0
\(793\) −9.16478 37.0390i −0.325451 1.31529i
\(794\) 59.7042 2.11882
\(795\) 0 0
\(796\) 1.97822 3.42638i 0.0701161 0.121445i
\(797\) −17.3881 + 10.0390i −0.615918 + 0.355600i −0.775278 0.631620i \(-0.782390\pi\)
0.159360 + 0.987220i \(0.449057\pi\)
\(798\) 0 0
\(799\) −34.7477 + 20.0616i −1.22929 + 0.709729i
\(800\) −4.13000 36.6936i −0.146017 1.29731i
\(801\) 0 0
\(802\) 23.7065 13.6869i 0.837104 0.483302i
\(803\) 0 0
\(804\) 0 0
\(805\) −17.3739 3.62614i −0.612348 0.127805i
\(806\) −52.9129 54.9887i −1.86378 1.93689i
\(807\) 0 0
\(808\) 7.79423 13.5000i 0.274200 0.474928i
\(809\) −18.4129 + 31.8920i −0.647362 + 1.12126i 0.336388 + 0.941723i \(0.390795\pi\)
−0.983750 + 0.179541i \(0.942539\pi\)
\(810\) 0 0
\(811\) 18.7665i 0.658981i −0.944159 0.329491i \(-0.893123\pi\)
0.944159 0.329491i \(-0.106877\pi\)
\(812\) −11.0776 19.1869i −0.388747 0.673329i
\(813\) 0 0
\(814\) 45.9669i 1.61114i
\(815\) 22.6816 7.46211i 0.794501 0.261386i
\(816\) 0 0
\(817\) −1.22753 + 2.12614i −0.0429457 + 0.0743841i
\(818\) 18.9564i 0.662796i
\(819\) 0 0
\(820\) −16.1652 3.37386i −0.564512 0.117820i
\(821\) −20.2913 11.7152i −0.708171 0.408863i 0.102213 0.994763i \(-0.467408\pi\)
−0.810383 + 0.585900i \(0.800741\pi\)
\(822\) 0 0
\(823\) −35.1455 + 20.2913i −1.22510 + 0.707310i −0.966000 0.258542i \(-0.916758\pi\)
−0.259096 + 0.965851i \(0.583425\pi\)
\(824\) 26.2668i 0.915048i
\(825\) 0 0
\(826\) −11.0608 + 6.38595i −0.384854 + 0.222196i
\(827\) −31.5583 −1.09739 −0.548695 0.836023i \(-0.684875\pi\)
−0.548695 + 0.836023i \(0.684875\pi\)
\(828\) 0 0
\(829\) 1.66515 2.88413i 0.0578331 0.100170i −0.835659 0.549248i \(-0.814914\pi\)
0.893492 + 0.449078i \(0.148248\pi\)
\(830\) −41.2599 36.8765i −1.43215 1.28000i
\(831\) 0 0
\(832\) 43.5873 + 12.5826i 1.51112 + 0.436222i
\(833\) 18.3303i 0.635107i
\(834\) 0 0
\(835\) 7.13978 + 6.38126i 0.247082 + 0.220833i
\(836\) −6.39564 11.0776i −0.221198 0.383126i
\(837\) 0 0
\(838\) 26.4476 + 45.8085i 0.913616 + 1.58243i
\(839\) −1.16970 + 0.675325i −0.0403824 + 0.0233148i −0.520055 0.854133i \(-0.674089\pi\)
0.479673 + 0.877447i \(0.340755\pi\)
\(840\) 0 0
\(841\) 4.00000 + 6.92820i 0.137931 + 0.238904i
\(842\) 49.7925 + 28.7477i 1.71596 + 0.990712i
\(843\) 0 0
\(844\) 50.7042 1.74531
\(845\) 20.1905 20.9128i 0.694574 0.719421i
\(846\) 0 0
\(847\) 3.46410 6.00000i 0.119028 0.206162i
\(848\) 2.45505 + 1.41742i 0.0843068 + 0.0486746i
\(849\) 0 0
\(850\) 20.0616 45.9669i 0.688108 1.57665i
\(851\) −31.5000 + 18.1865i −1.07981 + 0.623426i
\(852\) 0 0
\(853\) 53.2566 1.82347 0.911736 0.410777i \(-0.134742\pi\)
0.911736 + 0.410777i \(0.134742\pi\)
\(854\) −20.0608 34.7463i −0.686466 1.18899i
\(855\) 0 0
\(856\) 2.12614 + 1.22753i 0.0726698 + 0.0419560i
\(857\) 22.7477i 0.777048i 0.921439 + 0.388524i \(0.127015\pi\)
−0.921439 + 0.388524i \(0.872985\pi\)
\(858\) 0 0
\(859\) −38.2432 −1.30484 −0.652420 0.757857i \(-0.726246\pi\)
−0.652420 + 0.757857i \(0.726246\pi\)
\(860\) −5.89547 + 6.59625i −0.201034 + 0.224930i
\(861\) 0 0
\(862\) 56.1785 32.4347i 1.91345 1.10473i
\(863\) 34.8317 1.18569 0.592843 0.805318i \(-0.298006\pi\)
0.592843 + 0.805318i \(0.298006\pi\)
\(864\) 0 0
\(865\) −5.18335 15.7551i −0.176239 0.535690i
\(866\) 38.8480i 1.32011i
\(867\) 0 0
\(868\) −40.4847 23.3739i −1.37414 0.793361i
\(869\) −13.7477 7.93725i −0.466360 0.269253i
\(870\) 0 0
\(871\) 38.6216 37.1636i 1.30864 1.25924i
\(872\) 4.74773i 0.160778i
\(873\) 0 0
\(874\) −8.68693 + 15.0462i −0.293840 + 0.508946i
\(875\) −19.2800 1.81139i −0.651783 0.0612360i
\(876\) 0 0
\(877\) −3.96863 6.87386i −0.134011 0.232114i 0.791208 0.611547i \(-0.209452\pi\)
−0.925219 + 0.379433i \(0.876119\pi\)
\(878\) 44.3203 + 76.7650i 1.49574 + 2.59069i
\(879\) 0 0
\(880\) 3.31186 + 10.0666i 0.111643 + 0.339345i
\(881\) −9.24773 + 16.0175i −0.311564 + 0.539644i −0.978701 0.205290i \(-0.934186\pi\)
0.667137 + 0.744935i \(0.267519\pi\)
\(882\) 0 0
\(883\) 46.2432i 1.55621i −0.628136 0.778103i \(-0.716182\pi\)
0.628136 0.778103i \(-0.283818\pi\)
\(884\) 31.9782 + 33.2327i 1.07554 + 1.11774i
\(885\) 0 0
\(886\) −49.1216 28.3604i −1.65027 0.952785i
\(887\) 0.429076 + 0.247727i 0.0144070 + 0.00831786i 0.507186 0.861837i \(-0.330686\pi\)
−0.492779 + 0.870154i \(0.664019\pi\)
\(888\) 0 0
\(889\) 16.8836i 0.566256i
\(890\) −6.55052 19.9107i −0.219574 0.667409i
\(891\) 0 0
\(892\) −24.1733 −0.809381
\(893\) 13.1334 7.58258i 0.439493 0.253741i
\(894\) 0 0
\(895\) −0.275344 0.246091i −0.00920372 0.00822592i
\(896\) 22.1216 0.739030
\(897\) 0 0
\(898\) 82.0345i 2.73753i
\(899\) −38.3739 22.1552i −1.27984 0.738916i
\(900\) 0 0
\(901\) 3.62614 + 6.28065i 0.120804 + 0.209239i
\(902\) 15.3223 0.510177
\(903\) 0 0
\(904\) 24.8739 14.3609i 0.827292 0.477637i
\(905\) −8.56490 + 41.0369i −0.284707 + 1.36411i
\(906\) 0 0
\(907\) −29.2264 16.8739i −0.970446 0.560287i −0.0710740 0.997471i \(-0.522643\pi\)
−0.899372 + 0.437184i \(0.855976\pi\)
\(908\) 8.52718 14.7695i 0.282984 0.490143i
\(909\) 0 0
\(910\) 14.2988 27.0157i 0.473999 0.895561i
\(911\) −37.9129 −1.25611 −0.628055 0.778169i \(-0.716149\pi\)
−0.628055 + 0.778169i \(0.716149\pi\)
\(912\) 0 0
\(913\) 25.9053 + 14.9564i 0.857341 + 0.494986i
\(914\) −1.89564 3.28335i −0.0627023 0.108604i
\(915\) 0 0
\(916\) −13.2523 + 7.65120i −0.437867 + 0.252803i
\(917\) −1.37055 2.37386i −0.0452596 0.0783919i
\(918\) 0 0
\(919\) 17.9174 + 31.0339i 0.591041 + 1.02371i 0.994093 + 0.108536i \(0.0346163\pi\)
−0.403051 + 0.915177i \(0.632050\pi\)
\(920\) −11.8273 + 13.2331i −0.389933 + 0.436284i
\(921\) 0 0
\(922\) 2.62614i 0.0864872i
\(923\) −12.4581 + 3.08258i −0.410063 + 0.101464i
\(924\) 0 0
\(925\) −31.9343 + 23.5627i −1.04999 + 0.774738i
\(926\) −9.00000 + 15.5885i −0.295758 + 0.512268i
\(927\) 0 0
\(928\) 33.8426 1.11094
\(929\) 13.8303 7.98493i 0.453758 0.261977i −0.255658 0.966767i \(-0.582292\pi\)
0.709416 + 0.704790i \(0.248959\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) −51.1631 + 29.5390i −1.67590 + 0.967583i
\(933\) 0 0
\(934\) −23.3739 13.4949i −0.764816 0.441567i
\(935\) −5.53901 + 26.5390i −0.181145 + 0.867919i
\(936\) 0 0
\(937\) 23.4955i 0.767563i 0.923424 + 0.383782i \(0.125378\pi\)
−0.923424 + 0.383782i \(0.874622\pi\)
\(938\) 28.1796 48.8085i 0.920097 1.59365i
\(939\) 0 0
\(940\) 51.9110 17.0784i 1.69315 0.557037i
\(941\) 26.4575i 0.862490i −0.902235 0.431245i \(-0.858074\pi\)
0.902235 0.431245i \(-0.141926\pi\)
\(942\) 0 0
\(943\) −6.06218 10.5000i −0.197412 0.341927i
\(944\) 6.03440i 0.196403i
\(945\) 0 0
\(946\) 4.10436 7.10895i 0.133444 0.231132i
\(947\) −19.2909 + 33.4129i −0.626871 + 1.08577i 0.361305 + 0.932448i \(0.382331\pi\)
−0.988176 + 0.153325i \(0.951002\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −7.58258 + 17.3739i −0.246011 + 0.563683i
\(951\) 0 0
\(952\) 11.9059 + 6.87386i 0.385872 + 0.222783i
\(953\) −48.5650 + 28.0390i −1.57317 + 0.908273i −0.577398 + 0.816463i \(0.695932\pi\)
−0.995777 + 0.0918100i \(0.970735\pi\)
\(954\) 0 0
\(955\) −15.7551 + 5.18335i −0.509824 + 0.167729i
\(956\) 50.7042 29.2741i 1.63989 0.946791i
\(957\) 0 0
\(958\) −61.3746 + 35.4347i −1.98292 + 1.14484i
\(959\) 0.0825757 0.143025i 0.00266651 0.00461853i
\(960\) 0 0
\(961\) −62.4955 −2.01598
\(962\) −15.0462 60.8085i −0.485109 1.96055i
\(963\) 0 0
\(964\) 4.18693 + 2.41733i 0.134852 + 0.0778568i
\(965\) −1.68231 1.50358i −0.0541554 0.0484020i
\(966\) 0 0
\(967\) 21.5076 0.691638 0.345819 0.938301i \(-0.387601\pi\)
0.345819 + 0.938301i \(0.387601\pi\)
\(968\) −3.46410 6.00000i −0.111340 0.192847i
\(969\) 0 0
\(970\) 4.47315 21.4322i 0.143624 0.688145i
\(971\) 18.2477 + 31.6060i 0.585597 + 1.01428i 0.994801 + 0.101841i \(0.0324734\pi\)
−0.409203 + 0.912443i \(0.634193\pi\)
\(972\) 0 0
\(973\) −4.97768 + 8.62159i −0.159577 + 0.276396i
\(974\) −46.1216 −1.47783
\(975\) 0 0
\(976\) 18.9564 0.606781
\(977\) 19.3863 33.5780i 0.620222 1.07426i −0.369222 0.929341i \(-0.620376\pi\)
0.989444 0.144915i \(-0.0462909\pi\)
\(978\) 0 0
\(979\) 5.66515 + 9.81233i 0.181059 + 0.313603i
\(980\) −5.10080 + 24.4394i −0.162939 + 0.780688i
\(981\) 0 0
\(982\) 31.2822 + 54.1824i 0.998256 + 1.72903i
\(983\) −3.12250 −0.0995924 −0.0497962 0.998759i \(-0.515857\pi\)
−0.0497962 + 0.998759i \(0.515857\pi\)
\(984\) 0 0
\(985\) 33.2881 + 29.7516i 1.06065 + 0.947965i
\(986\) 39.8085 + 22.9835i 1.26776 + 0.731943i
\(987\) 0 0
\(988\) −12.0866 12.5608i −0.384527 0.399612i
\(989\) −6.49545 −0.206543
\(990\) 0 0
\(991\) 6.50000 11.2583i 0.206479 0.357633i −0.744124 0.668042i \(-0.767133\pi\)
0.950603 + 0.310409i \(0.100466\pi\)
\(992\) 61.8414 35.7042i 1.96347 1.13361i
\(993\) 0 0
\(994\) −11.6869 + 6.74745i −0.370687 + 0.214016i
\(995\) 3.01071 0.990505i 0.0954458 0.0314011i
\(996\) 0 0
\(997\) 15.7315 9.08258i 0.498221 0.287648i −0.229758 0.973248i \(-0.573793\pi\)
0.727979 + 0.685600i \(0.240460\pi\)
\(998\) −31.4630 18.1652i −0.995943 0.575008i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.bf.a.199.1 8
3.2 odd 2 65.2.l.a.4.4 yes 8
5.4 even 2 inner 585.2.bf.a.199.4 8
12.11 even 2 1040.2.df.b.849.3 8
13.10 even 6 inner 585.2.bf.a.244.4 8
15.2 even 4 325.2.n.c.251.2 4
15.8 even 4 325.2.n.b.251.1 4
15.14 odd 2 65.2.l.a.4.1 8
39.2 even 12 845.2.n.d.484.4 8
39.5 even 4 845.2.n.c.529.1 8
39.8 even 4 845.2.n.d.529.3 8
39.11 even 12 845.2.n.c.484.2 8
39.17 odd 6 845.2.d.c.844.8 8
39.20 even 12 845.2.b.f.339.2 8
39.23 odd 6 65.2.l.a.49.1 yes 8
39.29 odd 6 845.2.l.c.699.4 8
39.32 even 12 845.2.b.f.339.8 8
39.35 odd 6 845.2.d.c.844.2 8
39.38 odd 2 845.2.l.c.654.1 8
60.59 even 2 1040.2.df.b.849.2 8
65.49 even 6 inner 585.2.bf.a.244.1 8
156.23 even 6 1040.2.df.b.49.2 8
195.23 even 12 325.2.n.b.101.1 4
195.29 odd 6 845.2.l.c.699.1 8
195.32 odd 12 4225.2.a.bk.1.1 4
195.44 even 4 845.2.n.d.529.4 8
195.59 even 12 845.2.b.f.339.7 8
195.62 even 12 325.2.n.c.101.2 4
195.74 odd 6 845.2.d.c.844.7 8
195.89 even 12 845.2.n.d.484.3 8
195.98 odd 12 4225.2.a.bj.1.1 4
195.119 even 12 845.2.n.c.484.1 8
195.134 odd 6 845.2.d.c.844.1 8
195.137 odd 12 4225.2.a.bk.1.4 4
195.149 even 12 845.2.b.f.339.1 8
195.164 even 4 845.2.n.c.529.2 8
195.179 odd 6 65.2.l.a.49.4 yes 8
195.188 odd 12 4225.2.a.bj.1.4 4
195.194 odd 2 845.2.l.c.654.4 8
780.179 even 6 1040.2.df.b.49.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.1 8 15.14 odd 2
65.2.l.a.4.4 yes 8 3.2 odd 2
65.2.l.a.49.1 yes 8 39.23 odd 6
65.2.l.a.49.4 yes 8 195.179 odd 6
325.2.n.b.101.1 4 195.23 even 12
325.2.n.b.251.1 4 15.8 even 4
325.2.n.c.101.2 4 195.62 even 12
325.2.n.c.251.2 4 15.2 even 4
585.2.bf.a.199.1 8 1.1 even 1 trivial
585.2.bf.a.199.4 8 5.4 even 2 inner
585.2.bf.a.244.1 8 65.49 even 6 inner
585.2.bf.a.244.4 8 13.10 even 6 inner
845.2.b.f.339.1 8 195.149 even 12
845.2.b.f.339.2 8 39.20 even 12
845.2.b.f.339.7 8 195.59 even 12
845.2.b.f.339.8 8 39.32 even 12
845.2.d.c.844.1 8 195.134 odd 6
845.2.d.c.844.2 8 39.35 odd 6
845.2.d.c.844.7 8 195.74 odd 6
845.2.d.c.844.8 8 39.17 odd 6
845.2.l.c.654.1 8 39.38 odd 2
845.2.l.c.654.4 8 195.194 odd 2
845.2.l.c.699.1 8 195.29 odd 6
845.2.l.c.699.4 8 39.29 odd 6
845.2.n.c.484.1 8 195.119 even 12
845.2.n.c.484.2 8 39.11 even 12
845.2.n.c.529.1 8 39.5 even 4
845.2.n.c.529.2 8 195.164 even 4
845.2.n.d.484.3 8 195.89 even 12
845.2.n.d.484.4 8 39.2 even 12
845.2.n.d.529.3 8 39.8 even 4
845.2.n.d.529.4 8 195.44 even 4
1040.2.df.b.49.2 8 156.23 even 6
1040.2.df.b.49.3 8 780.179 even 6
1040.2.df.b.849.2 8 60.59 even 2
1040.2.df.b.849.3 8 12.11 even 2
4225.2.a.bj.1.1 4 195.98 odd 12
4225.2.a.bj.1.4 4 195.188 odd 12
4225.2.a.bk.1.1 4 195.32 odd 12
4225.2.a.bk.1.4 4 195.137 odd 12