Properties

Label 1040.2.df.b.49.3
Level $1040$
Weight $2$
Character 1040.49
Analytic conductor $8.304$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(49,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.3
Root \(0.228425 - 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 1040.49
Dual form 1040.2.df.b.849.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +(-0.456850 - 2.18890i) q^{5} +(-0.866025 + 1.50000i) q^{7} +(-1.00000 + 1.73205i) q^{9} +(-2.29129 + 1.32288i) q^{11} +(-3.46410 + 1.00000i) q^{13} +(-1.49009 - 1.66722i) q^{15} +(-3.96863 - 2.29129i) q^{17} +(1.50000 + 0.866025i) q^{19} +1.73205i q^{21} +(-3.96863 + 2.29129i) q^{23} +(-4.58258 + 2.00000i) q^{25} +5.00000i q^{27} +(-2.29129 - 3.96863i) q^{29} -9.66930i q^{31} +(-1.32288 + 2.29129i) q^{33} +(3.67900 + 1.21037i) q^{35} +(3.96863 + 6.87386i) q^{37} +(-2.50000 + 2.59808i) q^{39} +(-2.29129 + 1.32288i) q^{41} +(-1.22753 - 0.708712i) q^{43} +(4.24814 + 1.39761i) q^{45} -8.75560 q^{47} +(2.00000 + 3.46410i) q^{49} -4.58258 q^{51} +1.58258i q^{53} +(3.94242 + 4.41105i) q^{55} +1.73205 q^{57} +(2.91742 + 1.68438i) q^{59} +(5.29129 - 9.16478i) q^{61} +(-1.73205 - 3.00000i) q^{63} +(3.77148 + 7.12573i) q^{65} +(7.43273 + 12.8739i) q^{67} +(-2.29129 + 3.96863i) q^{69} +(3.08258 + 1.77973i) q^{71} +(-2.96863 + 4.02334i) q^{75} -4.58258i q^{77} -6.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} -11.3060 q^{83} +(-3.20233 + 9.73371i) q^{85} +(-3.96863 - 2.29129i) q^{87} +(3.70871 - 2.14123i) q^{89} +(1.50000 - 6.06218i) q^{91} +(-4.83465 - 8.37386i) q^{93} +(1.21037 - 3.67900i) q^{95} +(-2.23658 + 3.87386i) q^{97} -5.29150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 6 q^{15} + 12 q^{19} - 6 q^{35} - 20 q^{39} + 12 q^{45} + 16 q^{49} + 14 q^{55} + 60 q^{59} + 24 q^{61} - 24 q^{65} - 12 q^{71} + 8 q^{75} - 48 q^{79} - 4 q^{81} + 42 q^{85} + 48 q^{89}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i −0.228714 0.973494i \(-0.573452\pi\)
0.728714 + 0.684819i \(0.240119\pi\)
\(4\) 0 0
\(5\) −0.456850 2.18890i −0.204310 0.978906i
\(6\) 0 0
\(7\) −0.866025 + 1.50000i −0.327327 + 0.566947i −0.981981 0.188982i \(-0.939481\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 0 0
\(9\) −1.00000 + 1.73205i −0.333333 + 0.577350i
\(10\) 0 0
\(11\) −2.29129 + 1.32288i −0.690849 + 0.398862i −0.803930 0.594724i \(-0.797261\pi\)
0.113081 + 0.993586i \(0.463928\pi\)
\(12\) 0 0
\(13\) −3.46410 + 1.00000i −0.960769 + 0.277350i
\(14\) 0 0
\(15\) −1.49009 1.66722i −0.384741 0.430474i
\(16\) 0 0
\(17\) −3.96863 2.29129i −0.962533 0.555719i −0.0655816 0.997847i \(-0.520890\pi\)
−0.896952 + 0.442128i \(0.854224\pi\)
\(18\) 0 0
\(19\) 1.50000 + 0.866025i 0.344124 + 0.198680i 0.662094 0.749421i \(-0.269668\pi\)
−0.317970 + 0.948101i \(0.603001\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) −3.96863 + 2.29129i −0.827516 + 0.477767i −0.853001 0.521909i \(-0.825220\pi\)
0.0254855 + 0.999675i \(0.491887\pi\)
\(24\) 0 0
\(25\) −4.58258 + 2.00000i −0.916515 + 0.400000i
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) −2.29129 3.96863i −0.425481 0.736956i 0.570984 0.820961i \(-0.306562\pi\)
−0.996465 + 0.0840058i \(0.973229\pi\)
\(30\) 0 0
\(31\) 9.66930i 1.73666i −0.495988 0.868329i \(-0.665194\pi\)
0.495988 0.868329i \(-0.334806\pi\)
\(32\) 0 0
\(33\) −1.32288 + 2.29129i −0.230283 + 0.398862i
\(34\) 0 0
\(35\) 3.67900 + 1.21037i 0.621864 + 0.204590i
\(36\) 0 0
\(37\) 3.96863 + 6.87386i 0.652438 + 1.13006i 0.982529 + 0.186107i \(0.0595872\pi\)
−0.330091 + 0.943949i \(0.607080\pi\)
\(38\) 0 0
\(39\) −2.50000 + 2.59808i −0.400320 + 0.416025i
\(40\) 0 0
\(41\) −2.29129 + 1.32288i −0.357839 + 0.206598i −0.668132 0.744042i \(-0.732906\pi\)
0.310293 + 0.950641i \(0.399573\pi\)
\(42\) 0 0
\(43\) −1.22753 0.708712i −0.187196 0.108078i 0.403473 0.914991i \(-0.367803\pi\)
−0.590669 + 0.806914i \(0.701136\pi\)
\(44\) 0 0
\(45\) 4.24814 + 1.39761i 0.633275 + 0.208344i
\(46\) 0 0
\(47\) −8.75560 −1.27714 −0.638568 0.769565i \(-0.720473\pi\)
−0.638568 + 0.769565i \(0.720473\pi\)
\(48\) 0 0
\(49\) 2.00000 + 3.46410i 0.285714 + 0.494872i
\(50\) 0 0
\(51\) −4.58258 −0.641689
\(52\) 0 0
\(53\) 1.58258i 0.217383i 0.994076 + 0.108692i \(0.0346661\pi\)
−0.994076 + 0.108692i \(0.965334\pi\)
\(54\) 0 0
\(55\) 3.94242 + 4.41105i 0.531596 + 0.594785i
\(56\) 0 0
\(57\) 1.73205 0.229416
\(58\) 0 0
\(59\) 2.91742 + 1.68438i 0.379816 + 0.219287i 0.677738 0.735303i \(-0.262960\pi\)
−0.297922 + 0.954590i \(0.596294\pi\)
\(60\) 0 0
\(61\) 5.29129 9.16478i 0.677480 1.17343i −0.298257 0.954485i \(-0.596405\pi\)
0.975737 0.218944i \(-0.0702613\pi\)
\(62\) 0 0
\(63\) −1.73205 3.00000i −0.218218 0.377964i
\(64\) 0 0
\(65\) 3.77148 + 7.12573i 0.467794 + 0.883837i
\(66\) 0 0
\(67\) 7.43273 + 12.8739i 0.908052 + 1.57279i 0.816767 + 0.576968i \(0.195764\pi\)
0.0912856 + 0.995825i \(0.470902\pi\)
\(68\) 0 0
\(69\) −2.29129 + 3.96863i −0.275839 + 0.477767i
\(70\) 0 0
\(71\) 3.08258 + 1.77973i 0.365834 + 0.211215i 0.671637 0.740880i \(-0.265591\pi\)
−0.305803 + 0.952095i \(0.598925\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) −2.96863 + 4.02334i −0.342788 + 0.464575i
\(76\) 0 0
\(77\) 4.58258i 0.522233i
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −11.3060 −1.24100 −0.620498 0.784208i \(-0.713069\pi\)
−0.620498 + 0.784208i \(0.713069\pi\)
\(84\) 0 0
\(85\) −3.20233 + 9.73371i −0.347342 + 1.05577i
\(86\) 0 0
\(87\) −3.96863 2.29129i −0.425481 0.245652i
\(88\) 0 0
\(89\) 3.70871 2.14123i 0.393123 0.226969i −0.290390 0.956909i \(-0.593785\pi\)
0.683512 + 0.729939i \(0.260452\pi\)
\(90\) 0 0
\(91\) 1.50000 6.06218i 0.157243 0.635489i
\(92\) 0 0
\(93\) −4.83465 8.37386i −0.501330 0.868329i
\(94\) 0 0
\(95\) 1.21037 3.67900i 0.124181 0.377457i
\(96\) 0 0
\(97\) −2.23658 + 3.87386i −0.227090 + 0.393331i −0.956944 0.290271i \(-0.906254\pi\)
0.729854 + 0.683603i \(0.239588\pi\)
\(98\) 0 0
\(99\) 5.29150i 0.531816i
\(100\) 0 0
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) 0 0
\(103\) 15.1652i 1.49427i −0.664674 0.747133i \(-0.731430\pi\)
0.664674 0.747133i \(-0.268570\pi\)
\(104\) 0 0
\(105\) 3.79129 0.791288i 0.369992 0.0772218i
\(106\) 0 0
\(107\) 1.22753 0.708712i 0.118669 0.0685138i −0.439490 0.898247i \(-0.644841\pi\)
0.558160 + 0.829733i \(0.311508\pi\)
\(108\) 0 0
\(109\) 2.74110i 0.262550i −0.991346 0.131275i \(-0.958093\pi\)
0.991346 0.131275i \(-0.0419071\pi\)
\(110\) 0 0
\(111\) 6.87386 + 3.96863i 0.652438 + 0.376685i
\(112\) 0 0
\(113\) −14.3609 8.29129i −1.35096 0.779979i −0.362578 0.931953i \(-0.618103\pi\)
−0.988384 + 0.151975i \(0.951437\pi\)
\(114\) 0 0
\(115\) 6.82847 + 7.64016i 0.636758 + 0.712448i
\(116\) 0 0
\(117\) 1.73205 7.00000i 0.160128 0.647150i
\(118\) 0 0
\(119\) 6.87386 3.96863i 0.630126 0.363803i
\(120\) 0 0
\(121\) −2.00000 + 3.46410i −0.181818 + 0.314918i
\(122\) 0 0
\(123\) −1.32288 + 2.29129i −0.119280 + 0.206598i
\(124\) 0 0
\(125\) 6.47135 + 9.11710i 0.578815 + 0.815459i
\(126\) 0 0
\(127\) 8.44178 4.87386i 0.749087 0.432485i −0.0762771 0.997087i \(-0.524303\pi\)
0.825364 + 0.564601i \(0.190970\pi\)
\(128\) 0 0
\(129\) −1.41742 −0.124797
\(130\) 0 0
\(131\) −1.58258 −0.138270 −0.0691351 0.997607i \(-0.522024\pi\)
−0.0691351 + 0.997607i \(0.522024\pi\)
\(132\) 0 0
\(133\) −2.59808 + 1.50000i −0.225282 + 0.130066i
\(134\) 0 0
\(135\) 10.9445 2.28425i 0.941953 0.196597i
\(136\) 0 0
\(137\) 0.0476751 0.0825757i 0.00407316 0.00705492i −0.863982 0.503523i \(-0.832037\pi\)
0.868055 + 0.496468i \(0.165370\pi\)
\(138\) 0 0
\(139\) −2.87386 + 4.97768i −0.243758 + 0.422201i −0.961782 0.273817i \(-0.911714\pi\)
0.718024 + 0.696019i \(0.245047\pi\)
\(140\) 0 0
\(141\) −7.58258 + 4.37780i −0.638568 + 0.368677i
\(142\) 0 0
\(143\) 6.61438 6.87386i 0.553122 0.574821i
\(144\) 0 0
\(145\) −7.64016 + 6.82847i −0.634480 + 0.567074i
\(146\) 0 0
\(147\) 3.46410 + 2.00000i 0.285714 + 0.164957i
\(148\) 0 0
\(149\) 8.45644 + 4.88233i 0.692778 + 0.399976i 0.804652 0.593747i \(-0.202352\pi\)
−0.111874 + 0.993722i \(0.535685\pi\)
\(150\) 0 0
\(151\) 6.20520i 0.504972i 0.967601 + 0.252486i \(0.0812482\pi\)
−0.967601 + 0.252486i \(0.918752\pi\)
\(152\) 0 0
\(153\) 7.93725 4.58258i 0.641689 0.370479i
\(154\) 0 0
\(155\) −21.1652 + 4.41742i −1.70003 + 0.354816i
\(156\) 0 0
\(157\) 9.16515i 0.731459i −0.930721 0.365729i \(-0.880820\pi\)
0.930721 0.365729i \(-0.119180\pi\)
\(158\) 0 0
\(159\) 0.791288 + 1.37055i 0.0627532 + 0.108692i
\(160\) 0 0
\(161\) 7.93725i 0.625543i
\(162\) 0 0
\(163\) −5.33918 + 9.24773i −0.418197 + 0.724338i −0.995758 0.0920093i \(-0.970671\pi\)
0.577561 + 0.816347i \(0.304004\pi\)
\(164\) 0 0
\(165\) 5.61976 + 1.84887i 0.437498 + 0.143934i
\(166\) 0 0
\(167\) −2.14123 3.70871i −0.165693 0.286989i 0.771208 0.636583i \(-0.219653\pi\)
−0.936901 + 0.349594i \(0.886319\pi\)
\(168\) 0 0
\(169\) 11.0000 6.92820i 0.846154 0.532939i
\(170\) 0 0
\(171\) −3.00000 + 1.73205i −0.229416 + 0.132453i
\(172\) 0 0
\(173\) −6.42368 3.70871i −0.488383 0.281968i 0.235520 0.971869i \(-0.424321\pi\)
−0.723903 + 0.689901i \(0.757654\pi\)
\(174\) 0 0
\(175\) 0.968627 8.60591i 0.0732213 0.650546i
\(176\) 0 0
\(177\) 3.36875 0.253211
\(178\) 0 0
\(179\) 0.0825757 + 0.143025i 0.00617200 + 0.0106902i 0.869095 0.494645i \(-0.164702\pi\)
−0.862923 + 0.505336i \(0.831369\pi\)
\(180\) 0 0
\(181\) −18.7477 −1.39351 −0.696754 0.717310i \(-0.745373\pi\)
−0.696754 + 0.717310i \(0.745373\pi\)
\(182\) 0 0
\(183\) 10.5826i 0.782287i
\(184\) 0 0
\(185\) 13.2331 11.8273i 0.972920 0.869557i
\(186\) 0 0
\(187\) 12.1244 0.886621
\(188\) 0 0
\(189\) −7.50000 4.33013i −0.545545 0.314970i
\(190\) 0 0
\(191\) −3.70871 + 6.42368i −0.268353 + 0.464801i −0.968437 0.249260i \(-0.919813\pi\)
0.700084 + 0.714061i \(0.253146\pi\)
\(192\) 0 0
\(193\) 0.504525 + 0.873864i 0.0363165 + 0.0629021i 0.883612 0.468219i \(-0.155104\pi\)
−0.847296 + 0.531121i \(0.821771\pi\)
\(194\) 0 0
\(195\) 6.82906 + 4.28532i 0.489039 + 0.306878i
\(196\) 0 0
\(197\) 9.98313 + 17.2913i 0.711269 + 1.23195i 0.964381 + 0.264516i \(0.0852123\pi\)
−0.253113 + 0.967437i \(0.581454\pi\)
\(198\) 0 0
\(199\) −0.708712 + 1.22753i −0.0502393 + 0.0870170i −0.890051 0.455860i \(-0.849332\pi\)
0.839812 + 0.542877i \(0.182665\pi\)
\(200\) 0 0
\(201\) 12.8739 + 7.43273i 0.908052 + 0.524264i
\(202\) 0 0
\(203\) 7.93725 0.557086
\(204\) 0 0
\(205\) 3.94242 + 4.41105i 0.275351 + 0.308081i
\(206\) 0 0
\(207\) 9.16515i 0.637022i
\(208\) 0 0
\(209\) −4.58258 −0.316983
\(210\) 0 0
\(211\) 9.08258 + 15.7315i 0.625270 + 1.08300i 0.988489 + 0.151296i \(0.0483446\pi\)
−0.363218 + 0.931704i \(0.618322\pi\)
\(212\) 0 0
\(213\) 3.55945 0.243890
\(214\) 0 0
\(215\) −0.990505 + 3.01071i −0.0675519 + 0.205329i
\(216\) 0 0
\(217\) 14.5040 + 8.37386i 0.984593 + 0.568455i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.0390 + 3.96863i 1.07890 + 0.266959i
\(222\) 0 0
\(223\) −4.33013 7.50000i −0.289967 0.502237i 0.683835 0.729637i \(-0.260311\pi\)
−0.973801 + 0.227400i \(0.926978\pi\)
\(224\) 0 0
\(225\) 1.11847 9.93725i 0.0745649 0.662484i
\(226\) 0 0
\(227\) 3.05493 5.29129i 0.202763 0.351195i −0.746655 0.665212i \(-0.768341\pi\)
0.949418 + 0.314016i \(0.101675\pi\)
\(228\) 0 0
\(229\) 5.48220i 0.362274i 0.983458 + 0.181137i \(0.0579778\pi\)
−0.983458 + 0.181137i \(0.942022\pi\)
\(230\) 0 0
\(231\) −2.29129 3.96863i −0.150756 0.261116i
\(232\) 0 0
\(233\) 21.1652i 1.38658i −0.720661 0.693288i \(-0.756162\pi\)
0.720661 0.693288i \(-0.243838\pi\)
\(234\) 0 0
\(235\) 4.00000 + 19.1652i 0.260931 + 1.25020i
\(236\) 0 0
\(237\) −5.19615 + 3.00000i −0.337526 + 0.194871i
\(238\) 0 0
\(239\) 20.9753i 1.35678i −0.734702 0.678390i \(-0.762678\pi\)
0.734702 0.678390i \(-0.237322\pi\)
\(240\) 0 0
\(241\) −1.50000 0.866025i −0.0966235 0.0557856i 0.450910 0.892570i \(-0.351100\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) −13.8564 8.00000i −0.888889 0.513200i
\(244\) 0 0
\(245\) 6.66888 5.96038i 0.426059 0.380795i
\(246\) 0 0
\(247\) −6.06218 1.50000i −0.385727 0.0954427i
\(248\) 0 0
\(249\) −9.79129 + 5.65300i −0.620498 + 0.358244i
\(250\) 0 0
\(251\) 9.08258 15.7315i 0.573287 0.992962i −0.422938 0.906158i \(-0.639001\pi\)
0.996225 0.0868039i \(-0.0276654\pi\)
\(252\) 0 0
\(253\) 6.06218 10.5000i 0.381126 0.660129i
\(254\) 0 0
\(255\) 2.09355 + 10.0308i 0.131103 + 0.628153i
\(256\) 0 0
\(257\) 0.143025 0.0825757i 0.00892167 0.00515093i −0.495533 0.868589i \(-0.665027\pi\)
0.504454 + 0.863438i \(0.331694\pi\)
\(258\) 0 0
\(259\) −13.7477 −0.854242
\(260\) 0 0
\(261\) 9.16515 0.567309
\(262\) 0 0
\(263\) 7.79423 4.50000i 0.480613 0.277482i −0.240059 0.970758i \(-0.577167\pi\)
0.720672 + 0.693276i \(0.243833\pi\)
\(264\) 0 0
\(265\) 3.46410 0.723000i 0.212798 0.0444135i
\(266\) 0 0
\(267\) 2.14123 3.70871i 0.131041 0.226969i
\(268\) 0 0
\(269\) −7.50000 + 12.9904i −0.457283 + 0.792038i −0.998816 0.0486418i \(-0.984511\pi\)
0.541533 + 0.840679i \(0.317844\pi\)
\(270\) 0 0
\(271\) −7.50000 + 4.33013i −0.455593 + 0.263036i −0.710189 0.704011i \(-0.751391\pi\)
0.254597 + 0.967047i \(0.418057\pi\)
\(272\) 0 0
\(273\) −1.73205 6.00000i −0.104828 0.363137i
\(274\) 0 0
\(275\) 7.85425 10.6448i 0.473629 0.641903i
\(276\) 0 0
\(277\) 14.3609 + 8.29129i 0.862865 + 0.498175i 0.864971 0.501823i \(-0.167337\pi\)
−0.00210581 + 0.999998i \(0.500670\pi\)
\(278\) 0 0
\(279\) 16.7477 + 9.66930i 1.00266 + 0.578886i
\(280\) 0 0
\(281\) 17.5112i 1.04463i 0.852752 + 0.522316i \(0.174932\pi\)
−0.852752 + 0.522316i \(0.825068\pi\)
\(282\) 0 0
\(283\) −0.218475 + 0.126136i −0.0129870 + 0.00749803i −0.506479 0.862252i \(-0.669053\pi\)
0.493492 + 0.869750i \(0.335720\pi\)
\(284\) 0 0
\(285\) −0.791288 3.79129i −0.0468718 0.224577i
\(286\) 0 0
\(287\) 4.58258i 0.270501i
\(288\) 0 0
\(289\) 2.00000 + 3.46410i 0.117647 + 0.203771i
\(290\) 0 0
\(291\) 4.47315i 0.262221i
\(292\) 0 0
\(293\) 11.7152 20.2913i 0.684408 1.18543i −0.289214 0.957264i \(-0.593394\pi\)
0.973622 0.228165i \(-0.0732727\pi\)
\(294\) 0 0
\(295\) 2.35411 7.15546i 0.137061 0.416607i
\(296\) 0 0
\(297\) −6.61438 11.4564i −0.383805 0.664770i
\(298\) 0 0
\(299\) 11.4564 11.9059i 0.662543 0.688535i
\(300\) 0 0
\(301\) 2.12614 1.22753i 0.122548 0.0707534i
\(302\) 0 0
\(303\) −7.79423 4.50000i −0.447767 0.258518i
\(304\) 0 0
\(305\) −22.4781 7.39517i −1.28709 0.423446i
\(306\) 0 0
\(307\) 24.2487 1.38395 0.691974 0.721923i \(-0.256741\pi\)
0.691974 + 0.721923i \(0.256741\pi\)
\(308\) 0 0
\(309\) −7.58258 13.1334i −0.431358 0.747133i
\(310\) 0 0
\(311\) 1.58258 0.0897396 0.0448698 0.998993i \(-0.485713\pi\)
0.0448698 + 0.998993i \(0.485713\pi\)
\(312\) 0 0
\(313\) 30.7477i 1.73796i 0.494843 + 0.868982i \(0.335225\pi\)
−0.494843 + 0.868982i \(0.664775\pi\)
\(314\) 0 0
\(315\) −5.77542 + 5.16184i −0.325408 + 0.290837i
\(316\) 0 0
\(317\) −20.9753 −1.17809 −0.589045 0.808100i \(-0.700496\pi\)
−0.589045 + 0.808100i \(0.700496\pi\)
\(318\) 0 0
\(319\) 10.5000 + 6.06218i 0.587887 + 0.339417i
\(320\) 0 0
\(321\) 0.708712 1.22753i 0.0395565 0.0685138i
\(322\) 0 0
\(323\) −3.96863 6.87386i −0.220820 0.382472i
\(324\) 0 0
\(325\) 13.8745 11.5108i 0.769619 0.638503i
\(326\) 0 0
\(327\) −1.37055 2.37386i −0.0757916 0.131275i
\(328\) 0 0
\(329\) 7.58258 13.1334i 0.418041 0.724068i
\(330\) 0 0
\(331\) −9.87386 5.70068i −0.542717 0.313338i 0.203463 0.979083i \(-0.434780\pi\)
−0.746179 + 0.665745i \(0.768114\pi\)
\(332\) 0 0
\(333\) −15.8745 −0.869918
\(334\) 0 0
\(335\) 24.7840 22.1509i 1.35409 1.21023i
\(336\) 0 0
\(337\) 3.25227i 0.177163i 0.996069 + 0.0885813i \(0.0282333\pi\)
−0.996069 + 0.0885813i \(0.971767\pi\)
\(338\) 0 0
\(339\) −16.5826 −0.900642
\(340\) 0 0
\(341\) 12.7913 + 22.1552i 0.692687 + 1.19977i
\(342\) 0 0
\(343\) −19.0526 −1.02874
\(344\) 0 0
\(345\) 9.73371 + 3.20233i 0.524045 + 0.172408i
\(346\) 0 0
\(347\) 13.2764 + 7.66515i 0.712716 + 0.411487i 0.812066 0.583566i \(-0.198343\pi\)
−0.0993497 + 0.995053i \(0.531676\pi\)
\(348\) 0 0
\(349\) 15.8739 9.16478i 0.849708 0.490579i −0.0108440 0.999941i \(-0.503452\pi\)
0.860552 + 0.509362i \(0.170118\pi\)
\(350\) 0 0
\(351\) −5.00000 17.3205i −0.266880 0.924500i
\(352\) 0 0
\(353\) −8.70793 15.0826i −0.463476 0.802765i 0.535655 0.844437i \(-0.320065\pi\)
−0.999131 + 0.0416724i \(0.986731\pi\)
\(354\) 0 0
\(355\) 2.48737 7.56052i 0.132016 0.401271i
\(356\) 0 0
\(357\) 3.96863 6.87386i 0.210042 0.363803i
\(358\) 0 0
\(359\) 33.3857i 1.76203i 0.473088 + 0.881015i \(0.343139\pi\)
−0.473088 + 0.881015i \(0.656861\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) 0 0
\(363\) 4.00000i 0.209946i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −22.2982 + 12.8739i −1.16396 + 0.672010i −0.952249 0.305323i \(-0.901236\pi\)
−0.211707 + 0.977333i \(0.567902\pi\)
\(368\) 0 0
\(369\) 5.29150i 0.275465i
\(370\) 0 0
\(371\) −2.37386 1.37055i −0.123245 0.0711554i
\(372\) 0 0
\(373\) −11.2583 6.50000i −0.582934 0.336557i 0.179364 0.983783i \(-0.442596\pi\)
−0.762299 + 0.647225i \(0.775929\pi\)
\(374\) 0 0
\(375\) 10.1629 + 4.65997i 0.524810 + 0.240640i
\(376\) 0 0
\(377\) 11.9059 + 11.4564i 0.613184 + 0.590037i
\(378\) 0 0
\(379\) −18.2477 + 10.5353i −0.937323 + 0.541164i −0.889120 0.457674i \(-0.848683\pi\)
−0.0482027 + 0.998838i \(0.515349\pi\)
\(380\) 0 0
\(381\) 4.87386 8.44178i 0.249696 0.432485i
\(382\) 0 0
\(383\) −1.41823 + 2.45644i −0.0724680 + 0.125518i −0.899982 0.435926i \(-0.856421\pi\)
0.827514 + 0.561444i \(0.189754\pi\)
\(384\) 0 0
\(385\) −10.0308 + 2.09355i −0.511217 + 0.106697i
\(386\) 0 0
\(387\) 2.45505 1.41742i 0.124797 0.0720517i
\(388\) 0 0
\(389\) −15.1652 −0.768904 −0.384452 0.923145i \(-0.625610\pi\)
−0.384452 + 0.923145i \(0.625610\pi\)
\(390\) 0 0
\(391\) 21.0000 1.06202
\(392\) 0 0
\(393\) −1.37055 + 0.791288i −0.0691351 + 0.0399152i
\(394\) 0 0
\(395\) 2.74110 + 13.1334i 0.137920 + 0.660813i
\(396\) 0 0
\(397\) −13.6379 + 23.6216i −0.684468 + 1.18553i 0.289135 + 0.957288i \(0.406632\pi\)
−0.973604 + 0.228245i \(0.926701\pi\)
\(398\) 0 0
\(399\) −1.50000 + 2.59808i −0.0750939 + 0.130066i
\(400\) 0 0
\(401\) 10.8303 6.25288i 0.540840 0.312254i −0.204580 0.978850i \(-0.565583\pi\)
0.745419 + 0.666596i \(0.232249\pi\)
\(402\) 0 0
\(403\) 9.66930 + 33.4955i 0.481662 + 1.66853i
\(404\) 0 0
\(405\) −1.66722 + 1.49009i −0.0828448 + 0.0740434i
\(406\) 0 0
\(407\) −18.1865 10.5000i −0.901473 0.520466i
\(408\) 0 0
\(409\) 7.50000 + 4.33013i 0.370851 + 0.214111i 0.673830 0.738886i \(-0.264648\pi\)
−0.302979 + 0.952997i \(0.597981\pi\)
\(410\) 0 0
\(411\) 0.0953502i 0.00470328i
\(412\) 0 0
\(413\) −5.05313 + 2.91742i −0.248648 + 0.143557i
\(414\) 0 0
\(415\) 5.16515 + 24.7477i 0.253547 + 1.21482i
\(416\) 0 0
\(417\) 5.74773i 0.281467i
\(418\) 0 0
\(419\) 12.0826 + 20.9276i 0.590272 + 1.02238i 0.994195 + 0.107589i \(0.0343130\pi\)
−0.403923 + 0.914793i \(0.632354\pi\)
\(420\) 0 0
\(421\) 26.2668i 1.28017i 0.768306 + 0.640083i \(0.221100\pi\)
−0.768306 + 0.640083i \(0.778900\pi\)
\(422\) 0 0
\(423\) 8.75560 15.1652i 0.425712 0.737355i
\(424\) 0 0
\(425\) 22.7691 + 2.56275i 1.10446 + 0.124311i
\(426\) 0 0
\(427\) 9.16478 + 15.8739i 0.443515 + 0.768190i
\(428\) 0 0
\(429\) 2.29129 9.26013i 0.110624 0.447083i
\(430\) 0 0
\(431\) −25.6652 + 14.8178i −1.23625 + 0.713747i −0.968325 0.249693i \(-0.919670\pi\)
−0.267922 + 0.963441i \(0.586337\pi\)
\(432\) 0 0
\(433\) −15.3700 8.87386i −0.738634 0.426451i 0.0829383 0.996555i \(-0.473570\pi\)
−0.821573 + 0.570104i \(0.806903\pi\)
\(434\) 0 0
\(435\) −3.20233 + 9.73371i −0.153540 + 0.466696i
\(436\) 0 0
\(437\) −7.93725 −0.379690
\(438\) 0 0
\(439\) −20.2477 35.0701i −0.966371 1.67380i −0.705885 0.708327i \(-0.749450\pi\)
−0.260487 0.965477i \(-0.583883\pi\)
\(440\) 0 0
\(441\) −8.00000 −0.380952
\(442\) 0 0
\(443\) 25.9129i 1.23116i −0.788075 0.615579i \(-0.788922\pi\)
0.788075 0.615579i \(-0.211078\pi\)
\(444\) 0 0
\(445\) −6.38126 7.13978i −0.302501 0.338458i
\(446\) 0 0
\(447\) 9.76465 0.461852
\(448\) 0 0
\(449\) 32.4564 + 18.7387i 1.53171 + 0.884336i 0.999283 + 0.0378622i \(0.0120548\pi\)
0.532431 + 0.846473i \(0.321279\pi\)
\(450\) 0 0
\(451\) 3.50000 6.06218i 0.164809 0.285457i
\(452\) 0 0
\(453\) 3.10260 + 5.37386i 0.145773 + 0.252486i
\(454\) 0 0
\(455\) −13.9548 0.513844i −0.654210 0.0240894i
\(456\) 0 0
\(457\) −0.866025 1.50000i −0.0405110 0.0701670i 0.845059 0.534673i \(-0.179565\pi\)
−0.885570 + 0.464506i \(0.846232\pi\)
\(458\) 0 0
\(459\) 11.4564 19.8431i 0.534741 0.926198i
\(460\) 0 0
\(461\) −1.03901 0.599876i −0.0483917 0.0279390i 0.475609 0.879657i \(-0.342228\pi\)
−0.524001 + 0.851718i \(0.675561\pi\)
\(462\) 0 0
\(463\) −8.22330 −0.382169 −0.191085 0.981574i \(-0.561201\pi\)
−0.191085 + 0.981574i \(0.561201\pi\)
\(464\) 0 0
\(465\) −16.1208 + 14.4082i −0.747586 + 0.668163i
\(466\) 0 0
\(467\) 12.3303i 0.570578i −0.958441 0.285289i \(-0.907910\pi\)
0.958441 0.285289i \(-0.0920896\pi\)
\(468\) 0 0
\(469\) −25.7477 −1.18892
\(470\) 0 0
\(471\) −4.58258 7.93725i −0.211154 0.365729i
\(472\) 0 0
\(473\) 3.75015 0.172432
\(474\) 0 0
\(475\) −8.60591 0.968627i −0.394866 0.0444437i
\(476\) 0 0
\(477\) −2.74110 1.58258i −0.125506 0.0724612i
\(478\) 0 0
\(479\) 28.0390 16.1883i 1.28114 0.739664i 0.304079 0.952647i \(-0.401651\pi\)
0.977056 + 0.212983i \(0.0683179\pi\)
\(480\) 0 0
\(481\) −20.6216 19.8431i −0.940264 0.904769i
\(482\) 0 0
\(483\) −3.96863 6.87386i −0.180579 0.312772i
\(484\) 0 0
\(485\) 9.50128 + 3.12587i 0.431431 + 0.141938i
\(486\) 0 0
\(487\) −10.5353 + 18.2477i −0.477401 + 0.826883i −0.999665 0.0259009i \(-0.991755\pi\)
0.522263 + 0.852784i \(0.325088\pi\)
\(488\) 0 0
\(489\) 10.6784i 0.482892i
\(490\) 0 0
\(491\) 14.2913 + 24.7532i 0.644957 + 1.11710i 0.984311 + 0.176439i \(0.0564580\pi\)
−0.339355 + 0.940658i \(0.610209\pi\)
\(492\) 0 0
\(493\) 21.0000i 0.945792i
\(494\) 0 0
\(495\) −11.5826 + 2.41742i −0.520598 + 0.108655i
\(496\) 0 0
\(497\) −5.33918 + 3.08258i −0.239495 + 0.138272i
\(498\) 0 0
\(499\) 16.5975i 0.743006i 0.928432 + 0.371503i \(0.121158\pi\)
−0.928432 + 0.371503i \(0.878842\pi\)
\(500\) 0 0
\(501\) −3.70871 2.14123i −0.165693 0.0956629i
\(502\) 0 0
\(503\) 15.7315 + 9.08258i 0.701432 + 0.404972i 0.807881 0.589346i \(-0.200615\pi\)
−0.106448 + 0.994318i \(0.533948\pi\)
\(504\) 0 0
\(505\) −15.0050 + 13.4109i −0.667712 + 0.596775i
\(506\) 0 0
\(507\) 6.06218 11.5000i 0.269231 0.510733i
\(508\) 0 0
\(509\) −25.6652 + 14.8178i −1.13759 + 0.656787i −0.945832 0.324656i \(-0.894751\pi\)
−0.191756 + 0.981443i \(0.561418\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.33013 + 7.50000i −0.191180 + 0.331133i
\(514\) 0 0
\(515\) −33.1950 + 6.92820i −1.46275 + 0.305293i
\(516\) 0 0
\(517\) 20.0616 11.5826i 0.882309 0.509401i
\(518\) 0 0
\(519\) −7.41742 −0.325589
\(520\) 0 0
\(521\) −27.4955 −1.20460 −0.602299 0.798271i \(-0.705748\pi\)
−0.602299 + 0.798271i \(0.705748\pi\)
\(522\) 0 0
\(523\) −15.7315 + 9.08258i −0.687890 + 0.397153i −0.802821 0.596220i \(-0.796669\pi\)
0.114931 + 0.993373i \(0.463335\pi\)
\(524\) 0 0
\(525\) −3.46410 7.93725i −0.151186 0.346410i
\(526\) 0 0
\(527\) −22.1552 + 38.3739i −0.965094 + 1.67159i
\(528\) 0 0
\(529\) −1.00000 + 1.73205i −0.0434783 + 0.0753066i
\(530\) 0 0
\(531\) −5.83485 + 3.36875i −0.253211 + 0.146191i
\(532\) 0 0
\(533\) 6.61438 6.87386i 0.286501 0.297740i
\(534\) 0 0
\(535\) −2.11210 2.36316i −0.0913139 0.102168i
\(536\) 0 0
\(537\) 0.143025 + 0.0825757i 0.00617200 + 0.00356340i
\(538\) 0 0
\(539\) −9.16515 5.29150i −0.394771 0.227921i
\(540\) 0 0
\(541\) 10.3923i 0.446800i 0.974727 + 0.223400i \(0.0717156\pi\)
−0.974727 + 0.223400i \(0.928284\pi\)
\(542\) 0 0
\(543\) −16.2360 + 9.37386i −0.696754 + 0.402271i
\(544\) 0 0
\(545\) −6.00000 + 1.25227i −0.257012 + 0.0536415i
\(546\) 0 0
\(547\) 1.25227i 0.0535433i −0.999642 0.0267717i \(-0.991477\pi\)
0.999642 0.0267717i \(-0.00852270\pi\)
\(548\) 0 0
\(549\) 10.5826 + 18.3296i 0.451653 + 0.782287i
\(550\) 0 0
\(551\) 7.93725i 0.338138i
\(552\) 0 0
\(553\) 5.19615 9.00000i 0.220963 0.382719i
\(554\) 0 0
\(555\) 5.54661 16.8593i 0.235440 0.715636i
\(556\) 0 0
\(557\) −6.51903 11.2913i −0.276220 0.478427i 0.694222 0.719761i \(-0.255749\pi\)
−0.970442 + 0.241334i \(0.922415\pi\)
\(558\) 0 0
\(559\) 4.96099 + 1.22753i 0.209827 + 0.0519188i
\(560\) 0 0
\(561\) 10.5000 6.06218i 0.443310 0.255945i
\(562\) 0 0
\(563\) 7.79423 + 4.50000i 0.328488 + 0.189652i 0.655169 0.755482i \(-0.272597\pi\)
−0.326682 + 0.945134i \(0.605931\pi\)
\(564\) 0 0
\(565\) −11.5880 + 35.2225i −0.487511 + 1.48182i
\(566\) 0 0
\(567\) 1.73205 0.0727393
\(568\) 0 0
\(569\) −9.87386 17.1020i −0.413934 0.716955i 0.581382 0.813631i \(-0.302512\pi\)
−0.995316 + 0.0966762i \(0.969179\pi\)
\(570\) 0 0
\(571\) −29.0780 −1.21688 −0.608439 0.793601i \(-0.708204\pi\)
−0.608439 + 0.793601i \(0.708204\pi\)
\(572\) 0 0
\(573\) 7.41742i 0.309867i
\(574\) 0 0
\(575\) 13.6040 18.4373i 0.567324 0.768887i
\(576\) 0 0
\(577\) 6.92820 0.288425 0.144212 0.989547i \(-0.453935\pi\)
0.144212 + 0.989547i \(0.453935\pi\)
\(578\) 0 0
\(579\) 0.873864 + 0.504525i 0.0363165 + 0.0209674i
\(580\) 0 0
\(581\) 9.79129 16.9590i 0.406211 0.703578i
\(582\) 0 0
\(583\) −2.09355 3.62614i −0.0867060 0.150179i
\(584\) 0 0
\(585\) −16.1136 0.593336i −0.666215 0.0245314i
\(586\) 0 0
\(587\) −9.35548 16.2042i −0.386142 0.668818i 0.605785 0.795628i \(-0.292859\pi\)
−0.991927 + 0.126811i \(0.959526\pi\)
\(588\) 0 0
\(589\) 8.37386 14.5040i 0.345039 0.597625i
\(590\) 0 0
\(591\) 17.2913 + 9.98313i 0.711269 + 0.410651i
\(592\) 0 0
\(593\) −21.1660 −0.869184 −0.434592 0.900627i \(-0.643107\pi\)
−0.434592 + 0.900627i \(0.643107\pi\)
\(594\) 0 0
\(595\) −11.8273 13.2331i −0.484870 0.542506i
\(596\) 0 0
\(597\) 1.41742i 0.0580113i
\(598\) 0 0
\(599\) −39.4955 −1.61374 −0.806870 0.590729i \(-0.798840\pi\)
−0.806870 + 0.590729i \(0.798840\pi\)
\(600\) 0 0
\(601\) 14.4564 + 25.0393i 0.589690 + 1.02137i 0.994273 + 0.106872i \(0.0340836\pi\)
−0.404582 + 0.914502i \(0.632583\pi\)
\(602\) 0 0
\(603\) −29.7309 −1.21074
\(604\) 0 0
\(605\) 8.49628 + 2.79523i 0.345423 + 0.113642i
\(606\) 0 0
\(607\) −17.1020 9.87386i −0.694150 0.400768i 0.111015 0.993819i \(-0.464590\pi\)
−0.805165 + 0.593051i \(0.797923\pi\)
\(608\) 0 0
\(609\) 6.87386 3.96863i 0.278543 0.160817i
\(610\) 0 0
\(611\) 30.3303 8.75560i 1.22703 0.354214i
\(612\) 0 0
\(613\) 10.8968 + 18.8739i 0.440119 + 0.762308i 0.997698 0.0678157i \(-0.0216030\pi\)
−0.557579 + 0.830124i \(0.688270\pi\)
\(614\) 0 0
\(615\) 5.61976 + 1.84887i 0.226611 + 0.0745536i
\(616\) 0 0
\(617\) 1.68438 2.91742i 0.0678104 0.117451i −0.830127 0.557575i \(-0.811732\pi\)
0.897937 + 0.440124i \(0.145065\pi\)
\(618\) 0 0
\(619\) 2.01810i 0.0811143i 0.999177 + 0.0405572i \(0.0129133\pi\)
−0.999177 + 0.0405572i \(0.987087\pi\)
\(620\) 0 0
\(621\) −11.4564 19.8431i −0.459731 0.796278i
\(622\) 0 0
\(623\) 7.41742i 0.297173i
\(624\) 0 0
\(625\) 17.0000 18.3303i 0.680000 0.733212i
\(626\) 0 0
\(627\) −3.96863 + 2.29129i −0.158492 + 0.0915052i
\(628\) 0 0
\(629\) 36.3731i 1.45029i
\(630\) 0 0
\(631\) 18.8739 + 10.8968i 0.751357 + 0.433796i 0.826184 0.563401i \(-0.190507\pi\)
−0.0748272 + 0.997197i \(0.523841\pi\)
\(632\) 0 0
\(633\) 15.7315 + 9.08258i 0.625270 + 0.361000i
\(634\) 0 0
\(635\) −14.5250 16.2516i −0.576408 0.644925i
\(636\) 0 0
\(637\) −10.3923 10.0000i −0.411758 0.396214i
\(638\) 0 0
\(639\) −6.16515 + 3.55945i −0.243890 + 0.140810i
\(640\) 0 0
\(641\) 0.0825757 0.143025i 0.00326154 0.00564916i −0.864390 0.502822i \(-0.832295\pi\)
0.867652 + 0.497173i \(0.165628\pi\)
\(642\) 0 0
\(643\) −2.95958 + 5.12614i −0.116714 + 0.202155i −0.918464 0.395505i \(-0.870570\pi\)
0.801749 + 0.597660i \(0.203903\pi\)
\(644\) 0 0
\(645\) 0.647551 + 3.10260i 0.0254973 + 0.122165i
\(646\) 0 0
\(647\) −23.3827 + 13.5000i −0.919268 + 0.530740i −0.883402 0.468617i \(-0.844753\pi\)
−0.0358667 + 0.999357i \(0.511419\pi\)
\(648\) 0 0
\(649\) −8.91288 −0.349861
\(650\) 0 0
\(651\) 16.7477 0.656395
\(652\) 0 0
\(653\) −42.2843 + 24.4129i −1.65471 + 0.955350i −0.679619 + 0.733566i \(0.737855\pi\)
−0.975096 + 0.221784i \(0.928812\pi\)
\(654\) 0 0
\(655\) 0.723000 + 3.46410i 0.0282500 + 0.135354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.2477 21.2137i 0.477104 0.826368i −0.522552 0.852607i \(-0.675020\pi\)
0.999656 + 0.0262396i \(0.00835327\pi\)
\(660\) 0 0
\(661\) 2.12614 1.22753i 0.0826971 0.0477452i −0.458081 0.888910i \(-0.651463\pi\)
0.540778 + 0.841165i \(0.318130\pi\)
\(662\) 0 0
\(663\) 15.8745 4.58258i 0.616515 0.177972i
\(664\) 0 0
\(665\) 4.47028 + 5.00166i 0.173350 + 0.193956i
\(666\) 0 0
\(667\) 18.1865 + 10.5000i 0.704185 + 0.406562i
\(668\) 0 0
\(669\) −7.50000 4.33013i −0.289967 0.167412i
\(670\) 0 0
\(671\) 27.9989i 1.08088i
\(672\) 0 0
\(673\) 5.05313 2.91742i 0.194784 0.112458i −0.399436 0.916761i \(-0.630794\pi\)
0.594220 + 0.804302i \(0.297461\pi\)
\(674\) 0 0
\(675\) −10.0000 22.9129i −0.384900 0.881917i
\(676\) 0 0
\(677\) 21.1652i 0.813443i −0.913552 0.406721i \(-0.866672\pi\)
0.913552 0.406721i \(-0.133328\pi\)
\(678\) 0 0
\(679\) −3.87386 6.70973i −0.148665 0.257496i
\(680\) 0 0
\(681\) 6.10985i 0.234130i
\(682\) 0 0
\(683\) 5.96683 10.3348i 0.228314 0.395452i −0.728994 0.684520i \(-0.760012\pi\)
0.957309 + 0.289068i \(0.0933453\pi\)
\(684\) 0 0
\(685\) −0.202530 0.0666313i −0.00773829 0.00254585i
\(686\) 0 0
\(687\) 2.74110 + 4.74773i 0.104580 + 0.181137i
\(688\) 0 0
\(689\) −1.58258 5.48220i −0.0602913 0.208855i
\(690\) 0 0
\(691\) −30.8739 + 17.8250i −1.17450 + 0.678096i −0.954735 0.297457i \(-0.903861\pi\)
−0.219762 + 0.975554i \(0.570528\pi\)
\(692\) 0 0
\(693\) 7.93725 + 4.58258i 0.301511 + 0.174078i
\(694\) 0 0
\(695\) 12.2086 + 4.01655i 0.463097 + 0.152356i
\(696\) 0 0
\(697\) 12.1244 0.459243
\(698\) 0 0
\(699\) −10.5826 18.3296i −0.400270 0.693288i
\(700\) 0 0
\(701\) −2.83485 −0.107071 −0.0535354 0.998566i \(-0.517049\pi\)
−0.0535354 + 0.998566i \(0.517049\pi\)
\(702\) 0 0
\(703\) 13.7477i 0.518505i
\(704\) 0 0
\(705\) 13.0467 + 14.5975i 0.491366 + 0.549774i
\(706\) 0 0
\(707\) 15.5885 0.586264
\(708\) 0 0
\(709\) 31.5000 + 18.1865i 1.18301 + 0.683010i 0.956708 0.291048i \(-0.0940040\pi\)
0.226299 + 0.974058i \(0.427337\pi\)
\(710\) 0 0
\(711\) 6.00000 10.3923i 0.225018 0.389742i
\(712\) 0 0
\(713\) 22.1552 + 38.3739i 0.829717 + 1.43711i
\(714\) 0 0
\(715\) −18.0680 11.3379i −0.675704 0.424013i
\(716\) 0 0
\(717\) −10.4877 18.1652i −0.391669 0.678390i
\(718\) 0 0
\(719\) −15.2477 + 26.4098i −0.568644 + 0.984921i 0.428056 + 0.903752i \(0.359199\pi\)
−0.996700 + 0.0811686i \(0.974135\pi\)
\(720\) 0 0
\(721\) 22.7477 + 13.1334i 0.847170 + 0.489114i
\(722\) 0 0
\(723\) −1.73205 −0.0644157
\(724\) 0 0
\(725\) 18.4373 + 13.6040i 0.684742 + 0.505238i
\(726\) 0 0
\(727\) 42.7477i 1.58543i 0.609595 + 0.792713i \(0.291332\pi\)
−0.609595 + 0.792713i \(0.708668\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 3.24773 + 5.62523i 0.120122 + 0.208057i
\(732\) 0 0
\(733\) 8.94630 0.330439 0.165220 0.986257i \(-0.447167\pi\)
0.165220 + 0.986257i \(0.447167\pi\)
\(734\) 0 0
\(735\) 2.79523 8.49628i 0.103103 0.313390i
\(736\) 0 0
\(737\) −34.0610 19.6652i −1.25465 0.724375i
\(738\) 0 0
\(739\) 42.2477 24.3917i 1.55411 0.897265i 0.556307 0.830977i \(-0.312218\pi\)
0.997801 0.0662878i \(-0.0211156\pi\)
\(740\) 0 0
\(741\) −6.00000 + 1.73205i −0.220416 + 0.0636285i
\(742\) 0 0
\(743\) 21.3845 + 37.0390i 0.784521 + 1.35883i 0.929285 + 0.369364i \(0.120424\pi\)
−0.144764 + 0.989466i \(0.546242\pi\)
\(744\) 0 0
\(745\) 6.82361 20.7408i 0.249998 0.759884i
\(746\) 0 0
\(747\) 11.3060 19.5826i 0.413665 0.716489i
\(748\) 0 0
\(749\) 2.45505i 0.0897056i
\(750\) 0 0
\(751\) −7.87386 13.6379i −0.287321 0.497655i 0.685848 0.727745i \(-0.259431\pi\)
−0.973169 + 0.230090i \(0.926098\pi\)
\(752\) 0 0
\(753\) 18.1652i 0.661975i
\(754\) 0 0
\(755\) 13.5826 2.83485i 0.494321 0.103171i
\(756\) 0 0
\(757\) −15.3700 + 8.87386i −0.558632 + 0.322526i −0.752596 0.658482i \(-0.771199\pi\)
0.193965 + 0.981009i \(0.437865\pi\)
\(758\) 0 0
\(759\) 12.1244i 0.440086i
\(760\) 0 0
\(761\) −35.2913 20.3754i −1.27931 0.738609i −0.302587 0.953122i \(-0.597850\pi\)
−0.976721 + 0.214513i \(0.931184\pi\)
\(762\) 0 0
\(763\) 4.11165 + 2.37386i 0.148852 + 0.0859396i
\(764\) 0 0
\(765\) −13.6569 15.2803i −0.493768 0.552461i
\(766\) 0 0
\(767\) −11.7906 2.91742i −0.425735 0.105342i
\(768\) 0 0
\(769\) −13.5000 + 7.79423i −0.486822 + 0.281067i −0.723255 0.690581i \(-0.757355\pi\)
0.236433 + 0.971648i \(0.424022\pi\)
\(770\) 0 0
\(771\) 0.0825757 0.143025i 0.00297389 0.00515093i
\(772\) 0 0
\(773\) 17.3682 30.0826i 0.624690 1.08200i −0.363911 0.931434i \(-0.618559\pi\)
0.988601 0.150561i \(-0.0481080\pi\)
\(774\) 0 0
\(775\) 19.3386 + 44.3103i 0.694663 + 1.59167i
\(776\) 0 0
\(777\) −11.9059 + 6.87386i −0.427121 + 0.246598i
\(778\) 0 0
\(779\) −4.58258 −0.164188
\(780\) 0 0
\(781\) −9.41742 −0.336982
\(782\) 0 0
\(783\) 19.8431 11.4564i 0.709136 0.409420i
\(784\) 0 0
\(785\) −20.0616 + 4.18710i −0.716030 + 0.149444i
\(786\) 0 0
\(787\) 16.0930 27.8739i 0.573653 0.993596i −0.422534 0.906347i \(-0.638859\pi\)
0.996187 0.0872487i \(-0.0278075\pi\)
\(788\) 0 0
\(789\) 4.50000 7.79423i 0.160204 0.277482i
\(790\) 0 0
\(791\) 24.8739 14.3609i 0.884413 0.510616i
\(792\) 0 0
\(793\) −9.16478 + 37.0390i −0.325451 + 1.31529i
\(794\) 0 0
\(795\) 2.63850 2.35819i 0.0935779 0.0836363i
\(796\) 0 0
\(797\) 17.3881 + 10.0390i 0.615918 + 0.355600i 0.775278 0.631620i \(-0.217610\pi\)
−0.159360 + 0.987220i \(0.550943\pi\)
\(798\) 0 0
\(799\) 34.7477 + 20.0616i 1.22929 + 0.709729i
\(800\) 0 0
\(801\) 8.56490i 0.302626i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −17.3739 + 3.62614i −0.612348 + 0.127805i
\(806\) 0 0
\(807\) 15.0000i 0.528025i
\(808\) 0 0
\(809\) 18.4129 + 31.8920i 0.647362 + 1.12126i 0.983750 + 0.179541i \(0.0574613\pi\)
−0.336388 + 0.941723i \(0.609205\pi\)
\(810\) 0 0
\(811\) 18.7665i 0.658981i −0.944159 0.329491i \(-0.893123\pi\)
0.944159 0.329491i \(-0.106877\pi\)
\(812\) 0 0
\(813\) −4.33013 + 7.50000i −0.151864 + 0.263036i
\(814\) 0 0
\(815\) 22.6816 + 7.46211i 0.794501 + 0.261386i
\(816\) 0 0
\(817\) −1.22753 2.12614i −0.0429457 0.0743841i
\(818\) 0 0
\(819\) 9.00000 + 8.66025i 0.314485 + 0.302614i
\(820\) 0 0
\(821\) 20.2913 11.7152i 0.708171 0.408863i −0.102213 0.994763i \(-0.532592\pi\)
0.810383 + 0.585900i \(0.199259\pi\)
\(822\) 0 0
\(823\) 35.1455 + 20.2913i 1.22510 + 0.707310i 0.966000 0.258542i \(-0.0832419\pi\)
0.259096 + 0.965851i \(0.416575\pi\)
\(824\) 0 0
\(825\) 1.47960 13.1458i 0.0515131 0.457676i
\(826\) 0 0
\(827\) −31.5583 −1.09739 −0.548695 0.836023i \(-0.684875\pi\)
−0.548695 + 0.836023i \(0.684875\pi\)
\(828\) 0 0
\(829\) 1.66515 + 2.88413i 0.0578331 + 0.100170i 0.893492 0.449078i \(-0.148248\pi\)
−0.835659 + 0.549248i \(0.814914\pi\)
\(830\) 0 0
\(831\) 16.5826 0.575243
\(832\) 0 0
\(833\) 18.3303i 0.635107i
\(834\) 0 0
\(835\) −7.13978 + 6.38126i −0.247082 + 0.220833i
\(836\) 0 0
\(837\) 48.3465 1.67110
\(838\) 0 0
\(839\) −1.16970 0.675325i −0.0403824 0.0233148i 0.479673 0.877447i \(-0.340755\pi\)
−0.520055 + 0.854133i \(0.674089\pi\)
\(840\) 0 0
\(841\) 4.00000 6.92820i 0.137931 0.238904i
\(842\) 0 0
\(843\) 8.75560 + 15.1652i 0.301559 + 0.522316i
\(844\) 0 0
\(845\) −20.1905 20.9128i −0.694574 0.719421i
\(846\) 0 0
\(847\) −3.46410 6.00000i −0.119028 0.206162i
\(848\) 0 0
\(849\) −0.126136 + 0.218475i −0.00432899 + 0.00749803i
\(850\) 0 0
\(851\) −31.5000 18.1865i −1.07981 0.623426i
\(852\) 0 0
\(853\) 53.2566 1.82347 0.911736 0.410777i \(-0.134742\pi\)
0.911736 + 0.410777i \(0.134742\pi\)
\(854\) 0 0
\(855\) 5.16184 + 5.77542i 0.176531 + 0.197515i
\(856\) 0 0
\(857\) 22.7477i 0.777048i 0.921439 + 0.388524i \(0.127015\pi\)
−0.921439 + 0.388524i \(0.872985\pi\)
\(858\) 0 0
\(859\) 38.2432 1.30484 0.652420 0.757857i \(-0.273754\pi\)
0.652420 + 0.757857i \(0.273754\pi\)
\(860\) 0 0
\(861\) −2.29129 3.96863i −0.0780869 0.135250i
\(862\) 0 0
\(863\) 34.8317 1.18569 0.592843 0.805318i \(-0.298006\pi\)
0.592843 + 0.805318i \(0.298006\pi\)
\(864\) 0 0
\(865\) −5.18335 + 15.7551i −0.176239 + 0.535690i
\(866\) 0 0
\(867\) 3.46410 + 2.00000i 0.117647 + 0.0679236i
\(868\) 0 0
\(869\) 13.7477 7.93725i 0.466360 0.269253i
\(870\) 0 0
\(871\) −38.6216 37.1636i −1.30864 1.25924i
\(872\) 0 0
\(873\) −4.47315 7.74773i −0.151393 0.262221i
\(874\) 0 0
\(875\) −19.2800 + 1.81139i −0.651783 + 0.0612360i
\(876\) 0 0
\(877\) −3.96863 + 6.87386i −0.134011 + 0.232114i −0.925219 0.379433i \(-0.876119\pi\)
0.791208 + 0.611547i \(0.209452\pi\)
\(878\) 0 0
\(879\) 23.4304i 0.790286i
\(880\) 0 0
\(881\) 9.24773 + 16.0175i 0.311564 + 0.539644i 0.978701 0.205290i \(-0.0658139\pi\)
−0.667137 + 0.744935i \(0.732481\pi\)
\(882\) 0 0
\(883\) 46.2432i 1.55621i −0.628136 0.778103i \(-0.716182\pi\)
0.628136 0.778103i \(-0.283818\pi\)
\(884\) 0 0
\(885\) −1.53901 7.37386i −0.0517334 0.247870i
\(886\) 0 0
\(887\) 0.429076 0.247727i 0.0144070 0.00831786i −0.492779 0.870154i \(-0.664019\pi\)
0.507186 + 0.861837i \(0.330686\pi\)
\(888\) 0 0
\(889\) 16.8836i 0.566256i
\(890\) 0 0
\(891\) 2.29129 + 1.32288i 0.0767610 + 0.0443180i
\(892\) 0 0
\(893\) −13.1334 7.58258i −0.439493 0.253741i
\(894\) 0 0
\(895\) 0.275344 0.246091i 0.00920372 0.00822592i
\(896\) 0 0
\(897\) 3.96863 16.0390i 0.132509 0.535527i
\(898\) 0 0
\(899\) −38.3739 + 22.1552i −1.27984 + 0.738916i
\(900\) 0 0
\(901\) 3.62614 6.28065i 0.120804 0.209239i
\(902\) 0 0
\(903\) 1.22753 2.12614i 0.0408495 0.0707534i
\(904\) 0 0
\(905\) 8.56490 + 41.0369i 0.284707 + 1.36411i
\(906\) 0 0
\(907\) 29.2264 16.8739i 0.970446 0.560287i 0.0710740 0.997471i \(-0.477357\pi\)
0.899372 + 0.437184i \(0.144024\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −37.9129 −1.25611 −0.628055 0.778169i \(-0.716149\pi\)
−0.628055 + 0.778169i \(0.716149\pi\)
\(912\) 0 0
\(913\) 25.9053 14.9564i 0.857341 0.494986i
\(914\) 0 0
\(915\) −23.1642 + 4.83465i −0.765785 + 0.159829i
\(916\) 0 0
\(917\) 1.37055 2.37386i 0.0452596 0.0783919i
\(918\) 0 0
\(919\) −17.9174 + 31.0339i −0.591041 + 1.02371i 0.403051 + 0.915177i \(0.367950\pi\)
−0.994093 + 0.108536i \(0.965384\pi\)
\(920\) 0 0
\(921\) 21.0000 12.1244i 0.691974 0.399511i
\(922\) 0 0
\(923\) −12.4581 3.08258i −0.410063 0.101464i
\(924\) 0 0
\(925\) −31.9343 23.5627i −1.04999 0.774738i
\(926\) 0 0
\(927\) 26.2668 + 15.1652i 0.862715 + 0.498089i
\(928\) 0 0
\(929\) −13.8303 7.98493i −0.453758 0.261977i 0.255658 0.966767i \(-0.417708\pi\)
−0.709416 + 0.704790i \(0.751041\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) 0 0
\(933\) 1.37055 0.791288i 0.0448698 0.0259056i
\(934\) 0 0
\(935\) −5.53901 26.5390i −0.181145 0.867919i
\(936\) 0 0
\(937\) 23.4955i 0.767563i −0.923424 0.383782i \(-0.874622\pi\)
0.923424 0.383782i \(-0.125378\pi\)
\(938\) 0 0
\(939\) 15.3739 + 26.6283i 0.501707 + 0.868982i
\(940\) 0 0
\(941\) 26.4575i 0.862490i −0.902235 0.431245i \(-0.858074\pi\)
0.902235 0.431245i \(-0.141926\pi\)
\(942\) 0 0
\(943\) 6.06218 10.5000i 0.197412 0.341927i
\(944\) 0 0
\(945\) −6.05184 + 18.3950i −0.196866 + 0.598389i
\(946\) 0 0
\(947\) −19.2909 33.4129i −0.626871 1.08577i −0.988176 0.153325i \(-0.951002\pi\)
0.361305 0.932448i \(-0.382331\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −18.1652 + 10.4877i −0.589045 + 0.340086i
\(952\) 0 0
\(953\) 48.5650 + 28.0390i 1.57317 + 0.908273i 0.995777 + 0.0918100i \(0.0292652\pi\)
0.577398 + 0.816463i \(0.304068\pi\)
\(954\) 0 0
\(955\) 15.7551 + 5.18335i 0.509824 + 0.167729i
\(956\) 0 0
\(957\) 12.1244 0.391925
\(958\) 0 0
\(959\) 0.0825757 + 0.143025i 0.00266651 + 0.00461853i
\(960\) 0 0
\(961\) −62.4955 −2.01598
\(962\) 0 0
\(963\) 2.83485i 0.0913517i
\(964\) 0 0
\(965\) 1.68231 1.50358i 0.0541554 0.0484020i
\(966\) 0 0
\(967\) −21.5076 −0.691638 −0.345819 0.938301i \(-0.612399\pi\)
−0.345819 + 0.938301i \(0.612399\pi\)
\(968\) 0 0
\(969\) −6.87386 3.96863i −0.220820 0.127491i
\(970\) 0 0
\(971\) 18.2477 31.6060i 0.585597 1.01428i −0.409203 0.912443i \(-0.634193\pi\)
0.994801 0.101841i \(-0.0324734\pi\)
\(972\) 0 0
\(973\) −4.97768 8.62159i −0.159577 0.276396i
\(974\) 0 0
\(975\) 6.26029 16.9059i 0.200490 0.541421i
\(976\) 0 0
\(977\) −19.3863 33.5780i −0.620222 1.07426i −0.989444 0.144915i \(-0.953709\pi\)
0.369222 0.929341i \(-0.379624\pi\)
\(978\) 0 0
\(979\) −5.66515 + 9.81233i −0.181059 + 0.313603i
\(980\) 0 0
\(981\) 4.74773 + 2.74110i 0.151583 + 0.0875166i
\(982\) 0 0
\(983\) −3.12250 −0.0995924 −0.0497962 0.998759i \(-0.515857\pi\)
−0.0497962 + 0.998759i \(0.515857\pi\)
\(984\) 0 0
\(985\) 33.2881 29.7516i 1.06065 0.947965i
\(986\) 0 0
\(987\) 15.1652i 0.482712i
\(988\) 0 0
\(989\) 6.49545 0.206543
\(990\) 0 0
\(991\) −6.50000 11.2583i −0.206479 0.357633i 0.744124 0.668042i \(-0.232867\pi\)
−0.950603 + 0.310409i \(0.899534\pi\)
\(992\) 0 0
\(993\) −11.4014 −0.361811
\(994\) 0 0
\(995\) 3.01071 + 0.990505i 0.0954458 + 0.0314011i
\(996\) 0 0
\(997\) 15.7315 + 9.08258i 0.498221 + 0.287648i 0.727979 0.685600i \(-0.240460\pi\)
−0.229758 + 0.973248i \(0.573793\pi\)
\(998\) 0 0
\(999\) −34.3693 + 19.8431i −1.08740 + 0.627809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.df.b.49.3 8
4.3 odd 2 65.2.l.a.49.4 yes 8
5.4 even 2 inner 1040.2.df.b.49.2 8
12.11 even 2 585.2.bf.a.244.1 8
13.4 even 6 inner 1040.2.df.b.849.2 8
20.3 even 4 325.2.n.c.101.2 4
20.7 even 4 325.2.n.b.101.1 4
20.19 odd 2 65.2.l.a.49.1 yes 8
52.3 odd 6 845.2.d.c.844.1 8
52.7 even 12 845.2.n.d.529.4 8
52.11 even 12 845.2.b.f.339.1 8
52.15 even 12 845.2.b.f.339.7 8
52.19 even 12 845.2.n.c.529.2 8
52.23 odd 6 845.2.d.c.844.7 8
52.31 even 4 845.2.n.d.484.3 8
52.35 odd 6 845.2.l.c.654.4 8
52.43 odd 6 65.2.l.a.4.1 8
52.47 even 4 845.2.n.c.484.1 8
52.51 odd 2 845.2.l.c.699.1 8
60.59 even 2 585.2.bf.a.244.4 8
65.4 even 6 inner 1040.2.df.b.849.3 8
156.95 even 6 585.2.bf.a.199.4 8
260.19 even 12 845.2.n.d.529.3 8
260.43 even 12 325.2.n.c.251.2 4
260.59 even 12 845.2.n.c.529.1 8
260.63 odd 12 4225.2.a.bk.1.1 4
260.67 odd 12 4225.2.a.bj.1.1 4
260.99 even 4 845.2.n.d.484.4 8
260.119 even 12 845.2.b.f.339.2 8
260.139 odd 6 845.2.l.c.654.1 8
260.147 even 12 325.2.n.b.251.1 4
260.159 odd 6 845.2.d.c.844.8 8
260.167 odd 12 4225.2.a.bj.1.4 4
260.179 odd 6 845.2.d.c.844.2 8
260.199 odd 6 65.2.l.a.4.4 yes 8
260.219 even 12 845.2.b.f.339.8 8
260.223 odd 12 4225.2.a.bk.1.4 4
260.239 even 4 845.2.n.c.484.2 8
260.259 odd 2 845.2.l.c.699.4 8
780.719 even 6 585.2.bf.a.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.1 8 52.43 odd 6
65.2.l.a.4.4 yes 8 260.199 odd 6
65.2.l.a.49.1 yes 8 20.19 odd 2
65.2.l.a.49.4 yes 8 4.3 odd 2
325.2.n.b.101.1 4 20.7 even 4
325.2.n.b.251.1 4 260.147 even 12
325.2.n.c.101.2 4 20.3 even 4
325.2.n.c.251.2 4 260.43 even 12
585.2.bf.a.199.1 8 780.719 even 6
585.2.bf.a.199.4 8 156.95 even 6
585.2.bf.a.244.1 8 12.11 even 2
585.2.bf.a.244.4 8 60.59 even 2
845.2.b.f.339.1 8 52.11 even 12
845.2.b.f.339.2 8 260.119 even 12
845.2.b.f.339.7 8 52.15 even 12
845.2.b.f.339.8 8 260.219 even 12
845.2.d.c.844.1 8 52.3 odd 6
845.2.d.c.844.2 8 260.179 odd 6
845.2.d.c.844.7 8 52.23 odd 6
845.2.d.c.844.8 8 260.159 odd 6
845.2.l.c.654.1 8 260.139 odd 6
845.2.l.c.654.4 8 52.35 odd 6
845.2.l.c.699.1 8 52.51 odd 2
845.2.l.c.699.4 8 260.259 odd 2
845.2.n.c.484.1 8 52.47 even 4
845.2.n.c.484.2 8 260.239 even 4
845.2.n.c.529.1 8 260.59 even 12
845.2.n.c.529.2 8 52.19 even 12
845.2.n.d.484.3 8 52.31 even 4
845.2.n.d.484.4 8 260.99 even 4
845.2.n.d.529.3 8 260.19 even 12
845.2.n.d.529.4 8 52.7 even 12
1040.2.df.b.49.2 8 5.4 even 2 inner
1040.2.df.b.49.3 8 1.1 even 1 trivial
1040.2.df.b.849.2 8 13.4 even 6 inner
1040.2.df.b.849.3 8 65.4 even 6 inner
4225.2.a.bj.1.1 4 260.67 odd 12
4225.2.a.bj.1.4 4 260.167 odd 12
4225.2.a.bk.1.1 4 260.63 odd 12
4225.2.a.bk.1.4 4 260.223 odd 12