Properties

Label 841.2.e.c.270.1
Level $841$
Weight $2$
Character 841.270
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(63,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,4,-16,6,16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 270.1
Root \(-0.433884 - 0.900969i\) of defining polynomial
Character \(\chi\) \(=\) 841.270
Dual form 841.2.e.c.651.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.541044 - 1.12349i) q^{2} +(-1.40881 + 1.12349i) q^{3} +(0.277479 - 0.347948i) q^{4} +(-3.64795 + 1.75676i) q^{5} +(2.02446 + 0.974928i) q^{6} +(0.431468 + 0.541044i) q^{7} +(-2.97247 - 0.678448i) q^{8} +(0.0549581 - 0.240787i) q^{9} +(3.94740 + 3.14795i) q^{10} +(-2.77938 + 0.634375i) q^{11} +0.801938i q^{12} +(0.326396 + 1.43004i) q^{13} +(0.374414 - 0.777479i) q^{14} +(3.16557 - 6.57338i) q^{15} +(0.647948 + 2.83885i) q^{16} -1.60388i q^{17} +(-0.300257 + 0.0685317i) q^{18} +(-2.10471 - 1.67845i) q^{19} +(-0.400969 + 1.75676i) q^{20} +(-1.21572 - 0.277479i) q^{21} +(2.21648 + 2.77938i) q^{22} +(4.64795 + 2.23833i) q^{23} +(4.94989 - 2.38374i) q^{24} +(7.10388 - 8.90798i) q^{25} +(1.43004 - 1.14042i) q^{26} +(-2.15240 - 4.46950i) q^{27} +0.307979 q^{28} -9.09783 q^{30} +(0.846543 + 1.75786i) q^{31} +(-1.92863 + 1.53803i) q^{32} +(3.20291 - 4.01632i) q^{33} +(-1.80194 + 0.867767i) q^{34} +(-2.52446 - 1.21572i) q^{35} +(-0.0685317 - 0.0859360i) q^{36} +(2.77938 + 0.634375i) q^{37} +(-0.746980 + 3.27273i) q^{38} +(-2.06646 - 1.64795i) q^{39} +(12.0353 - 2.74698i) q^{40} -6.49396i q^{41} +(0.346011 + 1.51597i) q^{42} +(0.288478 - 0.599031i) q^{43} +(-0.550490 + 1.14310i) q^{44} +(0.222521 + 0.974928i) q^{45} -6.43296i q^{46} +(4.63385 - 1.05765i) q^{47} +(-4.10225 - 3.27144i) q^{48} +(1.45108 - 6.35761i) q^{49} +(-13.8515 - 3.16152i) q^{50} +(1.80194 + 2.25956i) q^{51} +(0.588146 + 0.283236i) q^{52} +(-0.0440730 + 0.0212244i) q^{53} +(-3.85690 + 4.83639i) q^{54} +(9.02458 - 7.19687i) q^{55} +(-0.915458 - 1.90097i) q^{56} +4.85086 q^{57} -6.39612 q^{59} +(-1.40881 - 2.92543i) q^{60} +(1.02262 - 0.815511i) q^{61} +(1.51693 - 1.90216i) q^{62} +(0.153989 - 0.0741573i) q^{63} +(8.01842 + 3.86147i) q^{64} +(-3.70291 - 4.64330i) q^{65} +(-6.24521 - 1.42543i) q^{66} +(3.32640 - 14.5739i) q^{67} +(-0.558065 - 0.445042i) q^{68} +(-9.06283 + 2.06853i) q^{69} +3.49396i q^{70} +(-0.502688 - 2.20242i) q^{71} +(-0.326723 + 0.678448i) q^{72} +(-3.61123 + 7.49880i) q^{73} +(-0.791053 - 3.46583i) q^{74} +20.5308i q^{75} +(-1.16802 + 0.266594i) q^{76} +(-1.54244 - 1.23005i) q^{77} +(-0.733406 + 3.21326i) q^{78} +(9.49671 + 2.16756i) q^{79} +(-7.35086 - 9.21768i) q^{80} +(8.72132 + 4.19997i) q^{81} +(-7.29590 + 3.51352i) q^{82} +(-2.50753 + 3.14435i) q^{83} +(-0.433884 + 0.346011i) q^{84} +(2.81762 + 5.85086i) q^{85} -0.829085 q^{86} +8.69202 q^{88} +(-4.88409 - 10.1419i) q^{89} +(0.974928 - 0.777479i) q^{90} +(-0.632883 + 0.793610i) q^{91} +(2.06853 - 0.996152i) q^{92} +(-3.16756 - 1.52542i) q^{93} +(-3.69537 - 4.63385i) q^{94} +(10.6265 + 2.42543i) q^{95} +(0.989115 - 4.33360i) q^{96} +(3.57299 + 2.84936i) q^{97} +(-7.92781 + 1.80947i) q^{98} +0.704103i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} - 16 q^{5} + 6 q^{6} + 16 q^{7} + 2 q^{9} - 32 q^{13} - 20 q^{16} + 4 q^{20} - 12 q^{22} + 28 q^{23} + 14 q^{24} + 50 q^{25} + 24 q^{28} - 36 q^{30} + 12 q^{33} - 4 q^{34} - 12 q^{35} + 10 q^{36}+ \cdots + 18 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.541044 1.12349i −0.382576 0.794427i −0.999970 0.00777301i \(-0.997526\pi\)
0.617394 0.786654i \(-0.288189\pi\)
\(3\) −1.40881 + 1.12349i −0.813378 + 0.648647i −0.939187 0.343407i \(-0.888419\pi\)
0.125809 + 0.992055i \(0.459847\pi\)
\(4\) 0.277479 0.347948i 0.138740 0.173974i
\(5\) −3.64795 + 1.75676i −1.63141 + 0.785647i −0.631465 + 0.775405i \(0.717546\pi\)
−0.999948 + 0.0102420i \(0.996740\pi\)
\(6\) 2.02446 + 0.974928i 0.826482 + 0.398013i
\(7\) 0.431468 + 0.541044i 0.163080 + 0.204495i 0.856657 0.515887i \(-0.172538\pi\)
−0.693577 + 0.720383i \(0.743966\pi\)
\(8\) −2.97247 0.678448i −1.05093 0.239868i
\(9\) 0.0549581 0.240787i 0.0183194 0.0802624i
\(10\) 3.94740 + 3.14795i 1.24828 + 0.995469i
\(11\) −2.77938 + 0.634375i −0.838014 + 0.191271i −0.619928 0.784658i \(-0.712838\pi\)
−0.218086 + 0.975930i \(0.569981\pi\)
\(12\) 0.801938i 0.231499i
\(13\) 0.326396 + 1.43004i 0.0905261 + 0.396621i 0.999809 0.0195585i \(-0.00622606\pi\)
−0.909283 + 0.416179i \(0.863369\pi\)
\(14\) 0.374414 0.777479i 0.100066 0.207790i
\(15\) 3.16557 6.57338i 0.817347 1.69724i
\(16\) 0.647948 + 2.83885i 0.161987 + 0.709712i
\(17\) 1.60388i 0.388997i −0.980903 0.194498i \(-0.937692\pi\)
0.980903 0.194498i \(-0.0623079\pi\)
\(18\) −0.300257 + 0.0685317i −0.0707712 + 0.0161531i
\(19\) −2.10471 1.67845i −0.482853 0.385062i 0.351592 0.936153i \(-0.385640\pi\)
−0.834445 + 0.551091i \(0.814212\pi\)
\(20\) −0.400969 + 1.75676i −0.0896594 + 0.392823i
\(21\) −1.21572 0.277479i −0.265291 0.0605509i
\(22\) 2.21648 + 2.77938i 0.472555 + 0.592565i
\(23\) 4.64795 + 2.23833i 0.969164 + 0.466725i 0.850365 0.526193i \(-0.176381\pi\)
0.118799 + 0.992918i \(0.462095\pi\)
\(24\) 4.94989 2.38374i 1.01039 0.486579i
\(25\) 7.10388 8.90798i 1.42078 1.78160i
\(26\) 1.43004 1.14042i 0.280453 0.223654i
\(27\) −2.15240 4.46950i −0.414229 0.860156i
\(28\) 0.307979 0.0582025
\(29\) 0 0
\(30\) −9.09783 −1.66103
\(31\) 0.846543 + 1.75786i 0.152044 + 0.315722i 0.963053 0.269311i \(-0.0867959\pi\)
−0.811010 + 0.585033i \(0.801082\pi\)
\(32\) −1.92863 + 1.53803i −0.340937 + 0.271888i
\(33\) 3.20291 4.01632i 0.557554 0.699151i
\(34\) −1.80194 + 0.867767i −0.309030 + 0.148821i
\(35\) −2.52446 1.21572i −0.426711 0.205493i
\(36\) −0.0685317 0.0859360i −0.0114219 0.0143227i
\(37\) 2.77938 + 0.634375i 0.456927 + 0.104291i 0.444788 0.895636i \(-0.353279\pi\)
0.0121386 + 0.999926i \(0.496136\pi\)
\(38\) −0.746980 + 3.27273i −0.121176 + 0.530907i
\(39\) −2.06646 1.64795i −0.330899 0.263883i
\(40\) 12.0353 2.74698i 1.90295 0.434336i
\(41\) 6.49396i 1.01419i −0.861891 0.507093i \(-0.830720\pi\)
0.861891 0.507093i \(-0.169280\pi\)
\(42\) 0.346011 + 1.51597i 0.0533906 + 0.233920i
\(43\) 0.288478 0.599031i 0.0439925 0.0913514i −0.877814 0.479002i \(-0.840999\pi\)
0.921807 + 0.387650i \(0.126713\pi\)
\(44\) −0.550490 + 1.14310i −0.0829895 + 0.172329i
\(45\) 0.222521 + 0.974928i 0.0331715 + 0.145334i
\(46\) 6.43296i 0.948488i
\(47\) 4.63385 1.05765i 0.675917 0.154274i 0.129235 0.991614i \(-0.458748\pi\)
0.546682 + 0.837340i \(0.315891\pi\)
\(48\) −4.10225 3.27144i −0.592109 0.472191i
\(49\) 1.45108 6.35761i 0.207298 0.908230i
\(50\) −13.8515 3.16152i −1.95890 0.447107i
\(51\) 1.80194 + 2.25956i 0.252322 + 0.316401i
\(52\) 0.588146 + 0.283236i 0.0815612 + 0.0392778i
\(53\) −0.0440730 + 0.0212244i −0.00605389 + 0.00291540i −0.436908 0.899506i \(-0.643927\pi\)
0.430854 + 0.902421i \(0.358212\pi\)
\(54\) −3.85690 + 4.83639i −0.524857 + 0.658150i
\(55\) 9.02458 7.19687i 1.21687 0.970425i
\(56\) −0.915458 1.90097i −0.122333 0.254028i
\(57\) 4.85086 0.642511
\(58\) 0 0
\(59\) −6.39612 −0.832704 −0.416352 0.909203i \(-0.636692\pi\)
−0.416352 + 0.909203i \(0.636692\pi\)
\(60\) −1.40881 2.92543i −0.181877 0.377671i
\(61\) 1.02262 0.815511i 0.130933 0.104416i −0.555834 0.831294i \(-0.687601\pi\)
0.686767 + 0.726878i \(0.259029\pi\)
\(62\) 1.51693 1.90216i 0.192650 0.241575i
\(63\) 0.153989 0.0741573i 0.0194008 0.00934294i
\(64\) 8.01842 + 3.86147i 1.00230 + 0.482683i
\(65\) −3.70291 4.64330i −0.459289 0.575930i
\(66\) −6.24521 1.42543i −0.768732 0.175458i
\(67\) 3.32640 14.5739i 0.406384 1.78048i −0.194241 0.980954i \(-0.562224\pi\)
0.600625 0.799531i \(-0.294918\pi\)
\(68\) −0.558065 0.445042i −0.0676753 0.0539693i
\(69\) −9.06283 + 2.06853i −1.09104 + 0.249022i
\(70\) 3.49396i 0.417608i
\(71\) −0.502688 2.20242i −0.0596581 0.261379i 0.936300 0.351202i \(-0.114227\pi\)
−0.995958 + 0.0898229i \(0.971370\pi\)
\(72\) −0.326723 + 0.678448i −0.0385047 + 0.0799559i
\(73\) −3.61123 + 7.49880i −0.422663 + 0.877669i 0.575542 + 0.817772i \(0.304791\pi\)
−0.998205 + 0.0598961i \(0.980923\pi\)
\(74\) −0.791053 3.46583i −0.0919580 0.402894i
\(75\) 20.5308i 2.37069i
\(76\) −1.16802 + 0.266594i −0.133982 + 0.0305804i
\(77\) −1.54244 1.23005i −0.175777 0.140178i
\(78\) −0.733406 + 3.21326i −0.0830419 + 0.363830i
\(79\) 9.49671 + 2.16756i 1.06846 + 0.243870i 0.720370 0.693590i \(-0.243972\pi\)
0.348094 + 0.937460i \(0.386829\pi\)
\(80\) −7.35086 9.21768i −0.821851 1.03057i
\(81\) 8.72132 + 4.19997i 0.969036 + 0.466663i
\(82\) −7.29590 + 3.51352i −0.805697 + 0.388003i
\(83\) −2.50753 + 3.14435i −0.275237 + 0.345137i −0.900167 0.435544i \(-0.856556\pi\)
0.624930 + 0.780681i \(0.285127\pi\)
\(84\) −0.433884 + 0.346011i −0.0473406 + 0.0377529i
\(85\) 2.81762 + 5.85086i 0.305614 + 0.634614i
\(86\) −0.829085 −0.0894025
\(87\) 0 0
\(88\) 8.69202 0.926573
\(89\) −4.88409 10.1419i −0.517712 1.07504i −0.981917 0.189312i \(-0.939374\pi\)
0.464205 0.885728i \(-0.346340\pi\)
\(90\) 0.974928 0.777479i 0.102766 0.0819535i
\(91\) −0.632883 + 0.793610i −0.0663442 + 0.0831929i
\(92\) 2.06853 0.996152i 0.215659 0.103856i
\(93\) −3.16756 1.52542i −0.328461 0.158178i
\(94\) −3.69537 4.63385i −0.381149 0.477945i
\(95\) 10.6265 + 2.42543i 1.09026 + 0.248844i
\(96\) 0.989115 4.33360i 0.100951 0.442296i
\(97\) 3.57299 + 2.84936i 0.362782 + 0.289309i 0.787868 0.615844i \(-0.211185\pi\)
−0.425086 + 0.905153i \(0.639756\pi\)
\(98\) −7.92781 + 1.80947i −0.800830 + 0.182784i
\(99\) 0.704103i 0.0707650i
\(100\) −1.12833 4.94355i −0.112833 0.494355i
\(101\) 1.39412 2.89493i 0.138721 0.288056i −0.820022 0.572332i \(-0.806039\pi\)
0.958743 + 0.284276i \(0.0917532\pi\)
\(102\) 1.56366 3.24698i 0.154826 0.321499i
\(103\) 1.45377 + 6.36939i 0.143244 + 0.627594i 0.994669 + 0.103118i \(0.0328818\pi\)
−0.851425 + 0.524477i \(0.824261\pi\)
\(104\) 4.47219i 0.438534i
\(105\) 4.92233 1.12349i 0.480370 0.109641i
\(106\) 0.0476909 + 0.0380322i 0.00463215 + 0.00369401i
\(107\) 1.28717 5.63945i 0.124435 0.545186i −0.873826 0.486239i \(-0.838368\pi\)
0.998261 0.0589473i \(-0.0187744\pi\)
\(108\) −2.15240 0.491271i −0.207115 0.0472726i
\(109\) −5.72737 7.18189i −0.548582 0.687900i 0.427819 0.903864i \(-0.359282\pi\)
−0.976401 + 0.215964i \(0.930711\pi\)
\(110\) −12.9683 6.24521i −1.23648 0.595457i
\(111\) −4.62833 + 2.22889i −0.439302 + 0.211557i
\(112\) −1.25637 + 1.57544i −0.118716 + 0.148865i
\(113\) −7.01002 + 5.59030i −0.659447 + 0.525891i −0.895054 0.445957i \(-0.852863\pi\)
0.235608 + 0.971848i \(0.424292\pi\)
\(114\) −2.62453 5.44989i −0.245809 0.510429i
\(115\) −20.8877 −1.94779
\(116\) 0 0
\(117\) 0.362273 0.0334921
\(118\) 3.46059 + 7.18598i 0.318573 + 0.661523i
\(119\) 0.867767 0.692021i 0.0795481 0.0634375i
\(120\) −13.8693 + 17.3915i −1.26609 + 1.58762i
\(121\) −2.58815 + 1.24639i −0.235286 + 0.113308i
\(122\) −1.46950 0.707674i −0.133042 0.0640698i
\(123\) 7.29590 + 9.14877i 0.657849 + 0.824916i
\(124\) 0.846543 + 0.193218i 0.0760218 + 0.0173515i
\(125\) −5.76055 + 25.2386i −0.515240 + 2.25741i
\(126\) −0.166630 0.132883i −0.0148446 0.0118382i
\(127\) 15.1744 3.46346i 1.34651 0.307332i 0.512314 0.858798i \(-0.328789\pi\)
0.834197 + 0.551466i \(0.185931\pi\)
\(128\) 6.16421i 0.544844i
\(129\) 0.266594 + 1.16802i 0.0234723 + 0.102839i
\(130\) −3.21326 + 6.67241i −0.281822 + 0.585209i
\(131\) −5.82834 + 12.1027i −0.509225 + 1.05742i 0.474917 + 0.880031i \(0.342478\pi\)
−0.984141 + 0.177385i \(0.943236\pi\)
\(132\) −0.508729 2.22889i −0.0442792 0.194000i
\(133\) 1.86294i 0.161537i
\(134\) −18.1733 + 4.14795i −1.56994 + 0.358328i
\(135\) 15.7037 + 12.5233i 1.35156 + 1.07783i
\(136\) −1.08815 + 4.76748i −0.0933077 + 0.408808i
\(137\) 16.5662 + 3.78113i 1.41535 + 0.323043i 0.860729 0.509063i \(-0.170008\pi\)
0.554616 + 0.832106i \(0.312865\pi\)
\(138\) 7.22737 + 9.06283i 0.615234 + 0.771479i
\(139\) −11.2301 5.40811i −0.952521 0.458710i −0.107951 0.994156i \(-0.534429\pi\)
−0.844569 + 0.535446i \(0.820143\pi\)
\(140\) −1.12349 + 0.541044i −0.0949522 + 0.0457266i
\(141\) −5.33997 + 6.69611i −0.449707 + 0.563914i
\(142\) −2.20242 + 1.75637i −0.184823 + 0.147392i
\(143\) −1.81436 3.76755i −0.151724 0.315059i
\(144\) 0.719169 0.0599307
\(145\) 0 0
\(146\) 10.3787 0.858945
\(147\) 5.09841 + 10.5869i 0.420509 + 0.873197i
\(148\) 0.991949 0.791053i 0.0815377 0.0650241i
\(149\) 11.4194 14.3195i 0.935513 1.17310i −0.0491790 0.998790i \(-0.515660\pi\)
0.984692 0.174306i \(-0.0557681\pi\)
\(150\) 23.0661 11.1081i 1.88334 0.906970i
\(151\) −17.1516 8.25977i −1.39578 0.672171i −0.423477 0.905907i \(-0.639191\pi\)
−0.972300 + 0.233736i \(0.924905\pi\)
\(152\) 5.11745 + 6.41708i 0.415080 + 0.520494i
\(153\) −0.386193 0.0881460i −0.0312218 0.00712618i
\(154\) −0.547425 + 2.39843i −0.0441128 + 0.193271i
\(155\) −6.17629 4.92543i −0.496092 0.395620i
\(156\) −1.14680 + 0.261750i −0.0918175 + 0.0209567i
\(157\) 11.4383i 0.912879i 0.889755 + 0.456439i \(0.150875\pi\)
−0.889755 + 0.456439i \(0.849125\pi\)
\(158\) −2.70291 11.8422i −0.215032 0.942115i
\(159\) 0.0382451 0.0794168i 0.00303303 0.00629816i
\(160\) 4.33360 8.99880i 0.342601 0.711418i
\(161\) 0.794405 + 3.48052i 0.0626079 + 0.274303i
\(162\) 12.0707i 0.948363i
\(163\) 6.50722 1.48523i 0.509685 0.116332i 0.0400581 0.999197i \(-0.487246\pi\)
0.469627 + 0.882865i \(0.344389\pi\)
\(164\) −2.25956 1.80194i −0.176442 0.140708i
\(165\) −4.62833 + 20.2781i −0.360315 + 1.57864i
\(166\) 4.88933 + 1.11596i 0.379485 + 0.0866151i
\(167\) 9.14526 + 11.4678i 0.707681 + 0.887404i 0.997571 0.0696556i \(-0.0221900\pi\)
−0.289890 + 0.957060i \(0.593619\pi\)
\(168\) 3.42543 + 1.64960i 0.264277 + 0.127269i
\(169\) 9.77413 4.70697i 0.751856 0.362075i
\(170\) 5.04892 6.33114i 0.387234 0.485576i
\(171\) −0.519820 + 0.414542i −0.0397516 + 0.0317009i
\(172\) −0.128385 0.266594i −0.00978925 0.0203276i
\(173\) 23.3599 1.77602 0.888009 0.459825i \(-0.152088\pi\)
0.888009 + 0.459825i \(0.152088\pi\)
\(174\) 0 0
\(175\) 7.88471 0.596028
\(176\) −3.60179 7.47919i −0.271495 0.563765i
\(177\) 9.01093 7.18598i 0.677303 0.540131i
\(178\) −8.75182 + 10.9744i −0.655977 + 0.822569i
\(179\) −0.599031 + 0.288478i −0.0447737 + 0.0215619i −0.456137 0.889910i \(-0.650767\pi\)
0.411363 + 0.911472i \(0.365053\pi\)
\(180\) 0.400969 + 0.193096i 0.0298865 + 0.0143926i
\(181\) 6.83728 + 8.57368i 0.508211 + 0.637277i 0.968059 0.250721i \(-0.0806676\pi\)
−0.459848 + 0.887997i \(0.652096\pi\)
\(182\) 1.23403 + 0.281659i 0.0914724 + 0.0208780i
\(183\) −0.524459 + 2.29780i −0.0387691 + 0.169859i
\(184\) −12.2973 9.80678i −0.906570 0.722966i
\(185\) −11.2535 + 2.56853i −0.827372 + 0.188842i
\(186\) 4.38404i 0.321454i
\(187\) 1.01746 + 4.45778i 0.0744039 + 0.325985i
\(188\) 0.917791 1.90581i 0.0669368 0.138996i
\(189\) 1.48951 3.09299i 0.108346 0.224982i
\(190\) −3.02446 13.2510i −0.219417 0.961330i
\(191\) 0.518122i 0.0374900i −0.999824 0.0187450i \(-0.994033\pi\)
0.999824 0.0187450i \(-0.00596707\pi\)
\(192\) −15.6348 + 3.56853i −1.12834 + 0.257537i
\(193\) 1.08396 + 0.864429i 0.0780251 + 0.0622229i 0.661726 0.749746i \(-0.269824\pi\)
−0.583701 + 0.811969i \(0.698396\pi\)
\(194\) 1.26809 5.55585i 0.0910433 0.398887i
\(195\) 10.4334 + 2.38135i 0.747151 + 0.170532i
\(196\) −1.80947 2.26900i −0.129248 0.162072i
\(197\) −11.6751 5.62243i −0.831816 0.400582i −0.0310201 0.999519i \(-0.509876\pi\)
−0.800796 + 0.598937i \(0.795590\pi\)
\(198\) 0.791053 0.380951i 0.0562177 0.0270730i
\(199\) −12.1603 + 15.2486i −0.862023 + 1.08094i 0.133924 + 0.990992i \(0.457242\pi\)
−0.995946 + 0.0899505i \(0.971329\pi\)
\(200\) −27.1597 + 21.6591i −1.92048 + 1.53153i
\(201\) 11.6874 + 24.2690i 0.824363 + 1.71181i
\(202\) −4.00670 −0.281911
\(203\) 0 0
\(204\) 1.28621 0.0900526
\(205\) 11.4083 + 23.6896i 0.796792 + 1.65456i
\(206\) 6.36939 5.07942i 0.443776 0.353900i
\(207\) 0.794405 0.996152i 0.0552150 0.0692374i
\(208\) −3.84817 + 1.85318i −0.266822 + 0.128495i
\(209\) 6.91454 + 3.32987i 0.478289 + 0.230332i
\(210\) −3.92543 4.92233i −0.270880 0.339673i
\(211\) −20.1138 4.59083i −1.38469 0.316046i −0.535678 0.844422i \(-0.679944\pi\)
−0.849010 + 0.528376i \(0.822801\pi\)
\(212\) −0.00484434 + 0.0212244i −0.000332711 + 0.00145770i
\(213\) 3.18259 + 2.53803i 0.218068 + 0.173903i
\(214\) −7.03228 + 1.60507i −0.480717 + 0.109720i
\(215\) 2.69202i 0.183594i
\(216\) 3.36563 + 14.7458i 0.229002 + 1.00332i
\(217\) −0.585826 + 1.21648i −0.0397685 + 0.0825801i
\(218\) −4.97002 + 10.3204i −0.336612 + 0.698983i
\(219\) −3.33728 14.6216i −0.225513 0.988035i
\(220\) 5.13706i 0.346341i
\(221\) 2.29360 0.523499i 0.154284 0.0352144i
\(222\) 5.00827 + 3.99396i 0.336133 + 0.268057i
\(223\) 4.69537 20.5718i 0.314425 1.37759i −0.532749 0.846273i \(-0.678841\pi\)
0.847174 0.531315i \(-0.178302\pi\)
\(224\) −1.66429 0.379863i −0.111200 0.0253806i
\(225\) −1.75451 2.20009i −0.116967 0.146673i
\(226\) 10.0734 + 4.85108i 0.670071 + 0.322689i
\(227\) −6.42812 + 3.09562i −0.426649 + 0.205463i −0.634871 0.772618i \(-0.718947\pi\)
0.208222 + 0.978082i \(0.433232\pi\)
\(228\) 1.34601 1.68784i 0.0891417 0.111780i
\(229\) −1.76096 + 1.40432i −0.116368 + 0.0928002i −0.679945 0.733263i \(-0.737996\pi\)
0.563577 + 0.826064i \(0.309425\pi\)
\(230\) 11.3012 + 23.4671i 0.745177 + 1.54738i
\(231\) 3.55496 0.233899
\(232\) 0 0
\(233\) 18.9095 1.23880 0.619400 0.785076i \(-0.287376\pi\)
0.619400 + 0.785076i \(0.287376\pi\)
\(234\) −0.196006 0.407010i −0.0128133 0.0266071i
\(235\) −15.0460 + 11.9988i −0.981494 + 0.782716i
\(236\) −1.77479 + 2.22552i −0.115529 + 0.144869i
\(237\) −15.8143 + 7.61577i −1.02725 + 0.494698i
\(238\) −1.24698 0.600514i −0.0808297 0.0389255i
\(239\) −12.7642 16.0058i −0.825648 1.03533i −0.998728 0.0504216i \(-0.983944\pi\)
0.173080 0.984908i \(-0.444628\pi\)
\(240\) 20.7119 + 4.72737i 1.33695 + 0.305150i
\(241\) 1.63975 7.18422i 0.105626 0.462776i −0.894258 0.447551i \(-0.852296\pi\)
0.999884 0.0152254i \(-0.00484657\pi\)
\(242\) 2.80060 + 2.23341i 0.180030 + 0.143569i
\(243\) −2.49614 + 0.569728i −0.160128 + 0.0365481i
\(244\) 0.582105i 0.0372655i
\(245\) 5.87531 + 25.7414i 0.375360 + 1.64456i
\(246\) 6.33114 13.1468i 0.403659 0.838206i
\(247\) 1.71327 3.55765i 0.109013 0.226368i
\(248\) −1.32371 5.79954i −0.0840555 0.368271i
\(249\) 7.24698i 0.459259i
\(250\) 31.4721 7.18329i 1.99047 0.454311i
\(251\) 10.1289 + 8.07756i 0.639333 + 0.509851i 0.888659 0.458569i \(-0.151638\pi\)
−0.249326 + 0.968420i \(0.580209\pi\)
\(252\) 0.0169259 0.0741573i 0.00106623 0.00467147i
\(253\) −14.3383 3.27263i −0.901444 0.205749i
\(254\) −12.1012 15.1744i −0.759296 0.952127i
\(255\) −10.5429 5.07718i −0.660221 0.317945i
\(256\) 9.11141 4.38782i 0.569463 0.274239i
\(257\) 10.4073 13.0503i 0.649190 0.814058i −0.342929 0.939361i \(-0.611419\pi\)
0.992119 + 0.125303i \(0.0399903\pi\)
\(258\) 1.16802 0.931468i 0.0727180 0.0579907i
\(259\) 0.855989 + 1.77748i 0.0531886 + 0.110447i
\(260\) −2.64310 −0.163918
\(261\) 0 0
\(262\) 16.7506 1.03486
\(263\) −7.64037 15.8654i −0.471125 0.978302i −0.992184 0.124781i \(-0.960177\pi\)
0.521059 0.853521i \(-0.325537\pi\)
\(264\) −12.2454 + 9.76540i −0.753654 + 0.601019i
\(265\) 0.123490 0.154851i 0.00758592 0.00951244i
\(266\) −2.09299 + 1.00793i −0.128329 + 0.0618002i
\(267\) 18.2751 + 8.80082i 1.11842 + 0.538601i
\(268\) −4.14795 5.20136i −0.253376 0.317724i
\(269\) 6.54126 + 1.49300i 0.398828 + 0.0910298i 0.417230 0.908801i \(-0.363001\pi\)
−0.0184025 + 0.999831i \(0.505858\pi\)
\(270\) 5.57338 24.4186i 0.339185 1.48607i
\(271\) −9.90413 7.89828i −0.601633 0.479786i 0.274675 0.961537i \(-0.411430\pi\)
−0.876308 + 0.481751i \(0.840001\pi\)
\(272\) 4.55316 1.03923i 0.276076 0.0630125i
\(273\) 1.82908i 0.110701i
\(274\) −4.71499 20.6577i −0.284843 1.24798i
\(275\) −14.0934 + 29.2652i −0.849861 + 1.76476i
\(276\) −1.79500 + 3.72737i −0.108047 + 0.224361i
\(277\) −3.50269 15.3463i −0.210456 0.922069i −0.964258 0.264966i \(-0.914639\pi\)
0.753801 0.657102i \(-0.228218\pi\)
\(278\) 15.5429i 0.932200i
\(279\) 0.469796 0.107228i 0.0281259 0.00641956i
\(280\) 6.67909 + 5.32640i 0.399152 + 0.318313i
\(281\) −2.62900 + 11.5184i −0.156833 + 0.687130i 0.833969 + 0.551811i \(0.186063\pi\)
−0.990802 + 0.135319i \(0.956794\pi\)
\(282\) 10.4122 + 2.37651i 0.620036 + 0.141519i
\(283\) 1.37047 + 1.71851i 0.0814660 + 0.102155i 0.820894 0.571080i \(-0.193476\pi\)
−0.739428 + 0.673235i \(0.764904\pi\)
\(284\) −0.905813 0.436217i −0.0537501 0.0258847i
\(285\) −17.6957 + 8.52179i −1.04820 + 0.504787i
\(286\) −3.25116 + 4.07683i −0.192245 + 0.241068i
\(287\) 3.51352 2.80194i 0.207396 0.165393i
\(288\) 0.264345 + 0.548917i 0.0155767 + 0.0323453i
\(289\) 14.4276 0.848681
\(290\) 0 0
\(291\) −8.23490 −0.482738
\(292\) 1.60715 + 3.33728i 0.0940513 + 0.195300i
\(293\) 16.1399 12.8711i 0.942902 0.751940i −0.0259281 0.999664i \(-0.508254\pi\)
0.968831 + 0.247724i \(0.0796827\pi\)
\(294\) 9.13587 11.4560i 0.532815 0.668128i
\(295\) 23.3327 11.2365i 1.35848 0.654212i
\(296\) −7.83124 3.77133i −0.455182 0.219204i
\(297\) 8.81767 + 11.0570i 0.511653 + 0.641593i
\(298\) −22.2662 5.08211i −1.28984 0.294398i
\(299\) −1.68382 + 7.37732i −0.0973781 + 0.426641i
\(300\) 7.14364 + 5.69687i 0.412438 + 0.328909i
\(301\) 0.448572 0.102384i 0.0258552 0.00590129i
\(302\) 23.7385i 1.36600i
\(303\) 1.28836 + 5.64469i 0.0740146 + 0.324279i
\(304\) 3.40112 7.06249i 0.195067 0.405062i
\(305\) −2.29780 + 4.77144i −0.131572 + 0.273212i
\(306\) 0.109916 + 0.481575i 0.00628349 + 0.0275298i
\(307\) 22.8116i 1.30193i 0.759108 + 0.650964i \(0.225635\pi\)
−0.759108 + 0.650964i \(0.774365\pi\)
\(308\) −0.855989 + 0.195374i −0.0487745 + 0.0111325i
\(309\) −9.20403 7.33997i −0.523599 0.417556i
\(310\) −2.19202 + 9.60387i −0.124498 + 0.545463i
\(311\) −30.3106 6.91819i −1.71875 0.392295i −0.754297 0.656533i \(-0.772022\pi\)
−0.964457 + 0.264238i \(0.914879\pi\)
\(312\) 5.02446 + 6.30047i 0.284454 + 0.356694i
\(313\) 10.1201 + 4.87360i 0.572024 + 0.275472i 0.697453 0.716630i \(-0.254317\pi\)
−0.125429 + 0.992103i \(0.540031\pi\)
\(314\) 12.8509 6.18865i 0.725216 0.349245i
\(315\) −0.431468 + 0.541044i −0.0243105 + 0.0304844i
\(316\) 3.38934 2.70291i 0.190665 0.152050i
\(317\) −2.57159 5.33997i −0.144435 0.299923i 0.816184 0.577793i \(-0.196086\pi\)
−0.960619 + 0.277870i \(0.910372\pi\)
\(318\) −0.109916 −0.00616380
\(319\) 0 0
\(320\) −36.0344 −2.01439
\(321\) 4.52249 + 9.39104i 0.252421 + 0.524157i
\(322\) 3.48052 2.77562i 0.193962 0.154679i
\(323\) −2.69202 + 3.37569i −0.149788 + 0.187828i
\(324\) 3.88135 1.86916i 0.215631 0.103842i
\(325\) 15.0574 + 7.25127i 0.835235 + 0.402228i
\(326\) −5.18933 6.50722i −0.287411 0.360401i
\(327\) 16.1376 + 3.68329i 0.892409 + 0.203687i
\(328\) −4.40581 + 19.3031i −0.243270 + 1.06584i
\(329\) 2.57159 + 2.05078i 0.141777 + 0.113063i
\(330\) 25.2863 5.77144i 1.39197 0.317707i
\(331\) 30.9095i 1.69894i −0.527639 0.849469i \(-0.676923\pi\)
0.527639 0.849469i \(-0.323077\pi\)
\(332\) 0.398280 + 1.74498i 0.0218585 + 0.0957683i
\(333\) 0.305499 0.634375i 0.0167412 0.0347635i
\(334\) 7.93596 16.4792i 0.434236 0.901701i
\(335\) 13.4683 + 59.0085i 0.735852 + 3.22398i
\(336\) 3.63102i 0.198089i
\(337\) −7.81411 + 1.78352i −0.425662 + 0.0971545i −0.429985 0.902836i \(-0.641481\pi\)
0.00432302 + 0.999991i \(0.498624\pi\)
\(338\) −10.5765 8.43445i −0.575284 0.458774i
\(339\) 3.59515 15.7514i 0.195262 0.855497i
\(340\) 2.81762 + 0.643104i 0.152807 + 0.0348772i
\(341\) −3.46801 4.34875i −0.187803 0.235498i
\(342\) 0.746980 + 0.359726i 0.0403920 + 0.0194518i
\(343\) 8.43027 4.05980i 0.455192 0.219209i
\(344\) −1.26391 + 1.58489i −0.0681452 + 0.0854514i
\(345\) 29.4268 23.4671i 1.58429 1.26343i
\(346\) −12.6387 26.2446i −0.679462 1.41092i
\(347\) 2.26337 0.121504 0.0607521 0.998153i \(-0.480650\pi\)
0.0607521 + 0.998153i \(0.480650\pi\)
\(348\) 0 0
\(349\) −23.5690 −1.26162 −0.630809 0.775938i \(-0.717277\pi\)
−0.630809 + 0.775938i \(0.717277\pi\)
\(350\) −4.26597 8.85839i −0.228026 0.473501i
\(351\) 5.68901 4.53684i 0.303657 0.242158i
\(352\) 4.38471 5.49825i 0.233706 0.293058i
\(353\) −0.885239 + 0.426309i −0.0471165 + 0.0226901i −0.457294 0.889316i \(-0.651181\pi\)
0.410177 + 0.912006i \(0.365467\pi\)
\(354\) −12.9487 6.23576i −0.688215 0.331427i
\(355\) 5.70291 + 7.15122i 0.302679 + 0.379547i
\(356\) −4.88409 1.11476i −0.258856 0.0590822i
\(357\) −0.445042 + 1.94986i −0.0235541 + 0.103197i
\(358\) 0.648205 + 0.516926i 0.0342587 + 0.0273204i
\(359\) −7.68469 + 1.75398i −0.405582 + 0.0925715i −0.420445 0.907318i \(-0.638126\pi\)
0.0148627 + 0.999890i \(0.495269\pi\)
\(360\) 3.04892i 0.160692i
\(361\) −2.61529 11.4583i −0.137647 0.603071i
\(362\) 5.93317 12.3204i 0.311841 0.647544i
\(363\) 2.24591 4.66368i 0.117880 0.244780i
\(364\) 0.100523 + 0.440420i 0.00526884 + 0.0230843i
\(365\) 33.6993i 1.76390i
\(366\) 2.86531 0.653989i 0.149772 0.0341846i
\(367\) −22.9139 18.2732i −1.19610 0.953855i −0.196451 0.980514i \(-0.562942\pi\)
−0.999645 + 0.0266590i \(0.991513\pi\)
\(368\) −3.34266 + 14.6451i −0.174248 + 0.763431i
\(369\) −1.56366 0.356896i −0.0814010 0.0185793i
\(370\) 8.97434 + 11.2535i 0.466554 + 0.585040i
\(371\) −0.0304995 0.0146878i −0.00158345 0.000762551i
\(372\) −1.40970 + 0.678875i −0.0730894 + 0.0351980i
\(373\) −2.37717 + 2.98088i −0.123085 + 0.154344i −0.839556 0.543273i \(-0.817185\pi\)
0.716471 + 0.697617i \(0.245756\pi\)
\(374\) 4.45778 3.55496i 0.230506 0.183823i
\(375\) −20.2398 42.0284i −1.04518 2.17034i
\(376\) −14.4916 −0.747345
\(377\) 0 0
\(378\) −4.28083 −0.220182
\(379\) −3.91627 8.13222i −0.201165 0.417724i 0.775843 0.630926i \(-0.217325\pi\)
−0.977008 + 0.213202i \(0.931611\pi\)
\(380\) 3.79255 3.02446i 0.194554 0.155151i
\(381\) −17.4867 + 21.9277i −0.895872 + 1.12339i
\(382\) −0.582105 + 0.280327i −0.0297831 + 0.0143428i
\(383\) −29.9022 14.4002i −1.52793 0.735813i −0.533967 0.845506i \(-0.679299\pi\)
−0.993966 + 0.109692i \(0.965014\pi\)
\(384\) 6.92543 + 8.68421i 0.353412 + 0.443164i
\(385\) 7.78764 + 1.77748i 0.396895 + 0.0905887i
\(386\) 0.384707 1.68551i 0.0195811 0.0857903i
\(387\) −0.128385 0.102384i −0.00652617 0.00520445i
\(388\) 1.98286 0.452575i 0.100664 0.0229760i
\(389\) 27.5362i 1.39614i −0.716030 0.698070i \(-0.754043\pi\)
0.716030 0.698070i \(-0.245957\pi\)
\(390\) −2.96950 13.0102i −0.150367 0.658799i
\(391\) 3.59001 7.45473i 0.181555 0.377002i
\(392\) −8.62661 + 17.9133i −0.435710 + 0.904761i
\(393\) −5.38620 23.5985i −0.271698 1.19039i
\(394\) 16.1588i 0.814070i
\(395\) −38.4514 + 8.77628i −1.93470 + 0.441583i
\(396\) 0.244991 + 0.195374i 0.0123113 + 0.00981791i
\(397\) 4.27748 18.7409i 0.214681 0.940577i −0.746658 0.665208i \(-0.768343\pi\)
0.961339 0.275369i \(-0.0888000\pi\)
\(398\) 23.7109 + 5.41185i 1.18852 + 0.271272i
\(399\) 2.09299 + 2.62453i 0.104781 + 0.131391i
\(400\) 29.8913 + 14.3949i 1.49457 + 0.719746i
\(401\) −9.93416 + 4.78404i −0.496088 + 0.238903i −0.665161 0.746700i \(-0.731637\pi\)
0.169073 + 0.985604i \(0.445923\pi\)
\(402\) 20.9426 26.2613i 1.04452 1.30979i
\(403\) −2.23750 + 1.78435i −0.111458 + 0.0888847i
\(404\) −0.620443 1.28836i −0.0308682 0.0640985i
\(405\) −39.1933 −1.94753
\(406\) 0 0
\(407\) −8.12737 −0.402859
\(408\) −3.82322 7.93900i −0.189278 0.393039i
\(409\) −26.4426 + 21.0872i −1.30750 + 1.04270i −0.311793 + 0.950150i \(0.600929\pi\)
−0.995708 + 0.0925470i \(0.970499\pi\)
\(410\) 20.4426 25.6343i 1.00959 1.26599i
\(411\) −27.5867 + 13.2851i −1.36075 + 0.655304i
\(412\) 2.61960 + 1.26154i 0.129059 + 0.0621514i
\(413\) −2.75973 3.46059i −0.135797 0.170284i
\(414\) −1.54898 0.353543i −0.0761280 0.0173757i
\(415\) 3.62349 15.8755i 0.177870 0.779300i
\(416\) −2.82894 2.25600i −0.138700 0.110610i
\(417\) 21.8970 4.99784i 1.07230 0.244745i
\(418\) 9.57002i 0.468085i
\(419\) −7.92596 34.7259i −0.387208 1.69647i −0.674209 0.738541i \(-0.735515\pi\)
0.287000 0.957930i \(-0.407342\pi\)
\(420\) 0.974928 2.02446i 0.0475716 0.0987835i
\(421\) 4.10329 8.52057i 0.199982 0.415267i −0.776726 0.629838i \(-0.783121\pi\)
0.976708 + 0.214571i \(0.0688354\pi\)
\(422\) 5.72468 + 25.0814i 0.278673 + 1.22095i
\(423\) 1.17390i 0.0570769i
\(424\) 0.145406 0.0331879i 0.00706152 0.00161175i
\(425\) −14.2873 11.3937i −0.693035 0.552677i
\(426\) 1.12953 4.94880i 0.0547259 0.239770i
\(427\) 0.882455 + 0.201415i 0.0427050 + 0.00974714i
\(428\) −1.60507 2.01270i −0.0775841 0.0972874i
\(429\) 6.78890 + 3.26936i 0.327771 + 0.157846i
\(430\) 3.02446 1.45650i 0.145852 0.0702388i
\(431\) 0.614465 0.770515i 0.0295977 0.0371144i −0.766812 0.641871i \(-0.778158\pi\)
0.796410 + 0.604757i \(0.206730\pi\)
\(432\) 11.2936 9.00634i 0.543363 0.433318i
\(433\) −12.4456 25.8436i −0.598099 1.24197i −0.951832 0.306619i \(-0.900802\pi\)
0.353734 0.935346i \(-0.384912\pi\)
\(434\) 1.68366 0.0808183
\(435\) 0 0
\(436\) −4.08815 −0.195787
\(437\) −6.02564 12.5124i −0.288246 0.598548i
\(438\) −14.6216 + 11.6603i −0.698646 + 0.557152i
\(439\) 4.11141 5.15554i 0.196227 0.246061i −0.673977 0.738752i \(-0.735415\pi\)
0.870204 + 0.492691i \(0.163987\pi\)
\(440\) −31.7080 + 15.2698i −1.51162 + 0.727959i
\(441\) −1.45108 0.698805i −0.0690992 0.0332764i
\(442\) −1.82908 2.29360i −0.0870007 0.109095i
\(443\) −20.8521 4.75936i −0.990713 0.226124i −0.303699 0.952768i \(-0.598222\pi\)
−0.687014 + 0.726644i \(0.741079\pi\)
\(444\) −0.508729 + 2.22889i −0.0241432 + 0.105778i
\(445\) 35.6338 + 28.4170i 1.68920 + 1.34709i
\(446\) −25.6526 + 5.85504i −1.21469 + 0.277244i
\(447\) 33.0030i 1.56099i
\(448\) 1.37047 + 6.00442i 0.0647486 + 0.283682i
\(449\) 12.6940 26.3593i 0.599067 1.24397i −0.352292 0.935890i \(-0.614598\pi\)
0.951359 0.308085i \(-0.0996880\pi\)
\(450\) −1.52251 + 3.16152i −0.0717718 + 0.149036i
\(451\) 4.11960 + 18.0492i 0.193985 + 0.849902i
\(452\) 3.99031i 0.187688i
\(453\) 33.4431 7.63318i 1.57130 0.358638i
\(454\) 6.95579 + 5.54706i 0.326451 + 0.260336i
\(455\) 0.914542 4.00687i 0.0428744 0.187845i
\(456\) −14.4190 3.29105i −0.675234 0.154118i
\(457\) 0.150637 + 0.188893i 0.00704650 + 0.00883603i 0.785342 0.619062i \(-0.212487\pi\)
−0.778296 + 0.627898i \(0.783916\pi\)
\(458\) 2.53050 + 1.21862i 0.118242 + 0.0569426i
\(459\) −7.16852 + 3.45218i −0.334598 + 0.161134i
\(460\) −5.79590 + 7.26782i −0.270235 + 0.338864i
\(461\) 13.5555 10.8101i 0.631342 0.503478i −0.254739 0.967010i \(-0.581989\pi\)
0.886080 + 0.463532i \(0.153418\pi\)
\(462\) −1.92339 3.99396i −0.0894842 0.185816i
\(463\) −4.24996 −0.197513 −0.0987563 0.995112i \(-0.531486\pi\)
−0.0987563 + 0.995112i \(0.531486\pi\)
\(464\) 0 0
\(465\) 14.2349 0.660128
\(466\) −10.2309 21.2446i −0.473935 0.984136i
\(467\) 22.5429 17.9773i 1.04316 0.831892i 0.0571135 0.998368i \(-0.481810\pi\)
0.986045 + 0.166476i \(0.0532389\pi\)
\(468\) 0.100523 0.126052i 0.00464668 0.00582675i
\(469\) 9.32036 4.48845i 0.430374 0.207257i
\(470\) 21.6211 + 10.4122i 0.997307 + 0.480278i
\(471\) −12.8509 16.1145i −0.592136 0.742515i
\(472\) 19.0123 + 4.33944i 0.875113 + 0.199739i
\(473\) −0.421780 + 1.84794i −0.0193934 + 0.0849683i
\(474\) 17.1125 + 13.6468i 0.786003 + 0.626816i
\(475\) −29.9032 + 6.82520i −1.37205 + 0.313162i
\(476\) 0.493959i 0.0226406i
\(477\) 0.00268841 + 0.0117787i 0.000123094 + 0.000539308i
\(478\) −11.0764 + 23.0003i −0.506621 + 1.05201i
\(479\) 10.4900 21.7826i 0.479298 0.995273i −0.511419 0.859332i \(-0.670880\pi\)
0.990717 0.135941i \(-0.0434059\pi\)
\(480\) 4.00484 + 17.5464i 0.182795 + 0.800879i
\(481\) 4.18167i 0.190668i
\(482\) −8.95858 + 2.04474i −0.408052 + 0.0931352i
\(483\) −5.02949 4.01089i −0.228850 0.182502i
\(484\) −0.284479 + 1.24639i −0.0129309 + 0.0566539i
\(485\) −18.0397 4.11745i −0.819142 0.186964i
\(486\) 1.99061 + 2.49614i 0.0902958 + 0.113227i
\(487\) −17.3986 8.37871i −0.788405 0.379676i −0.00405280 0.999992i \(-0.501290\pi\)
−0.784352 + 0.620316i \(0.787004\pi\)
\(488\) −3.59299 + 1.73029i −0.162647 + 0.0783267i
\(489\) −7.49880 + 9.40320i −0.339108 + 0.425228i
\(490\) 25.7414 20.5281i 1.16288 0.927365i
\(491\) 16.0063 + 33.2373i 0.722353 + 1.49998i 0.860435 + 0.509560i \(0.170192\pi\)
−0.138083 + 0.990421i \(0.544094\pi\)
\(492\) 5.20775 0.234784
\(493\) 0 0
\(494\) −4.92394 −0.221538
\(495\) −1.23694 2.56853i −0.0555963 0.115447i
\(496\) −4.44179 + 3.54221i −0.199442 + 0.159050i
\(497\) 0.974713 1.22225i 0.0437219 0.0548255i
\(498\) −8.14191 + 3.92094i −0.364848 + 0.175701i
\(499\) 33.9807 + 16.3642i 1.52118 + 0.732564i 0.993170 0.116672i \(-0.0372227\pi\)
0.528014 + 0.849236i \(0.322937\pi\)
\(500\) 7.18329 + 9.00756i 0.321247 + 0.402830i
\(501\) −25.7679 5.88135i −1.15122 0.262760i
\(502\) 3.59485 15.7501i 0.160446 0.702960i
\(503\) 5.48040 + 4.37047i 0.244359 + 0.194870i 0.738009 0.674791i \(-0.235766\pi\)
−0.493650 + 0.869661i \(0.664338\pi\)
\(504\) −0.508041 + 0.115957i −0.0226299 + 0.00516514i
\(505\) 13.0097i 0.578924i
\(506\) 4.08091 + 17.8796i 0.181419 + 0.794846i
\(507\) −8.48167 + 17.6124i −0.376684 + 0.782193i
\(508\) 3.00548 6.24094i 0.133347 0.276897i
\(509\) −4.09150 17.9260i −0.181352 0.794557i −0.980988 0.194071i \(-0.937831\pi\)
0.799635 0.600486i \(-0.205026\pi\)
\(510\) 14.5918i 0.646135i
\(511\) −5.61532 + 1.28166i −0.248407 + 0.0566973i
\(512\) −19.4981 15.5492i −0.861702 0.687185i
\(513\) −2.97166 + 13.0197i −0.131202 + 0.574833i
\(514\) −20.2927 4.63169i −0.895075 0.204295i
\(515\) −16.4928 20.6813i −0.726758 0.911326i
\(516\) 0.480386 + 0.231342i 0.0211478 + 0.0101842i
\(517\) −12.2083 + 5.87920i −0.536920 + 0.258567i
\(518\) 1.53385 1.92339i 0.0673936 0.0845089i
\(519\) −32.9097 + 26.2446i −1.44457 + 1.15201i
\(520\) 7.85656 + 16.3143i 0.344533 + 0.715430i
\(521\) −3.94571 −0.172865 −0.0864323 0.996258i \(-0.527547\pi\)
−0.0864323 + 0.996258i \(0.527547\pi\)
\(522\) 0 0
\(523\) −33.9952 −1.48651 −0.743253 0.669010i \(-0.766718\pi\)
−0.743253 + 0.669010i \(0.766718\pi\)
\(524\) 2.59386 + 5.38620i 0.113313 + 0.235297i
\(525\) −11.1081 + 8.85839i −0.484796 + 0.386612i
\(526\) −13.6908 + 17.1678i −0.596948 + 0.748550i
\(527\) 2.81940 1.35775i 0.122815 0.0591445i
\(528\) 13.4770 + 6.49020i 0.586513 + 0.282450i
\(529\) 2.25302 + 2.82520i 0.0979574 + 0.122835i
\(530\) −0.240787 0.0549581i −0.0104591 0.00238723i
\(531\) −0.351519 + 1.54011i −0.0152546 + 0.0668349i
\(532\) −0.648205 0.516926i −0.0281032 0.0224116i
\(533\) 9.28660 2.11960i 0.402247 0.0918103i
\(534\) 25.2935i 1.09456i
\(535\) 5.21164 + 22.8337i 0.225319 + 0.987186i
\(536\) −19.7753 + 41.0637i −0.854161 + 1.77368i
\(537\) 0.519820 1.07942i 0.0224319 0.0465803i
\(538\) −1.86174 8.15682i −0.0802653 0.351665i
\(539\) 18.5907i 0.800759i
\(540\) 8.71488 1.98911i 0.375029 0.0855979i
\(541\) 18.3230 + 14.6121i 0.787766 + 0.628222i 0.932468 0.361253i \(-0.117651\pi\)
−0.144702 + 0.989475i \(0.546222\pi\)
\(542\) −3.51507 + 15.4005i −0.150985 + 0.661508i
\(543\) −19.2649 4.39708i −0.826735 0.188697i
\(544\) 2.46681 + 3.09328i 0.105764 + 0.132623i
\(545\) 33.5100 + 16.1376i 1.43541 + 0.691257i
\(546\) −2.05496 + 0.989616i −0.0879441 + 0.0423516i
\(547\) 20.1362 25.2499i 0.860960 1.07961i −0.135091 0.990833i \(-0.543133\pi\)
0.996052 0.0887767i \(-0.0282958\pi\)
\(548\) 5.91241 4.71499i 0.252566 0.201414i
\(549\) −0.140164 0.291053i −0.00598203 0.0124218i
\(550\) 40.5042 1.72711
\(551\) 0 0
\(552\) 28.3424 1.20633
\(553\) 2.92478 + 6.07338i 0.124374 + 0.258266i
\(554\) −15.3463 + 12.2383i −0.652001 + 0.519953i
\(555\) 12.9683 16.2617i 0.550474 0.690272i
\(556\) −4.99784 + 2.40683i −0.211956 + 0.102073i
\(557\) 14.6184 + 7.03985i 0.619402 + 0.298288i 0.717146 0.696923i \(-0.245448\pi\)
−0.0977437 + 0.995212i \(0.531163\pi\)
\(558\) −0.374650 0.469796i −0.0158602 0.0198880i
\(559\) 0.950794 + 0.217013i 0.0402143 + 0.00917866i
\(560\) 1.81551 7.95427i 0.0767194 0.336129i
\(561\) −6.44167 5.13706i −0.271968 0.216887i
\(562\) 14.3632 3.27831i 0.605875 0.138287i
\(563\) 21.9168i 0.923681i 0.886963 + 0.461841i \(0.152811\pi\)
−0.886963 + 0.461841i \(0.847189\pi\)
\(564\) 0.848167 + 3.71606i 0.0357143 + 0.156474i
\(565\) 15.7514 32.7080i 0.662665 1.37604i
\(566\) 1.18925 2.46950i 0.0499879 0.103801i
\(567\) 1.49061 + 6.53078i 0.0625996 + 0.274267i
\(568\) 6.88769i 0.289001i
\(569\) 36.5568 8.34385i 1.53254 0.349793i 0.628696 0.777651i \(-0.283589\pi\)
0.903846 + 0.427859i \(0.140732\pi\)
\(570\) 19.1483 + 15.2702i 0.802033 + 0.639600i
\(571\) −6.14579 + 26.9265i −0.257193 + 1.12684i 0.667044 + 0.745019i \(0.267559\pi\)
−0.924237 + 0.381819i \(0.875298\pi\)
\(572\) −1.81436 0.414115i −0.0758621 0.0173150i
\(573\) 0.582105 + 0.729937i 0.0243178 + 0.0304935i
\(574\) −5.04892 2.43143i −0.210738 0.101486i
\(575\) 52.9575 25.5030i 2.20848 1.06355i
\(576\) 1.37047 1.71851i 0.0571029 0.0716048i
\(577\) −4.94963 + 3.94720i −0.206056 + 0.164324i −0.721080 0.692851i \(-0.756354\pi\)
0.515025 + 0.857175i \(0.327783\pi\)
\(578\) −7.80596 16.2092i −0.324685 0.674216i
\(579\) −2.49827 −0.103825
\(580\) 0 0
\(581\) −2.78315 −0.115465
\(582\) 4.45544 + 9.25182i 0.184684 + 0.383500i
\(583\) 0.109031 0.0869495i 0.00451561 0.00360108i
\(584\) 15.8218 19.8400i 0.654713 0.820984i
\(585\) −1.32155 + 0.636426i −0.0546395 + 0.0263130i
\(586\) −23.1930 11.1692i −0.958093 0.461393i
\(587\) −12.1754 15.2675i −0.502532 0.630155i 0.464266 0.885696i \(-0.346318\pi\)
−0.966798 + 0.255540i \(0.917747\pi\)
\(588\) 5.09841 + 1.16368i 0.210255 + 0.0479893i
\(589\) 1.16876 5.12067i 0.0481579 0.210993i
\(590\) −25.2481 20.1347i −1.03945 0.828931i
\(591\) 22.7648 5.19591i 0.936417 0.213731i
\(592\) 8.30127i 0.341180i
\(593\) −0.548622 2.40367i −0.0225292 0.0987069i 0.962413 0.271589i \(-0.0875492\pi\)
−0.984943 + 0.172882i \(0.944692\pi\)
\(594\) 7.65168 15.8889i 0.313952 0.651929i
\(595\) −1.94986 + 4.04892i −0.0799363 + 0.165989i
\(596\) −1.81378 7.94670i −0.0742954 0.325510i
\(597\) 35.1444i 1.43836i
\(598\) 9.19937 2.09970i 0.376190 0.0858629i
\(599\) −4.03567 3.21834i −0.164893 0.131498i 0.537567 0.843221i \(-0.319344\pi\)
−0.702460 + 0.711723i \(0.747915\pi\)
\(600\) 13.9291 61.0273i 0.568652 2.49143i
\(601\) 28.7280 + 6.55698i 1.17184 + 0.267465i 0.763772 0.645486i \(-0.223345\pi\)
0.408069 + 0.912951i \(0.366202\pi\)
\(602\) −0.357724 0.448572i −0.0145797 0.0182824i
\(603\) −3.32640 1.60191i −0.135461 0.0652347i
\(604\) −7.63318 + 3.67595i −0.310590 + 0.149572i
\(605\) 7.25182 9.09350i 0.294829 0.369703i
\(606\) 5.64469 4.50149i 0.229300 0.182861i
\(607\) 15.0347 + 31.2199i 0.610240 + 1.26718i 0.945675 + 0.325113i \(0.105402\pi\)
−0.335435 + 0.942063i \(0.608883\pi\)
\(608\) 6.64071 0.269316
\(609\) 0 0
\(610\) 6.60388 0.267383
\(611\) 3.02495 + 6.28136i 0.122376 + 0.254117i
\(612\) −0.137831 + 0.109916i −0.00557147 + 0.00444310i
\(613\) −17.1211 + 21.4692i −0.691515 + 0.867132i −0.996358 0.0852707i \(-0.972825\pi\)
0.304843 + 0.952403i \(0.401396\pi\)
\(614\) 25.6286 12.3421i 1.03429 0.498087i
\(615\) −42.6872 20.5571i −1.72132 0.828942i
\(616\) 3.75033 + 4.70277i 0.151105 + 0.189480i
\(617\) 33.4190 + 7.62767i 1.34540 + 0.307078i 0.833762 0.552124i \(-0.186182\pi\)
0.511636 + 0.859202i \(0.329040\pi\)
\(618\) −3.26659 + 14.3119i −0.131402 + 0.575708i
\(619\) −20.0669 16.0028i −0.806557 0.643208i 0.130866 0.991400i \(-0.458224\pi\)
−0.937423 + 0.348192i \(0.886796\pi\)
\(620\) −3.42758 + 0.782323i −0.137655 + 0.0314189i
\(621\) 25.5918i 1.02696i
\(622\) 8.62684 + 37.7967i 0.345905 + 1.51551i
\(623\) 3.37989 7.01842i 0.135413 0.281187i
\(624\) 3.33931 6.93416i 0.133680 0.277588i
\(625\) −10.6473 46.6488i −0.425891 1.86595i
\(626\) 14.0067i 0.559821i
\(627\) −13.4824 + 3.07726i −0.538434 + 0.122894i
\(628\) 3.97994 + 3.17390i 0.158817 + 0.126652i
\(629\) 1.01746 4.45778i 0.0405687 0.177743i
\(630\) 0.841301 + 0.192021i 0.0335182 + 0.00765032i
\(631\) 18.3312 + 22.9866i 0.729755 + 0.915084i 0.998846 0.0480308i \(-0.0152946\pi\)
−0.269091 + 0.963115i \(0.586723\pi\)
\(632\) −26.7582 12.8861i −1.06438 0.512580i
\(633\) 33.4943 16.1300i 1.33128 0.641109i
\(634\) −4.60806 + 5.77832i −0.183009 + 0.229486i
\(635\) −49.2710 + 39.2923i −1.95526 + 1.55927i
\(636\) −0.0170207 0.0353438i −0.000674914 0.00140147i
\(637\) 9.56524 0.378989
\(638\) 0 0
\(639\) −0.557942 −0.0220718
\(640\) 10.8290 + 22.4867i 0.428055 + 0.888866i
\(641\) 8.18375 6.52632i 0.323239 0.257774i −0.448403 0.893831i \(-0.648007\pi\)
0.771642 + 0.636057i \(0.219436\pi\)
\(642\) 8.10388 10.1619i 0.319834 0.401060i
\(643\) 2.74818 1.32345i 0.108377 0.0521918i −0.378910 0.925434i \(-0.623701\pi\)
0.487287 + 0.873242i \(0.337987\pi\)
\(644\) 1.43147 + 0.689359i 0.0564078 + 0.0271645i
\(645\) −3.02446 3.79255i −0.119088 0.149332i
\(646\) 5.24905 + 1.19806i 0.206521 + 0.0471371i
\(647\) −6.63198 + 29.0566i −0.260730 + 1.14233i 0.659732 + 0.751501i \(0.270670\pi\)
−0.920462 + 0.390832i \(0.872187\pi\)
\(648\) −23.0745 18.4013i −0.906450 0.722870i
\(649\) 17.7772 4.05754i 0.697818 0.159272i
\(650\) 20.8401i 0.817416i
\(651\) −0.541385 2.37196i −0.0212185 0.0929645i
\(652\) 1.28883 2.67629i 0.0504746 0.104812i
\(653\) −4.94168 + 10.2615i −0.193383 + 0.401564i −0.975003 0.222191i \(-0.928679\pi\)
0.781620 + 0.623755i \(0.214394\pi\)
\(654\) −4.59299 20.1232i −0.179600 0.786880i
\(655\) 54.3889i 2.12515i
\(656\) 18.4354 4.20775i 0.719780 0.164285i
\(657\) 1.60715 + 1.28166i 0.0627009 + 0.0500023i
\(658\) 0.912682 3.99872i 0.0355800 0.155886i
\(659\) 4.47246 + 1.02081i 0.174222 + 0.0397651i 0.308742 0.951146i \(-0.400092\pi\)
−0.134520 + 0.990911i \(0.542949\pi\)
\(660\) 5.77144 + 7.23715i 0.224653 + 0.281706i
\(661\) 11.6087 + 5.59046i 0.451527 + 0.217444i 0.645805 0.763503i \(-0.276522\pi\)
−0.194278 + 0.980947i \(0.562236\pi\)
\(662\) −34.7265 + 16.7234i −1.34968 + 0.649973i
\(663\) −2.64310 + 3.31435i −0.102650 + 0.128719i
\(664\) 9.58685 7.64526i 0.372042 0.296694i
\(665\) 3.27273 + 6.79590i 0.126911 + 0.263534i
\(666\) −0.878002 −0.0340219
\(667\) 0 0
\(668\) 6.52781 0.252569
\(669\) 16.4973 + 34.2570i 0.637822 + 1.32445i
\(670\) 59.0085 47.0577i 2.27970 1.81800i
\(671\) −2.32490 + 2.91534i −0.0897519 + 0.112545i
\(672\) 2.77144 1.33465i 0.106911 0.0514854i
\(673\) 4.31282 + 2.07695i 0.166247 + 0.0800604i 0.515157 0.857096i \(-0.327734\pi\)
−0.348910 + 0.937156i \(0.613448\pi\)
\(674\) 6.23155 + 7.81411i 0.240030 + 0.300988i
\(675\) −55.1046 12.5773i −2.12098 0.484099i
\(676\) 1.07434 4.70697i 0.0413206 0.181037i
\(677\) 23.8666 + 19.0330i 0.917267 + 0.731496i 0.963577 0.267431i \(-0.0861749\pi\)
−0.0463103 + 0.998927i \(0.514746\pi\)
\(678\) −19.6416 + 4.48307i −0.754332 + 0.172171i
\(679\) 3.16255i 0.121368i
\(680\) −4.40581 19.3031i −0.168955 0.740241i
\(681\) 5.57811 11.5831i 0.213754 0.443864i
\(682\) −3.00943 + 6.24914i −0.115237 + 0.239292i
\(683\) −2.12402 9.30595i −0.0812735 0.356082i 0.917896 0.396820i \(-0.129886\pi\)
−0.999170 + 0.0407378i \(0.987029\pi\)
\(684\) 0.295897i 0.0113139i
\(685\) −67.0752 + 15.3095i −2.56281 + 0.584945i
\(686\) −9.12230 7.27479i −0.348291 0.277753i
\(687\) 0.903125 3.95685i 0.0344564 0.150963i
\(688\) 1.88748 + 0.430804i 0.0719594 + 0.0164243i
\(689\) −0.0447370 0.0560984i −0.00170434 0.00213718i
\(690\) −42.2863 20.3640i −1.60981 0.775244i
\(691\) 14.8514 7.15205i 0.564973 0.272077i −0.129519 0.991577i \(-0.541343\pi\)
0.694492 + 0.719500i \(0.255629\pi\)
\(692\) 6.48188 8.12802i 0.246404 0.308981i
\(693\) −0.380951 + 0.303798i −0.0144711 + 0.0115403i
\(694\) −1.22458 2.54288i −0.0464846 0.0965263i
\(695\) 50.4674 1.91434
\(696\) 0 0
\(697\) −10.4155 −0.394515
\(698\) 12.7518 + 26.4795i 0.482665 + 1.00226i
\(699\) −26.6399 + 21.2446i −1.00761 + 0.803544i
\(700\) 2.18784 2.74347i 0.0826926 0.103693i
\(701\) 42.2253 20.3346i 1.59483 0.768028i 0.595452 0.803391i \(-0.296973\pi\)
0.999375 + 0.0353631i \(0.0112588\pi\)
\(702\) −8.17510 3.93692i −0.308549 0.148589i
\(703\) −4.78501 6.00022i −0.180470 0.226302i
\(704\) −24.7358 5.64579i −0.932267 0.212784i
\(705\) 7.71648 33.8081i 0.290619 1.27329i
\(706\) 0.957907 + 0.763906i 0.0360513 + 0.0287500i
\(707\) 2.16780 0.494787i 0.0815287 0.0186084i
\(708\) 5.12929i 0.192771i
\(709\) 2.35892 + 10.3351i 0.0885911 + 0.388143i 0.999712 0.0239961i \(-0.00763892\pi\)
−0.911121 + 0.412139i \(0.864782\pi\)
\(710\) 4.94880 10.2763i 0.185725 0.385662i
\(711\) 1.04384 2.16756i 0.0391472 0.0812900i
\(712\) 7.63706 + 33.4602i 0.286211 + 1.25397i
\(713\) 10.0653i 0.376949i
\(714\) 2.43143 0.554958i 0.0909940 0.0207688i
\(715\) 13.2374 + 10.5565i 0.495050 + 0.394789i
\(716\) −0.0658433 + 0.288478i −0.00246068 + 0.0107809i
\(717\) 35.9647 + 8.20871i 1.34313 + 0.306560i
\(718\) 6.12833 + 7.68469i 0.228707 + 0.286790i
\(719\) 11.9874 + 5.77282i 0.447054 + 0.215290i 0.643846 0.765155i \(-0.277338\pi\)
−0.196791 + 0.980445i \(0.563052\pi\)
\(720\) −2.62349 + 1.26341i −0.0977717 + 0.0470844i
\(721\) −2.81886 + 3.53474i −0.104980 + 0.131641i
\(722\) −11.4583 + 9.13773i −0.426436 + 0.340071i
\(723\) 5.76130 + 11.9635i 0.214265 + 0.444926i
\(724\) 4.88040 0.181378
\(725\) 0 0
\(726\) −6.45473 −0.239558
\(727\) −14.3257 29.7477i −0.531312 1.10328i −0.978003 0.208593i \(-0.933112\pi\)
0.446690 0.894689i \(-0.352603\pi\)
\(728\) 2.41965 1.92961i 0.0896783 0.0715160i
\(729\) −15.2295 + 19.0972i −0.564056 + 0.707304i
\(730\) −37.8608 + 18.2328i −1.40129 + 0.674827i
\(731\) −0.960771 0.462683i −0.0355354 0.0171130i
\(732\) 0.653989 + 0.820077i 0.0241721 + 0.0303109i
\(733\) 30.9981 + 7.07510i 1.14494 + 0.261325i 0.752589 0.658491i \(-0.228805\pi\)
0.392351 + 0.919816i \(0.371662\pi\)
\(734\) −8.13235 + 35.6302i −0.300171 + 1.31513i
\(735\) −37.1974 29.6640i −1.37205 1.09417i
\(736\) −12.4068 + 2.83177i −0.457321 + 0.104381i
\(737\) 42.6165i 1.56980i
\(738\) 0.445042 + 1.94986i 0.0163822 + 0.0717752i
\(739\) −10.3852 + 21.5652i −0.382027 + 0.793288i 0.617948 + 0.786219i \(0.287964\pi\)
−0.999975 + 0.00706872i \(0.997750\pi\)
\(740\) −2.22889 + 4.62833i −0.0819356 + 0.170141i
\(741\) 1.58330 + 6.93690i 0.0581640 + 0.254833i
\(742\) 0.0422126i 0.00154967i
\(743\) 7.22667 1.64944i 0.265121 0.0605121i −0.0878940 0.996130i \(-0.528014\pi\)
0.353015 + 0.935618i \(0.385157\pi\)
\(744\) 8.38058 + 6.68329i 0.307247 + 0.245021i
\(745\) −16.5015 + 72.2978i −0.604568 + 2.64878i
\(746\) 4.63515 + 1.05794i 0.169705 + 0.0387340i
\(747\) 0.619309 + 0.776589i 0.0226593 + 0.0284139i
\(748\) 1.83340 + 0.882917i 0.0670356 + 0.0322827i
\(749\) 3.60656 1.73683i 0.131781 0.0634624i
\(750\) −36.2678 + 45.4784i −1.32431 + 1.66064i
\(751\) −15.1380 + 12.0722i −0.552395 + 0.440520i −0.859485 0.511160i \(-0.829216\pi\)
0.307091 + 0.951680i \(0.400644\pi\)
\(752\) 6.00499 + 12.4695i 0.218980 + 0.454716i
\(753\) −23.3448 −0.850732
\(754\) 0 0
\(755\) 77.0786 2.80518
\(756\) −0.662892 1.37651i −0.0241092 0.0500632i
\(757\) 26.7674 21.3463i 0.972878 0.775845i −0.00167528 0.999999i \(-0.500533\pi\)
0.974554 + 0.224154i \(0.0719618\pi\)
\(758\) −7.01759 + 8.79978i −0.254890 + 0.319622i
\(759\) 23.8768 11.4985i 0.866673 0.417368i
\(760\) −29.9415 14.4190i −1.08609 0.523034i
\(761\) 9.07756 + 11.3829i 0.329061 + 0.412630i 0.918649 0.395075i \(-0.129281\pi\)
−0.589588 + 0.807704i \(0.700710\pi\)
\(762\) 34.0966 + 7.78232i 1.23519 + 0.281924i
\(763\) 1.41454 6.19752i 0.0512099 0.224365i
\(764\) −0.180280 0.143768i −0.00652228 0.00520135i
\(765\) 1.56366 0.356896i 0.0565344 0.0129036i
\(766\) 41.3860i 1.49534i
\(767\) −2.08767 9.14669i −0.0753815 0.330268i
\(768\) −7.90658 + 16.4182i −0.285304 + 0.592440i
\(769\) −5.01725 + 10.4184i −0.180927 + 0.375698i −0.971632 0.236499i \(-0.924000\pi\)
0.790705 + 0.612197i \(0.209714\pi\)
\(770\) −2.21648 9.71103i −0.0798764 0.349961i
\(771\) 30.0780i 1.08323i
\(772\) 0.601552 0.137300i 0.0216503 0.00494155i
\(773\) 6.54733 + 5.22132i 0.235491 + 0.187798i 0.734124 0.679015i \(-0.237593\pi\)
−0.498633 + 0.866813i \(0.666164\pi\)
\(774\) −0.0455650 + 0.199633i −0.00163780 + 0.00717566i
\(775\) 21.6728 + 4.94667i 0.778508 + 0.177689i
\(776\) −8.68747 10.8937i −0.311862 0.391063i
\(777\) −3.20291 1.54244i −0.114904 0.0553347i
\(778\) −30.9366 + 14.8983i −1.10913 + 0.534129i
\(779\) −10.8998 + 13.6679i −0.390525 + 0.489703i
\(780\) 3.72364 2.96950i 0.133328 0.106325i
\(781\) 2.79432 + 5.80247i 0.0999887 + 0.207629i
\(782\) −10.3177 −0.368959
\(783\) 0 0
\(784\) 18.9885 0.678161
\(785\) −20.0944 41.7265i −0.717200 1.48928i
\(786\) −23.5985 + 18.8192i −0.841730 + 0.671257i
\(787\) 6.06249 7.60212i 0.216104 0.270986i −0.661949 0.749549i \(-0.730271\pi\)
0.878054 + 0.478562i \(0.158842\pi\)
\(788\) −5.19591 + 2.50222i −0.185096 + 0.0891378i
\(789\) 28.5884 + 13.7675i 1.01778 + 0.490135i
\(790\) 30.6640 + 38.4514i 1.09098 + 1.36804i
\(791\) −6.04920 1.38069i −0.215085 0.0490917i
\(792\) 0.477697 2.09293i 0.0169742 0.0743690i
\(793\) 1.49999 + 1.19620i 0.0532662 + 0.0424784i
\(794\) −23.3695 + 5.33393i −0.829351 + 0.189294i
\(795\) 0.356896i 0.0126578i
\(796\) 1.93147 + 8.46232i 0.0684591 + 0.299939i
\(797\) −11.4589 + 23.7947i −0.405896 + 0.842852i 0.593384 + 0.804919i \(0.297791\pi\)
−0.999280 + 0.0379323i \(0.987923\pi\)
\(798\) 1.81623 3.77144i 0.0642938 0.133507i
\(799\) −1.69633 7.43212i −0.0600120 0.262930i
\(800\) 28.1062i 0.993704i
\(801\) −2.71046 + 0.618645i −0.0957695 + 0.0218588i
\(802\) 10.7496 + 8.57255i 0.379583 + 0.302707i
\(803\) 5.27993 23.1329i 0.186325 0.816342i
\(804\) 11.6874 + 2.66756i 0.412181 + 0.0940777i
\(805\) −9.01238 11.3012i −0.317645 0.398314i
\(806\) 3.21528 + 1.54840i 0.113254 + 0.0545400i
\(807\) −10.8928 + 5.24568i −0.383444 + 0.184657i
\(808\) −6.10806 + 7.65926i −0.214881 + 0.269452i
\(809\) 14.6905 11.7153i 0.516491 0.411887i −0.330250 0.943893i \(-0.607133\pi\)
0.846741 + 0.532006i \(0.178562\pi\)
\(810\) 21.2053 + 44.0332i 0.745078 + 1.54717i
\(811\) −48.6983 −1.71003 −0.855013 0.518606i \(-0.826451\pi\)
−0.855013 + 0.518606i \(0.826451\pi\)
\(812\) 0 0
\(813\) 22.8267 0.800567
\(814\) 4.39727 + 9.13102i 0.154124 + 0.320042i
\(815\) −21.1288 + 16.8497i −0.740110 + 0.590218i
\(816\) −5.24698 + 6.57950i −0.183681 + 0.230329i
\(817\) −1.61260 + 0.776589i −0.0564179 + 0.0271694i
\(818\) 37.9979 + 18.2988i 1.32857 + 0.639803i
\(819\) 0.156309 + 0.196006i 0.00546189 + 0.00684899i
\(820\) 11.4083 + 2.60388i 0.398396 + 0.0909313i
\(821\) 1.39277 6.10213i 0.0486081 0.212966i −0.944791 0.327673i \(-0.893736\pi\)
0.993399 + 0.114707i \(0.0365928\pi\)
\(822\) 29.8513 + 23.8056i 1.04118 + 0.830315i
\(823\) −14.6399 + 3.34146i −0.510315 + 0.116476i −0.469922 0.882708i \(-0.655718\pi\)
−0.0403927 + 0.999184i \(0.512861\pi\)
\(824\) 19.9191i 0.693916i
\(825\) −13.0242 57.0628i −0.453445 1.98667i
\(826\) −2.39480 + 4.97285i −0.0833257 + 0.173028i
\(827\) −5.18797 + 10.7729i −0.180403 + 0.374611i −0.971486 0.237098i \(-0.923804\pi\)
0.791082 + 0.611710i \(0.209518\pi\)
\(828\) −0.126178 0.552823i −0.00438500 0.0192119i
\(829\) 28.6305i 0.994380i 0.867642 + 0.497190i \(0.165635\pi\)
−0.867642 + 0.497190i \(0.834365\pi\)
\(830\) −19.7965 + 4.51842i −0.687146 + 0.156837i
\(831\) 22.1760 + 17.6848i 0.769278 + 0.613478i
\(832\) −2.90485 + 12.7270i −0.100708 + 0.441229i
\(833\) −10.1968 2.32736i −0.353299 0.0806381i
\(834\) −17.4623 21.8970i −0.604669 0.758231i
\(835\) −53.5076 25.7679i −1.85171 0.891735i
\(836\) 3.07726 1.48193i 0.106429 0.0512536i
\(837\) 6.03468 7.56725i 0.208589 0.261562i
\(838\) −34.7259 + 27.6930i −1.19959 + 0.956638i
\(839\) −20.9666 43.5376i −0.723847 1.50308i −0.858844 0.512237i \(-0.828817\pi\)
0.134997 0.990846i \(-0.456898\pi\)
\(840\) −15.3937 −0.531134
\(841\) 0 0
\(842\) −11.7928 −0.406408
\(843\) −9.23703 19.1809i −0.318140 0.660625i
\(844\) −7.17852 + 5.72468i −0.247095 + 0.197052i
\(845\) −27.3865 + 34.3416i −0.942124 + 1.18139i
\(846\) −1.31886 + 0.635131i −0.0453435 + 0.0218363i
\(847\) −1.79105 0.862525i −0.0615413 0.0296367i
\(848\) −0.0888100 0.111364i −0.00304975 0.00382426i
\(849\) −3.86147 0.881355i −0.132525 0.0302480i
\(850\) −5.07069 + 22.2161i −0.173923 + 0.762007i
\(851\) 11.4985 + 9.16972i 0.394162 + 0.314334i
\(852\) 1.76621 0.403125i 0.0605092 0.0138108i
\(853\) 6.40688i 0.219367i 0.993967 + 0.109684i \(0.0349838\pi\)
−0.993967 + 0.109684i \(0.965016\pi\)
\(854\) −0.251160 1.10040i −0.00859452 0.0376550i
\(855\) 1.16802 2.42543i 0.0399456 0.0829479i
\(856\) −7.65215 + 15.8898i −0.261545 + 0.543104i
\(857\) 0.159793 + 0.700099i 0.00545843 + 0.0239149i 0.977584 0.210547i \(-0.0675244\pi\)
−0.972125 + 0.234462i \(0.924667\pi\)
\(858\) 9.39612i 0.320778i
\(859\) 15.2064 3.47076i 0.518835 0.118421i 0.0449187 0.998991i \(-0.485697\pi\)
0.473916 + 0.880570i \(0.342840\pi\)
\(860\) 0.936683 + 0.746980i 0.0319406 + 0.0254718i
\(861\) −1.80194 + 7.89481i −0.0614099 + 0.269054i
\(862\) −1.19812 0.273463i −0.0408081 0.00931418i
\(863\) −8.41401 10.5508i −0.286416 0.359155i 0.617721 0.786398i \(-0.288056\pi\)
−0.904137 + 0.427243i \(0.859485\pi\)
\(864\) 11.0254 + 5.30956i 0.375092 + 0.180635i
\(865\) −85.2156 + 41.0377i −2.89742 + 1.39532i
\(866\) −22.3014 + 27.9651i −0.757833 + 0.950292i
\(867\) −20.3257 + 16.2092i −0.690299 + 0.550495i
\(868\) 0.260717 + 0.541385i 0.00884931 + 0.0183758i
\(869\) −27.7700 −0.942033
\(870\) 0 0
\(871\) 21.9269 0.742965
\(872\) 12.1519 + 25.2337i 0.411516 + 0.854521i
\(873\) 0.882455 0.703735i 0.0298666 0.0238178i
\(874\) −10.7974 + 13.5395i −0.365227 + 0.457980i
\(875\) −16.1407 + 7.77296i −0.545656 + 0.262774i
\(876\) −6.01357 2.89598i −0.203180 0.0978462i
\(877\) −9.78836 12.2742i −0.330530 0.414471i 0.588601 0.808424i \(-0.299679\pi\)
−0.919131 + 0.393953i \(0.871107\pi\)
\(878\) −8.01665 1.82975i −0.270549 0.0617510i
\(879\) −8.27748 + 36.2660i −0.279192 + 1.22322i
\(880\) 26.2783 + 20.9562i 0.885840 + 0.706434i
\(881\) −10.5599 + 2.41023i −0.355772 + 0.0812027i −0.396672 0.917961i \(-0.629835\pi\)
0.0408993 + 0.999163i \(0.486978\pi\)
\(882\) 2.00836i 0.0676250i
\(883\) −3.66690 16.0657i −0.123401 0.540655i −0.998401 0.0565318i \(-0.981996\pi\)
0.875000 0.484123i \(-0.160861\pi\)
\(884\) 0.454276 0.943313i 0.0152789 0.0317270i
\(885\) −20.2474 + 42.0441i −0.680608 + 1.41330i
\(886\) 5.93482 + 26.0021i 0.199384 + 0.873559i
\(887\) 28.5763i 0.959497i −0.877406 0.479748i \(-0.840728\pi\)
0.877406 0.479748i \(-0.159272\pi\)
\(888\) 15.2698 3.48523i 0.512421 0.116957i
\(889\) 8.42116 + 6.71565i 0.282437 + 0.225236i
\(890\) 12.6468 55.4090i 0.423920 1.85732i
\(891\) −26.9042 6.14071i −0.901325 0.205722i
\(892\) −5.85504 7.34198i −0.196041 0.245828i
\(893\) −11.5281 5.55164i −0.385773 0.185779i
\(894\) 37.0785 17.8561i 1.24009 0.597196i
\(895\) 1.67845 2.10471i 0.0561043 0.0703526i
\(896\) 3.33511 2.65966i 0.111418 0.0888531i
\(897\) −5.91615 12.2850i −0.197534 0.410185i
\(898\) −36.4825 −1.21744
\(899\) 0 0
\(900\) −1.25236 −0.0417452
\(901\) 0.0340414 + 0.0706876i 0.00113408 + 0.00235495i
\(902\) 18.0492 14.3937i 0.600972 0.479259i
\(903\) −0.516926 + 0.648205i −0.0172022 + 0.0215709i
\(904\) 24.6298 11.8611i 0.819176 0.394494i
\(905\) −40.0039 19.2649i −1.32978 0.640386i
\(906\) −26.6700 33.4431i −0.886052 1.11107i
\(907\) 32.0356 + 7.31192i 1.06373 + 0.242788i 0.718354 0.695678i \(-0.244896\pi\)
0.345371 + 0.938466i \(0.387753\pi\)
\(908\) −0.706554 + 3.09562i −0.0234478 + 0.102732i
\(909\) −0.620443 0.494787i −0.0205788 0.0164111i
\(910\) −4.99649 + 1.14042i −0.165632 + 0.0378044i
\(911\) 10.9638i 0.363245i −0.983368 0.181623i \(-0.941865\pi\)
0.983368 0.181623i \(-0.0581350\pi\)
\(912\) 3.14310 + 13.7708i 0.104079 + 0.455998i
\(913\) 4.97469 10.3300i 0.164638 0.341875i
\(914\) 0.130718 0.271438i 0.00432376 0.00897838i
\(915\) −2.12349 9.30362i −0.0702004 0.307568i
\(916\) 1.00239i 0.0331200i
\(917\) −9.06283 + 2.06853i −0.299281 + 0.0683089i
\(918\) 7.75697 + 6.18598i 0.256018 + 0.204168i
\(919\) −1.70506 + 7.47037i −0.0562448 + 0.246425i −0.995233 0.0975244i \(-0.968908\pi\)
0.938988 + 0.343949i \(0.111765\pi\)
\(920\) 62.0881 + 14.1712i 2.04699 + 0.467211i
\(921\) −25.6286 32.1373i −0.844492 1.05896i
\(922\) −19.4792 9.38068i −0.641513 0.308936i
\(923\) 2.98547 1.43773i 0.0982678 0.0473233i
\(924\) 0.986426 1.23694i 0.0324510 0.0406923i
\(925\) 25.3954 20.2521i 0.834994 0.665886i
\(926\) 2.29942 + 4.77479i 0.0755636 + 0.156909i
\(927\) 1.61356 0.0529964
\(928\) 0 0
\(929\) 9.35988 0.307088 0.153544 0.988142i \(-0.450931\pi\)
0.153544 + 0.988142i \(0.450931\pi\)
\(930\) −7.70171 15.9928i −0.252549 0.524423i
\(931\) −13.7250 + 10.9453i −0.449819 + 0.358719i
\(932\) 5.24698 6.57950i 0.171871 0.215519i
\(933\) 50.4744 24.3072i 1.65246 0.795782i
\(934\) −32.3940 15.6001i −1.05996 0.510452i
\(935\) −11.5429 14.4743i −0.377492 0.473361i
\(936\) −1.07685 0.245783i −0.0351978 0.00803367i
\(937\) 1.73652 7.60820i 0.0567297 0.248549i −0.938610 0.344980i \(-0.887886\pi\)
0.995340 + 0.0964312i \(0.0307428\pi\)
\(938\) −10.0854 8.04288i −0.329302 0.262609i
\(939\) −19.7328 + 4.50388i −0.643956 + 0.146979i
\(940\) 8.56465i 0.279348i
\(941\) −6.39708 28.0275i −0.208539 0.913669i −0.965540 0.260255i \(-0.916193\pi\)
0.757001 0.653414i \(-0.226664\pi\)
\(942\) −11.1516 + 23.1564i −0.363337 + 0.754478i
\(943\) 14.5356 30.1836i 0.473346 0.982913i
\(944\) −4.14436 18.1576i −0.134887 0.590980i
\(945\) 13.8998i 0.452160i
\(946\) 2.30434 0.525951i 0.0749206 0.0171001i
\(947\) −1.80549 1.43983i −0.0586705 0.0467882i 0.593716 0.804675i \(-0.297660\pi\)
−0.652386 + 0.757887i \(0.726232\pi\)
\(948\) −1.73825 + 7.61577i −0.0564557 + 0.247349i
\(949\) −11.9023 2.71661i −0.386363 0.0881849i
\(950\) 23.8470 + 29.9032i 0.773698 + 0.970186i
\(951\) 9.62229 + 4.63385i 0.312024 + 0.150263i
\(952\) −3.04892 + 1.46828i −0.0988160 + 0.0475873i
\(953\) −21.5293 + 26.9969i −0.697403 + 0.874515i −0.996826 0.0796051i \(-0.974634\pi\)
0.299424 + 0.954120i \(0.403206\pi\)
\(954\) 0.0117787 0.00939318i 0.000381349 0.000304115i
\(955\) 0.910216 + 1.89008i 0.0294539 + 0.0611617i
\(956\) −9.11098 −0.294670
\(957\) 0 0
\(958\) −30.1481 −0.974040
\(959\) 5.10203 + 10.5945i 0.164753 + 0.342114i
\(960\) 50.7657 40.4843i 1.63846 1.30663i
\(961\) 16.9547 21.2606i 0.546927 0.685825i
\(962\) 4.69806 2.26247i 0.151472 0.0729449i
\(963\) −1.28717 0.619867i −0.0414784 0.0199749i
\(964\) −2.04474 2.56402i −0.0658565 0.0825815i
\(965\) −5.47282 1.24914i −0.176176 0.0402111i
\(966\) −1.78501 + 7.82065i −0.0574318 + 0.251625i
\(967\) −40.2786 32.1211i −1.29527 1.03294i −0.996915 0.0784905i \(-0.974990\pi\)
−0.298357 0.954454i \(-0.596439\pi\)
\(968\) 8.53881 1.94893i 0.274448 0.0626409i
\(969\) 7.78017i 0.249935i
\(970\) 5.13437 + 22.4952i 0.164855 + 0.722276i
\(971\) 3.44310 7.14968i 0.110494 0.229444i −0.838388 0.545074i \(-0.816502\pi\)
0.948882 + 0.315630i \(0.102216\pi\)
\(972\) −0.494392 + 1.02661i −0.0158576 + 0.0329287i
\(973\) −1.91939 8.40938i −0.0615327 0.269592i
\(974\) 24.0804i 0.771585i
\(975\) −29.3598 + 6.70118i −0.940265 + 0.214609i
\(976\) 2.97772 + 2.37465i 0.0953144 + 0.0760107i
\(977\) −6.14148 + 26.9076i −0.196483 + 0.860850i 0.776526 + 0.630085i \(0.216980\pi\)
−0.973010 + 0.230765i \(0.925877\pi\)
\(978\) 14.6216 + 3.33728i 0.467547 + 0.106714i
\(979\) 20.0085 + 25.0899i 0.639474 + 0.801875i
\(980\) 10.5869 + 5.09841i 0.338188 + 0.162863i
\(981\) −2.04407 + 0.984374i −0.0652622 + 0.0314286i
\(982\) 28.6817 35.9657i 0.915271 1.14771i
\(983\) 27.6200 22.0262i 0.880942 0.702528i −0.0746531 0.997210i \(-0.523785\pi\)
0.955596 + 0.294681i \(0.0952135\pi\)
\(984\) −15.4799 32.1444i −0.493481 1.02472i
\(985\) 52.4674 1.67175
\(986\) 0 0
\(987\) −5.92692 −0.188656
\(988\) −0.762478 1.58330i −0.0242577 0.0503715i
\(989\) 2.68166 2.13856i 0.0852719 0.0680021i
\(990\) −2.21648 + 2.77938i −0.0704444 + 0.0883344i
\(991\) −0.498804 + 0.240211i −0.0158450 + 0.00763056i −0.441789 0.897119i \(-0.645656\pi\)
0.425944 + 0.904749i \(0.359942\pi\)
\(992\) −4.33632 2.08826i −0.137678 0.0663024i
\(993\) 34.7265 + 43.5456i 1.10201 + 1.38188i
\(994\) −1.90055 0.433788i −0.0602818 0.0137589i
\(995\) 17.5722 76.9887i 0.557076 2.44071i
\(996\) −2.52157 2.01089i −0.0798990 0.0637173i
\(997\) 21.6879 4.95012i 0.686863 0.156772i 0.135174 0.990822i \(-0.456841\pi\)
0.551689 + 0.834050i \(0.313984\pi\)
\(998\) 47.0307i 1.48873i
\(999\) −3.14699 13.7879i −0.0995663 0.436229i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.e.c.270.1 12
29.2 odd 28 29.2.d.a.7.1 6
29.3 odd 28 841.2.d.e.574.1 6
29.4 even 14 841.2.b.c.840.2 6
29.5 even 14 841.2.e.d.196.1 12
29.6 even 14 841.2.e.b.63.2 12
29.7 even 7 841.2.e.b.267.2 12
29.8 odd 28 841.2.d.d.605.1 6
29.9 even 14 841.2.e.d.236.2 12
29.10 odd 28 841.2.a.f.1.1 3
29.11 odd 28 841.2.d.b.190.1 6
29.12 odd 4 841.2.d.c.571.1 6
29.13 even 14 inner 841.2.e.c.651.1 12
29.14 odd 28 841.2.d.e.778.1 6
29.15 odd 28 841.2.d.a.778.1 6
29.16 even 7 inner 841.2.e.c.651.2 12
29.17 odd 4 841.2.d.b.571.1 6
29.18 odd 28 841.2.d.c.190.1 6
29.19 odd 28 841.2.a.e.1.3 3
29.20 even 7 841.2.e.d.236.1 12
29.21 odd 28 29.2.d.a.25.1 yes 6
29.22 even 14 841.2.e.b.267.1 12
29.23 even 7 841.2.e.b.63.1 12
29.24 even 7 841.2.e.d.196.2 12
29.25 even 7 841.2.b.c.840.5 6
29.26 odd 28 841.2.d.a.574.1 6
29.27 odd 28 841.2.d.d.645.1 6
29.28 even 2 inner 841.2.e.c.270.2 12
87.2 even 28 261.2.k.a.181.1 6
87.50 even 28 261.2.k.a.199.1 6
87.68 even 28 7569.2.a.p.1.3 3
87.77 even 28 7569.2.a.r.1.1 3
116.31 even 28 464.2.u.f.65.1 6
116.79 even 28 464.2.u.f.257.1 6
145.2 even 28 725.2.r.b.674.2 12
145.79 odd 28 725.2.l.b.576.1 6
145.89 odd 28 725.2.l.b.326.1 6
145.108 even 28 725.2.r.b.199.2 12
145.118 even 28 725.2.r.b.674.1 12
145.137 even 28 725.2.r.b.199.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.7.1 6 29.2 odd 28
29.2.d.a.25.1 yes 6 29.21 odd 28
261.2.k.a.181.1 6 87.2 even 28
261.2.k.a.199.1 6 87.50 even 28
464.2.u.f.65.1 6 116.31 even 28
464.2.u.f.257.1 6 116.79 even 28
725.2.l.b.326.1 6 145.89 odd 28
725.2.l.b.576.1 6 145.79 odd 28
725.2.r.b.199.1 12 145.137 even 28
725.2.r.b.199.2 12 145.108 even 28
725.2.r.b.674.1 12 145.118 even 28
725.2.r.b.674.2 12 145.2 even 28
841.2.a.e.1.3 3 29.19 odd 28
841.2.a.f.1.1 3 29.10 odd 28
841.2.b.c.840.2 6 29.4 even 14
841.2.b.c.840.5 6 29.25 even 7
841.2.d.a.574.1 6 29.26 odd 28
841.2.d.a.778.1 6 29.15 odd 28
841.2.d.b.190.1 6 29.11 odd 28
841.2.d.b.571.1 6 29.17 odd 4
841.2.d.c.190.1 6 29.18 odd 28
841.2.d.c.571.1 6 29.12 odd 4
841.2.d.d.605.1 6 29.8 odd 28
841.2.d.d.645.1 6 29.27 odd 28
841.2.d.e.574.1 6 29.3 odd 28
841.2.d.e.778.1 6 29.14 odd 28
841.2.e.b.63.1 12 29.23 even 7
841.2.e.b.63.2 12 29.6 even 14
841.2.e.b.267.1 12 29.22 even 14
841.2.e.b.267.2 12 29.7 even 7
841.2.e.c.270.1 12 1.1 even 1 trivial
841.2.e.c.270.2 12 29.28 even 2 inner
841.2.e.c.651.1 12 29.13 even 14 inner
841.2.e.c.651.2 12 29.16 even 7 inner
841.2.e.d.196.1 12 29.5 even 14
841.2.e.d.196.2 12 29.24 even 7
841.2.e.d.236.1 12 29.20 even 7
841.2.e.d.236.2 12 29.9 even 14
7569.2.a.p.1.3 3 87.68 even 28
7569.2.a.r.1.1 3 87.77 even 28