Properties

Label 841.2.d.e.574.1
Level $841$
Weight $2$
Character 841.574
Analytic conductor $6.715$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(190,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.190"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,5,2,5,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 574.1
Root \(0.222521 + 0.974928i\) of defining polynomial
Character \(\chi\) \(=\) 841.574
Dual form 841.2.d.e.778.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.777479 - 0.974928i) q^{2} +(-0.400969 + 1.75676i) q^{3} +(0.0990311 + 0.433884i) q^{4} +(-2.52446 + 3.16557i) q^{5} +(1.40097 + 1.75676i) q^{6} +(-0.153989 + 0.674671i) q^{7} +(2.74698 + 1.32288i) q^{8} +(-0.222521 - 0.107160i) q^{9} +(1.12349 + 4.92233i) q^{10} +(2.56853 - 1.23694i) q^{11} -0.801938 q^{12} +(-1.32155 + 0.636426i) q^{13} +(0.538032 + 0.674671i) q^{14} +(-4.54892 - 5.70416i) q^{15} +(2.62349 - 1.26341i) q^{16} -1.60388 q^{17} +(-0.277479 + 0.133627i) q^{18} +(0.599031 + 2.62453i) q^{19} +(-1.62349 - 0.781831i) q^{20} +(-1.12349 - 0.541044i) q^{21} +(0.791053 - 3.46583i) q^{22} +(-3.21648 - 4.03334i) q^{23} +(-3.42543 + 4.29535i) q^{24} +(-2.53534 - 11.1081i) q^{25} +(-0.407010 + 1.78323i) q^{26} +(-3.09299 + 3.87849i) q^{27} -0.307979 q^{28} -9.09783 q^{30} +(-1.21648 + 1.52542i) q^{31} +(-0.548917 + 2.40496i) q^{32} +(1.14310 + 5.00827i) q^{33} +(-1.24698 + 1.56366i) q^{34} +(-1.74698 - 2.19064i) q^{35} +(0.0244587 - 0.107160i) q^{36} +(-2.56853 - 1.23694i) q^{37} +(3.02446 + 1.45650i) q^{38} +(-0.588146 - 2.57684i) q^{39} +(-11.1223 + 5.35621i) q^{40} +6.49396 q^{41} +(-1.40097 + 0.674671i) q^{42} +(0.414542 + 0.519820i) q^{43} +(0.791053 + 0.991949i) q^{44} +(0.900969 - 0.433884i) q^{45} -6.43296 q^{46} +(4.28232 - 2.06226i) q^{47} +(1.16756 + 5.11543i) q^{48} +(5.87531 + 2.82940i) q^{49} +(-12.8007 - 6.16451i) q^{50} +(0.643104 - 2.81762i) q^{51} +(-0.407010 - 0.510374i) q^{52} +(0.0304995 - 0.0382451i) q^{53} +(1.37651 + 6.03089i) q^{54} +(-2.56853 + 11.2535i) q^{55} +(-1.31551 + 1.64960i) q^{56} -4.85086 q^{57} -6.39612 q^{59} +(2.02446 - 2.53859i) q^{60} +(0.291053 - 1.27518i) q^{61} +(0.541385 + 2.37196i) q^{62} +(0.106564 - 0.133627i) q^{63} +(5.54892 + 6.95812i) q^{64} +(1.32155 - 5.79010i) q^{65} +(5.77144 + 2.77938i) q^{66} +(-13.4683 - 6.48599i) q^{67} +(-0.158834 - 0.695895i) q^{68} +(8.37531 - 4.03334i) q^{69} -3.49396 q^{70} +(2.03534 - 0.980170i) q^{71} +(-0.469501 - 0.588735i) q^{72} +(5.18933 + 6.50722i) q^{73} +(-3.20291 + 1.54244i) q^{74} +20.5308 q^{75} +(-1.07942 + 0.519820i) q^{76} +(0.439001 + 1.92339i) q^{77} +(-2.96950 - 1.43004i) q^{78} +(8.77628 + 4.22643i) q^{79} +(-2.62349 + 11.4943i) q^{80} +(-6.03534 - 7.56808i) q^{81} +(5.04892 - 6.33114i) q^{82} +(0.894928 + 3.92094i) q^{83} +(0.123490 - 0.541044i) q^{84} +(4.04892 - 5.07718i) q^{85} +0.829085 q^{86} +8.69202 q^{88} +(7.01842 - 8.80082i) q^{89} +(0.277479 - 1.21572i) q^{90} +(-0.225873 - 0.989616i) q^{91} +(1.43147 - 1.79500i) q^{92} +(-2.19202 - 2.74871i) q^{93} +(1.31886 - 5.77832i) q^{94} +(-9.82036 - 4.72923i) q^{95} +(-4.00484 - 1.92863i) q^{96} +(1.01693 + 4.45544i) q^{97} +(7.32640 - 3.52821i) q^{98} -0.704103 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} + 2 q^{3} + 5 q^{4} - 6 q^{5} + 4 q^{6} - 6 q^{7} + 7 q^{8} - q^{9} + 2 q^{10} + 10 q^{11} + 4 q^{12} - 12 q^{13} - 12 q^{14} - 9 q^{15} + 11 q^{16} + 8 q^{17} - 2 q^{18} + 8 q^{19} - 5 q^{20}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.777479 0.974928i 0.549761 0.689378i −0.426867 0.904314i \(-0.640383\pi\)
0.976628 + 0.214936i \(0.0689543\pi\)
\(3\) −0.400969 + 1.75676i −0.231499 + 1.01427i 0.716897 + 0.697179i \(0.245562\pi\)
−0.948397 + 0.317087i \(0.897295\pi\)
\(4\) 0.0990311 + 0.433884i 0.0495156 + 0.216942i
\(5\) −2.52446 + 3.16557i −1.12897 + 1.41569i −0.232494 + 0.972598i \(0.574689\pi\)
−0.896478 + 0.443089i \(0.853883\pi\)
\(6\) 1.40097 + 1.75676i 0.571943 + 0.717194i
\(7\) −0.153989 + 0.674671i −0.0582025 + 0.255002i −0.995656 0.0931090i \(-0.970320\pi\)
0.937453 + 0.348111i \(0.113177\pi\)
\(8\) 2.74698 + 1.32288i 0.971204 + 0.467707i
\(9\) −0.222521 0.107160i −0.0741736 0.0357201i
\(10\) 1.12349 + 4.92233i 0.355279 + 1.55658i
\(11\) 2.56853 1.23694i 0.774441 0.372951i −0.00454697 0.999990i \(-0.501447\pi\)
0.778988 + 0.627038i \(0.215733\pi\)
\(12\) −0.801938 −0.231499
\(13\) −1.32155 + 0.636426i −0.366533 + 0.176513i −0.608079 0.793876i \(-0.708060\pi\)
0.241546 + 0.970389i \(0.422345\pi\)
\(14\) 0.538032 + 0.674671i 0.143795 + 0.180313i
\(15\) −4.54892 5.70416i −1.17453 1.47281i
\(16\) 2.62349 1.26341i 0.655872 0.315852i
\(17\) −1.60388 −0.388997 −0.194498 0.980903i \(-0.562308\pi\)
−0.194498 + 0.980903i \(0.562308\pi\)
\(18\) −0.277479 + 0.133627i −0.0654024 + 0.0314962i
\(19\) 0.599031 + 2.62453i 0.137427 + 0.602108i 0.995995 + 0.0894079i \(0.0284975\pi\)
−0.858568 + 0.512700i \(0.828645\pi\)
\(20\) −1.62349 0.781831i −0.363023 0.174823i
\(21\) −1.12349 0.541044i −0.245166 0.118066i
\(22\) 0.791053 3.46583i 0.168653 0.738917i
\(23\) −3.21648 4.03334i −0.670682 0.841009i 0.323777 0.946134i \(-0.395047\pi\)
−0.994459 + 0.105124i \(0.966476\pi\)
\(24\) −3.42543 + 4.29535i −0.699212 + 0.876785i
\(25\) −2.53534 11.1081i −0.507069 2.22161i
\(26\) −0.407010 + 1.78323i −0.0798212 + 0.349719i
\(27\) −3.09299 + 3.87849i −0.595246 + 0.746415i
\(28\) −0.307979 −0.0582025
\(29\) 0 0
\(30\) −9.09783 −1.66103
\(31\) −1.21648 + 1.52542i −0.218486 + 0.273973i −0.878980 0.476858i \(-0.841775\pi\)
0.660494 + 0.750831i \(0.270347\pi\)
\(32\) −0.548917 + 2.40496i −0.0970358 + 0.425142i
\(33\) 1.14310 + 5.00827i 0.198989 + 0.871827i
\(34\) −1.24698 + 1.56366i −0.213855 + 0.268166i
\(35\) −1.74698 2.19064i −0.295293 0.370286i
\(36\) 0.0244587 0.107160i 0.00407644 0.0178601i
\(37\) −2.56853 1.23694i −0.422264 0.203352i 0.210670 0.977557i \(-0.432435\pi\)
−0.632934 + 0.774206i \(0.718150\pi\)
\(38\) 3.02446 + 1.45650i 0.490632 + 0.236276i
\(39\) −0.588146 2.57684i −0.0941787 0.412624i
\(40\) −11.1223 + 5.35621i −1.75859 + 0.846892i
\(41\) 6.49396 1.01419 0.507093 0.861891i \(-0.330720\pi\)
0.507093 + 0.861891i \(0.330720\pi\)
\(42\) −1.40097 + 0.674671i −0.216174 + 0.104104i
\(43\) 0.414542 + 0.519820i 0.0632171 + 0.0792718i 0.812435 0.583052i \(-0.198142\pi\)
−0.749218 + 0.662324i \(0.769570\pi\)
\(44\) 0.791053 + 0.991949i 0.119256 + 0.149542i
\(45\) 0.900969 0.433884i 0.134309 0.0646796i
\(46\) −6.43296 −0.948488
\(47\) 4.28232 2.06226i 0.624641 0.300811i −0.0946601 0.995510i \(-0.530176\pi\)
0.719301 + 0.694698i \(0.244462\pi\)
\(48\) 1.16756 + 5.11543i 0.168523 + 0.738348i
\(49\) 5.87531 + 2.82940i 0.839331 + 0.404200i
\(50\) −12.8007 6.16451i −1.81030 0.871794i
\(51\) 0.643104 2.81762i 0.0900526 0.394546i
\(52\) −0.407010 0.510374i −0.0564421 0.0707761i
\(53\) 0.0304995 0.0382451i 0.00418942 0.00525337i −0.779732 0.626113i \(-0.784645\pi\)
0.783922 + 0.620860i \(0.213216\pi\)
\(54\) 1.37651 + 6.03089i 0.187319 + 0.820700i
\(55\) −2.56853 + 11.2535i −0.346341 + 1.51742i
\(56\) −1.31551 + 1.64960i −0.175793 + 0.220437i
\(57\) −4.85086 −0.642511
\(58\) 0 0
\(59\) −6.39612 −0.832704 −0.416352 0.909203i \(-0.636692\pi\)
−0.416352 + 0.909203i \(0.636692\pi\)
\(60\) 2.02446 2.53859i 0.261356 0.327731i
\(61\) 0.291053 1.27518i 0.0372655 0.163271i −0.952871 0.303375i \(-0.901887\pi\)
0.990137 + 0.140104i \(0.0447437\pi\)
\(62\) 0.541385 + 2.37196i 0.0687559 + 0.301239i
\(63\) 0.106564 0.133627i 0.0134258 0.0168354i
\(64\) 5.54892 + 6.95812i 0.693615 + 0.869765i
\(65\) 1.32155 5.79010i 0.163918 0.718173i
\(66\) 5.77144 + 2.77938i 0.710415 + 0.342118i
\(67\) −13.4683 6.48599i −1.64542 0.792390i −0.999582 0.0289117i \(-0.990796\pi\)
−0.645833 0.763478i \(-0.723490\pi\)
\(68\) −0.158834 0.695895i −0.0192614 0.0843897i
\(69\) 8.37531 4.03334i 1.00827 0.485557i
\(70\) −3.49396 −0.417608
\(71\) 2.03534 0.980170i 0.241551 0.116325i −0.309192 0.951000i \(-0.600059\pi\)
0.550743 + 0.834675i \(0.314344\pi\)
\(72\) −0.469501 0.588735i −0.0553312 0.0693831i
\(73\) 5.18933 + 6.50722i 0.607365 + 0.761612i 0.986506 0.163727i \(-0.0523516\pi\)
−0.379140 + 0.925339i \(0.623780\pi\)
\(74\) −3.20291 + 1.54244i −0.372330 + 0.179305i
\(75\) 20.5308 2.37069
\(76\) −1.07942 + 0.519820i −0.123818 + 0.0596274i
\(77\) 0.439001 + 1.92339i 0.0500288 + 0.219191i
\(78\) −2.96950 1.43004i −0.336230 0.161920i
\(79\) 8.77628 + 4.22643i 0.987409 + 0.475511i 0.856647 0.515903i \(-0.172543\pi\)
0.130762 + 0.991414i \(0.458258\pi\)
\(80\) −2.62349 + 11.4943i −0.293315 + 1.28510i
\(81\) −6.03534 7.56808i −0.670594 0.840898i
\(82\) 5.04892 6.33114i 0.557560 0.699158i
\(83\) 0.894928 + 3.92094i 0.0982311 + 0.430379i 0.999998 0.00184346i \(-0.000586791\pi\)
−0.901767 + 0.432222i \(0.857730\pi\)
\(84\) 0.123490 0.541044i 0.0134738 0.0590328i
\(85\) 4.04892 5.07718i 0.439167 0.550698i
\(86\) 0.829085 0.0894025
\(87\) 0 0
\(88\) 8.69202 0.926573
\(89\) 7.01842 8.80082i 0.743951 0.932885i −0.255473 0.966816i \(-0.582231\pi\)
0.999424 + 0.0339313i \(0.0108027\pi\)
\(90\) 0.277479 1.21572i 0.0292489 0.128148i
\(91\) −0.225873 0.989616i −0.0236780 0.103740i
\(92\) 1.43147 1.79500i 0.149241 0.187142i
\(93\) −2.19202 2.74871i −0.227302 0.285028i
\(94\) 1.31886 5.77832i 0.136030 0.595988i
\(95\) −9.82036 4.72923i −1.00755 0.485209i
\(96\) −4.00484 1.92863i −0.408743 0.196840i
\(97\) 1.01693 + 4.45544i 0.103253 + 0.452382i 0.999953 + 0.00974167i \(0.00310092\pi\)
−0.896699 + 0.442640i \(0.854042\pi\)
\(98\) 7.32640 3.52821i 0.740078 0.356403i
\(99\) −0.704103 −0.0707650
\(100\) 4.56853 2.20009i 0.456853 0.220009i
\(101\) 2.00335 + 2.51212i 0.199341 + 0.249966i 0.871448 0.490489i \(-0.163182\pi\)
−0.672107 + 0.740454i \(0.734610\pi\)
\(102\) −2.24698 2.81762i −0.222484 0.278986i
\(103\) 5.88620 2.83464i 0.579984 0.279306i −0.120802 0.992677i \(-0.538547\pi\)
0.700787 + 0.713371i \(0.252832\pi\)
\(104\) −4.47219 −0.438534
\(105\) 4.54892 2.19064i 0.443929 0.213785i
\(106\) −0.0135735 0.0594696i −0.00131838 0.00577619i
\(107\) 5.21164 + 2.50979i 0.503828 + 0.242631i 0.668492 0.743719i \(-0.266940\pi\)
−0.164665 + 0.986350i \(0.552654\pi\)
\(108\) −1.98911 0.957907i −0.191403 0.0921747i
\(109\) −2.04407 + 8.95567i −0.195787 + 0.857798i 0.777624 + 0.628730i \(0.216425\pi\)
−0.973410 + 0.229068i \(0.926432\pi\)
\(110\) 8.97434 + 11.2535i 0.855670 + 1.07298i
\(111\) 3.20291 4.01632i 0.304006 0.381212i
\(112\) 0.448394 + 1.96454i 0.0423693 + 0.185632i
\(113\) 1.99516 8.74135i 0.187688 0.822317i −0.790143 0.612923i \(-0.789994\pi\)
0.977831 0.209394i \(-0.0671492\pi\)
\(114\) −3.77144 + 4.72923i −0.353228 + 0.442933i
\(115\) 20.8877 1.94779
\(116\) 0 0
\(117\) 0.362273 0.0334921
\(118\) −4.97285 + 6.23576i −0.457788 + 0.574048i
\(119\) 0.246980 1.08209i 0.0226406 0.0991949i
\(120\) −4.94989 21.6869i −0.451861 1.97973i
\(121\) −1.79105 + 2.24591i −0.162823 + 0.204174i
\(122\) −1.01693 1.27518i −0.0920681 0.115450i
\(123\) −2.60388 + 11.4083i −0.234784 + 1.02865i
\(124\) −0.782323 0.376747i −0.0702547 0.0338329i
\(125\) 23.3240 + 11.2322i 2.08616 + 1.00464i
\(126\) −0.0474254 0.207784i −0.00422499 0.0185109i
\(127\) −14.0233 + 6.75325i −1.24436 + 0.599254i −0.935995 0.352013i \(-0.885497\pi\)
−0.308368 + 0.951267i \(0.599783\pi\)
\(128\) 6.16421 0.544844
\(129\) −1.07942 + 0.519820i −0.0950374 + 0.0457676i
\(130\) −4.61745 5.79010i −0.404977 0.507825i
\(131\) 8.37531 + 10.5023i 0.731755 + 0.917591i 0.998939 0.0460542i \(-0.0146647\pi\)
−0.267184 + 0.963645i \(0.586093\pi\)
\(132\) −2.05980 + 0.991949i −0.179283 + 0.0863380i
\(133\) −1.86294 −0.161537
\(134\) −16.7947 + 8.08790i −1.45084 + 0.698688i
\(135\) −4.46950 19.5822i −0.384673 1.68536i
\(136\) −4.40581 2.12173i −0.377795 0.181937i
\(137\) 15.3095 + 7.37265i 1.30798 + 0.629888i 0.952426 0.304769i \(-0.0985793\pi\)
0.355550 + 0.934657i \(0.384294\pi\)
\(138\) 2.57942 11.3012i 0.219575 0.962019i
\(139\) 7.77144 + 9.74508i 0.659165 + 0.826567i 0.993252 0.115976i \(-0.0369995\pi\)
−0.334087 + 0.942542i \(0.608428\pi\)
\(140\) 0.777479 0.974928i 0.0657090 0.0823964i
\(141\) 1.90581 + 8.34991i 0.160498 + 0.703190i
\(142\) 0.626842 2.74638i 0.0526034 0.230471i
\(143\) −2.60723 + 3.26936i −0.218027 + 0.273398i
\(144\) −0.719169 −0.0599307
\(145\) 0 0
\(146\) 10.3787 0.858945
\(147\) −7.32640 + 9.18701i −0.604271 + 0.757732i
\(148\) 0.282323 1.23694i 0.0232068 0.101676i
\(149\) 4.07553 + 17.8561i 0.333881 + 1.46283i 0.811548 + 0.584286i \(0.198625\pi\)
−0.477667 + 0.878541i \(0.658518\pi\)
\(150\) 15.9623 20.0160i 1.30331 1.63430i
\(151\) −11.8693 14.8836i −0.965908 1.21121i −0.977426 0.211276i \(-0.932238\pi\)
0.0115186 0.999934i \(-0.496333\pi\)
\(152\) −1.82640 + 8.00197i −0.148140 + 0.649045i
\(153\) 0.356896 + 0.171872i 0.0288533 + 0.0138950i
\(154\) 2.21648 + 1.06740i 0.178609 + 0.0860136i
\(155\) −1.75786 7.70171i −0.141195 0.618616i
\(156\) 1.05980 0.510374i 0.0848521 0.0408626i
\(157\) −11.4383 −0.912879 −0.456439 0.889755i \(-0.650875\pi\)
−0.456439 + 0.889755i \(0.650875\pi\)
\(158\) 10.9438 5.27028i 0.870646 0.419281i
\(159\) 0.0549581 + 0.0689153i 0.00435846 + 0.00546534i
\(160\) −6.22737 7.80887i −0.492316 0.617345i
\(161\) 3.21648 1.54898i 0.253494 0.122076i
\(162\) −12.0707 −0.948363
\(163\) 6.01357 2.89598i 0.471019 0.226831i −0.183289 0.983059i \(-0.558674\pi\)
0.654308 + 0.756228i \(0.272960\pi\)
\(164\) 0.643104 + 2.81762i 0.0502180 + 0.220019i
\(165\) −18.7397 9.02458i −1.45889 0.702563i
\(166\) 4.51842 + 2.17596i 0.350697 + 0.168887i
\(167\) 3.26391 14.3001i 0.252569 1.10658i −0.676434 0.736503i \(-0.736476\pi\)
0.929003 0.370072i \(-0.120667\pi\)
\(168\) −2.37047 2.97247i −0.182886 0.229331i
\(169\) −6.76391 + 8.48167i −0.520300 + 0.652436i
\(170\) −1.80194 7.89481i −0.138202 0.605504i
\(171\) 0.147948 0.648205i 0.0113139 0.0495694i
\(172\) −0.184489 + 0.231342i −0.0140671 + 0.0176396i
\(173\) −23.3599 −1.77602 −0.888009 0.459825i \(-0.847912\pi\)
−0.888009 + 0.459825i \(0.847912\pi\)
\(174\) 0 0
\(175\) 7.88471 0.596028
\(176\) 5.17576 6.49020i 0.390138 0.489217i
\(177\) 2.56465 11.2365i 0.192771 0.844583i
\(178\) −3.12349 13.6849i −0.234115 1.02573i
\(179\) −0.414542 + 0.519820i −0.0309844 + 0.0388532i −0.797082 0.603871i \(-0.793624\pi\)
0.766098 + 0.642724i \(0.222196\pi\)
\(180\) 0.277479 + 0.347948i 0.0206821 + 0.0259345i
\(181\) −2.44020 + 10.6912i −0.181378 + 0.794671i 0.799597 + 0.600537i \(0.205047\pi\)
−0.980975 + 0.194134i \(0.937810\pi\)
\(182\) −1.14042 0.549195i −0.0845332 0.0407091i
\(183\) 2.12349 + 1.02262i 0.156973 + 0.0755942i
\(184\) −3.50000 15.3345i −0.258023 1.13047i
\(185\) 10.3998 5.00827i 0.764606 0.368215i
\(186\) −4.38404 −0.321454
\(187\) −4.11960 + 1.98390i −0.301255 + 0.145077i
\(188\) 1.31886 + 1.65380i 0.0961880 + 0.120616i
\(189\) −2.14042 2.68400i −0.155692 0.195232i
\(190\) −12.2458 + 5.89726i −0.888402 + 0.427832i
\(191\) −0.518122 −0.0374900 −0.0187450 0.999824i \(-0.505967\pi\)
−0.0187450 + 0.999824i \(0.505967\pi\)
\(192\) −14.4487 + 6.95812i −1.04274 + 0.502159i
\(193\) −0.308511 1.35168i −0.0222071 0.0972957i 0.962610 0.270892i \(-0.0873185\pi\)
−0.984817 + 0.173596i \(0.944461\pi\)
\(194\) 5.13437 + 2.47258i 0.368627 + 0.177521i
\(195\) 9.64191 + 4.64330i 0.690471 + 0.332513i
\(196\) −0.645793 + 2.82940i −0.0461280 + 0.202100i
\(197\) 8.07942 + 10.1313i 0.575635 + 0.721823i 0.981361 0.192171i \(-0.0615530\pi\)
−0.405727 + 0.913994i \(0.632982\pi\)
\(198\) −0.547425 + 0.686450i −0.0389038 + 0.0487839i
\(199\) 4.33997 + 19.0147i 0.307652 + 1.34791i 0.858288 + 0.513167i \(0.171528\pi\)
−0.550636 + 0.834745i \(0.685615\pi\)
\(200\) 7.73005 33.8676i 0.546597 2.39480i
\(201\) 16.7947 21.0599i 1.18461 1.48545i
\(202\) 4.00670 0.281911
\(203\) 0 0
\(204\) 1.28621 0.0900526
\(205\) −16.3937 + 20.5571i −1.14499 + 1.43577i
\(206\) 1.81282 7.94250i 0.126305 0.553380i
\(207\) 0.283520 + 1.24218i 0.0197060 + 0.0863376i
\(208\) −2.66301 + 3.33931i −0.184647 + 0.231540i
\(209\) 4.78501 + 6.00022i 0.330986 + 0.415044i
\(210\) 1.40097 6.13805i 0.0966760 0.423565i
\(211\) 18.5879 + 8.95147i 1.27964 + 0.616244i 0.945299 0.326206i \(-0.105770\pi\)
0.334346 + 0.942450i \(0.391485\pi\)
\(212\) 0.0196143 + 0.00944576i 0.00134712 + 0.000648738i
\(213\) 0.905813 + 3.96863i 0.0620653 + 0.271926i
\(214\) 6.49880 3.12966i 0.444249 0.213939i
\(215\) −2.69202 −0.183594
\(216\) −13.6271 + 6.56248i −0.927209 + 0.446520i
\(217\) −0.841830 1.05562i −0.0571472 0.0716603i
\(218\) 7.14191 + 8.95567i 0.483711 + 0.606554i
\(219\) −13.5124 + 6.50722i −0.913082 + 0.439717i
\(220\) −5.13706 −0.346341
\(221\) 2.11960 1.02075i 0.142580 0.0686629i
\(222\) −1.42543 6.24521i −0.0956684 0.419151i
\(223\) 19.0112 + 9.15530i 1.27308 + 0.613084i 0.943603 0.331078i \(-0.107412\pi\)
0.329480 + 0.944163i \(0.393127\pi\)
\(224\) −1.53803 0.740677i −0.102764 0.0494886i
\(225\) −0.626178 + 2.74347i −0.0417452 + 0.182898i
\(226\) −6.97099 8.74135i −0.463704 0.581466i
\(227\) 4.44839 5.57811i 0.295250 0.370232i −0.611975 0.790877i \(-0.709625\pi\)
0.907225 + 0.420645i \(0.138196\pi\)
\(228\) −0.480386 2.10471i −0.0318143 0.139388i
\(229\) 0.501196 2.19589i 0.0331200 0.145108i −0.955664 0.294458i \(-0.904861\pi\)
0.988784 + 0.149350i \(0.0477180\pi\)
\(230\) 16.2397 20.3640i 1.07082 1.34276i
\(231\) −3.55496 −0.233899
\(232\) 0 0
\(233\) 18.9095 1.23880 0.619400 0.785076i \(-0.287376\pi\)
0.619400 + 0.785076i \(0.287376\pi\)
\(234\) 0.281659 0.353190i 0.0184127 0.0230887i
\(235\) −4.28232 + 18.7621i −0.279348 + 1.22390i
\(236\) −0.633415 2.77517i −0.0412318 0.180648i
\(237\) −10.9438 + 13.7231i −0.710879 + 0.891414i
\(238\) −0.862937 1.08209i −0.0559359 0.0701414i
\(239\) 4.55549 19.9589i 0.294670 1.29103i −0.583276 0.812274i \(-0.698229\pi\)
0.877946 0.478760i \(-0.158914\pi\)
\(240\) −19.1407 9.21768i −1.23553 0.594999i
\(241\) −6.63922 3.19728i −0.427670 0.205955i 0.207651 0.978203i \(-0.433418\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(242\) 0.797093 + 3.49229i 0.0512391 + 0.224493i
\(243\) 2.30678 1.11089i 0.147980 0.0712635i
\(244\) 0.582105 0.0372655
\(245\) −23.7887 + 11.4560i −1.51980 + 0.731898i
\(246\) 9.09783 + 11.4083i 0.580057 + 0.727368i
\(247\) −2.46197 3.08721i −0.156651 0.196434i
\(248\) −5.35958 + 2.58104i −0.340334 + 0.163896i
\(249\) −7.24698 −0.459259
\(250\) 29.0846 14.0064i 1.83947 0.885842i
\(251\) −2.88285 12.6306i −0.181964 0.797235i −0.980694 0.195546i \(-0.937352\pi\)
0.798731 0.601689i \(-0.205505\pi\)
\(252\) 0.0685317 + 0.0330031i 0.00431709 + 0.00207900i
\(253\) −13.2506 6.38117i −0.833060 0.401180i
\(254\) −4.31886 + 18.9222i −0.270990 + 1.18728i
\(255\) 7.29590 + 9.14877i 0.456887 + 0.572918i
\(256\) −6.30529 + 7.90658i −0.394081 + 0.494161i
\(257\) −3.71432 16.2735i −0.231693 1.01511i −0.948235 0.317570i \(-0.897133\pi\)
0.716542 0.697544i \(-0.245724\pi\)
\(258\) −0.332437 + 1.45650i −0.0206966 + 0.0906779i
\(259\) 1.23005 1.54244i 0.0764318 0.0958425i
\(260\) 2.64310 0.163918
\(261\) 0 0
\(262\) 16.7506 1.03486
\(263\) 10.9792 13.7675i 0.677006 0.848938i −0.318069 0.948068i \(-0.603034\pi\)
0.995075 + 0.0991292i \(0.0316057\pi\)
\(264\) −3.48523 + 15.2698i −0.214501 + 0.939791i
\(265\) 0.0440730 + 0.193096i 0.00270738 + 0.0118618i
\(266\) −1.44839 + 1.81623i −0.0888067 + 0.111360i
\(267\) 12.6468 + 15.8585i 0.773969 + 0.970526i
\(268\) 1.48039 6.48599i 0.0904289 0.396195i
\(269\) −6.04503 2.91113i −0.368572 0.177495i 0.240424 0.970668i \(-0.422713\pi\)
−0.608997 + 0.793173i \(0.708428\pi\)
\(270\) −22.5661 10.8673i −1.37333 0.661362i
\(271\) −2.81886 12.3502i −0.171234 0.750224i −0.985492 0.169721i \(-0.945713\pi\)
0.814258 0.580503i \(-0.197144\pi\)
\(272\) −4.20775 + 2.02635i −0.255132 + 0.122865i
\(273\) 1.82908 0.110701
\(274\) 19.0906 9.19355i 1.15331 0.555402i
\(275\) −20.2521 25.3954i −1.22125 1.53140i
\(276\) 2.57942 + 3.23449i 0.155263 + 0.194693i
\(277\) −14.1821 + 6.82974i −0.852120 + 0.410359i −0.808364 0.588683i \(-0.799647\pi\)
−0.0437557 + 0.999042i \(0.513932\pi\)
\(278\) 15.5429 0.932200
\(279\) 0.434157 0.209079i 0.0259923 0.0125172i
\(280\) −1.90097 8.32869i −0.113605 0.497734i
\(281\) −10.6446 5.12617i −0.635003 0.305802i 0.0885481 0.996072i \(-0.471777\pi\)
−0.723552 + 0.690270i \(0.757492\pi\)
\(282\) 9.62229 + 4.63385i 0.572999 + 0.275942i
\(283\) 0.489115 2.14295i 0.0290749 0.127385i −0.958308 0.285738i \(-0.907761\pi\)
0.987383 + 0.158353i \(0.0506184\pi\)
\(284\) 0.626842 + 0.786035i 0.0371962 + 0.0466426i
\(285\) 12.2458 15.3557i 0.725378 0.909595i
\(286\) 1.16033 + 5.08372i 0.0686115 + 0.300607i
\(287\) −1.00000 + 4.38129i −0.0590281 + 0.258619i
\(288\) 0.379863 0.476333i 0.0223836 0.0280682i
\(289\) −14.4276 −0.848681
\(290\) 0 0
\(291\) −8.23490 −0.482738
\(292\) −2.30947 + 2.89598i −0.135152 + 0.169475i
\(293\) 4.59365 20.1261i 0.268364 1.17578i −0.643552 0.765403i \(-0.722540\pi\)
0.911916 0.410377i \(-0.134603\pi\)
\(294\) 3.26055 + 14.2854i 0.190159 + 0.833142i
\(295\) 16.1468 20.2474i 0.940100 1.17885i
\(296\) −5.41939 6.79570i −0.314995 0.394992i
\(297\) −3.14699 + 13.7879i −0.182607 + 0.800053i
\(298\) 20.5770 + 9.90937i 1.19199 + 0.574035i
\(299\) 6.81767 + 3.28322i 0.394276 + 0.189873i
\(300\) 2.03319 + 8.90798i 0.117386 + 0.514302i
\(301\) −0.414542 + 0.199633i −0.0238938 + 0.0115067i
\(302\) −23.7385 −1.36600
\(303\) −5.21648 + 2.51212i −0.299679 + 0.144318i
\(304\) 4.88740 + 6.12860i 0.280311 + 0.351499i
\(305\) 3.30194 + 4.14050i 0.189068 + 0.237084i
\(306\) 0.445042 0.214321i 0.0254414 0.0122519i
\(307\) 22.8116 1.30193 0.650964 0.759108i \(-0.274365\pi\)
0.650964 + 0.759108i \(0.274365\pi\)
\(308\) −0.791053 + 0.380951i −0.0450744 + 0.0217067i
\(309\) 2.61960 + 11.4772i 0.149024 + 0.652917i
\(310\) −8.87531 4.27413i −0.504084 0.242754i
\(311\) −28.0112 13.4895i −1.58837 0.764918i −0.589293 0.807919i \(-0.700594\pi\)
−0.999075 + 0.0430013i \(0.986308\pi\)
\(312\) 1.79321 7.85656i 0.101520 0.444790i
\(313\) −7.00335 8.78193i −0.395853 0.496384i 0.543465 0.839432i \(-0.317112\pi\)
−0.939318 + 0.343048i \(0.888541\pi\)
\(314\) −8.89307 + 11.1516i −0.501865 + 0.629319i
\(315\) 0.153989 + 0.674671i 0.00867631 + 0.0380134i
\(316\) −0.964656 + 4.22643i −0.0542662 + 0.237756i
\(317\) −3.69537 + 4.63385i −0.207553 + 0.260263i −0.874702 0.484661i \(-0.838943\pi\)
0.667149 + 0.744924i \(0.267514\pi\)
\(318\) 0.109916 0.00616380
\(319\) 0 0
\(320\) −36.0344 −2.01439
\(321\) −6.49880 + 8.14924i −0.362728 + 0.454846i
\(322\) 0.990607 4.34013i 0.0552044 0.241866i
\(323\) −0.960771 4.20941i −0.0534587 0.234218i
\(324\) 2.68598 3.36811i 0.149221 0.187117i
\(325\) 10.4201 + 13.0663i 0.578000 + 0.724790i
\(326\) 1.85205 8.11437i 0.102576 0.449413i
\(327\) −14.9133 7.18189i −0.824710 0.397159i
\(328\) 17.8388 + 8.59070i 0.984981 + 0.474342i
\(329\) 0.731914 + 3.20673i 0.0403517 + 0.176792i
\(330\) −23.3681 + 11.2535i −1.28637 + 0.619483i
\(331\) 30.9095 1.69894 0.849469 0.527639i \(-0.176923\pi\)
0.849469 + 0.527639i \(0.176923\pi\)
\(332\) −1.61260 + 0.776589i −0.0885032 + 0.0426209i
\(333\) 0.439001 + 0.550490i 0.0240571 + 0.0301667i
\(334\) −11.4040 14.3001i −0.623997 0.782467i
\(335\) 54.5320 26.2613i 2.97940 1.43481i
\(336\) −3.63102 −0.198089
\(337\) −7.22132 + 3.47761i −0.393371 + 0.189437i −0.620104 0.784520i \(-0.712910\pi\)
0.226733 + 0.973957i \(0.427195\pi\)
\(338\) 3.01022 + 13.1886i 0.163734 + 0.717367i
\(339\) 14.5565 + 7.01002i 0.790598 + 0.380732i
\(340\) 2.60388 + 1.25396i 0.141215 + 0.0680055i
\(341\) −1.23772 + 5.42280i −0.0670262 + 0.293661i
\(342\) −0.516926 0.648205i −0.0279522 0.0350509i
\(343\) −5.83393 + 7.31552i −0.315003 + 0.395001i
\(344\) 0.451083 + 1.97632i 0.0243207 + 0.106556i
\(345\) −8.37531 + 36.6946i −0.450912 + 1.97557i
\(346\) −18.1618 + 22.7742i −0.976385 + 1.22435i
\(347\) −2.26337 −0.121504 −0.0607521 0.998153i \(-0.519350\pi\)
−0.0607521 + 0.998153i \(0.519350\pi\)
\(348\) 0 0
\(349\) −23.5690 −1.26162 −0.630809 0.775938i \(-0.717277\pi\)
−0.630809 + 0.775938i \(0.717277\pi\)
\(350\) 6.13019 7.68702i 0.327673 0.410889i
\(351\) 1.61918 7.09408i 0.0864253 0.378654i
\(352\) 1.56488 + 6.85620i 0.0834086 + 0.365437i
\(353\) −0.612605 + 0.768182i −0.0326057 + 0.0408862i −0.797867 0.602834i \(-0.794038\pi\)
0.765261 + 0.643720i \(0.222610\pi\)
\(354\) −8.96077 11.2365i −0.476260 0.597211i
\(355\) −2.03534 + 8.91742i −0.108025 + 0.473288i
\(356\) 4.51357 + 2.17362i 0.239219 + 0.115202i
\(357\) 1.80194 + 0.867767i 0.0953687 + 0.0459271i
\(358\) 0.184489 + 0.808298i 0.00975053 + 0.0427199i
\(359\) 7.10172 3.42001i 0.374814 0.180501i −0.236986 0.971513i \(-0.576160\pi\)
0.611801 + 0.791012i \(0.290445\pi\)
\(360\) 3.04892 0.160692
\(361\) 10.5891 5.09944i 0.557321 0.268392i
\(362\) 8.52595 + 10.6912i 0.448114 + 0.561917i
\(363\) −3.22737 4.04699i −0.169393 0.212412i
\(364\) 0.407010 0.196006i 0.0213331 0.0102735i
\(365\) −33.6993 −1.76390
\(366\) 2.64795 1.27518i 0.138410 0.0666550i
\(367\) 6.52164 + 28.5732i 0.340427 + 1.49151i 0.798175 + 0.602425i \(0.205799\pi\)
−0.457748 + 0.889082i \(0.651344\pi\)
\(368\) −13.5341 6.51770i −0.705516 0.339759i
\(369\) −1.44504 0.695895i −0.0752259 0.0362269i
\(370\) 3.20291 14.0329i 0.166511 0.729533i
\(371\) 0.0211063 + 0.0264664i 0.00109578 + 0.00137407i
\(372\) 0.975541 1.22329i 0.0505795 0.0634246i
\(373\) 0.848404 + 3.71710i 0.0439287 + 0.192464i 0.992131 0.125202i \(-0.0399580\pi\)
−0.948203 + 0.317666i \(0.897101\pi\)
\(374\) −1.26875 + 5.55876i −0.0656055 + 0.287436i
\(375\) −29.0846 + 36.4709i −1.50192 + 1.88335i
\(376\) 14.4916 0.747345
\(377\) 0 0
\(378\) −4.28083 −0.220182
\(379\) 5.62767 7.05688i 0.289074 0.362487i −0.615996 0.787749i \(-0.711246\pi\)
0.905070 + 0.425262i \(0.139818\pi\)
\(380\) 1.07942 4.72923i 0.0553729 0.242605i
\(381\) −6.24094 27.3433i −0.319733 1.40084i
\(382\) −0.402829 + 0.505132i −0.0206105 + 0.0258448i
\(383\) −20.6930 25.9482i −1.05736 1.32589i −0.943126 0.332436i \(-0.892129\pi\)
−0.114236 0.993454i \(-0.536442\pi\)
\(384\) −2.47166 + 10.8290i −0.126131 + 0.552617i
\(385\) −7.19687 3.46583i −0.366786 0.176635i
\(386\) −1.55765 0.750123i −0.0792821 0.0381803i
\(387\) −0.0365403 0.160093i −0.00185745 0.00813800i
\(388\) −1.83244 + 0.882455i −0.0930279 + 0.0447999i
\(389\) 27.5362 1.39614 0.698070 0.716030i \(-0.254043\pi\)
0.698070 + 0.716030i \(0.254043\pi\)
\(390\) 12.0233 5.79010i 0.608822 0.293193i
\(391\) 5.15883 + 6.46897i 0.260893 + 0.327150i
\(392\) 12.3964 + 15.5446i 0.626114 + 0.785122i
\(393\) −21.8083 + 10.5023i −1.10008 + 0.529772i
\(394\) 16.1588 0.814070
\(395\) −35.5344 + 17.1125i −1.78793 + 0.861023i
\(396\) −0.0697281 0.305499i −0.00350397 0.0153519i
\(397\) 17.3192 + 8.34047i 0.869224 + 0.418596i 0.814677 0.579915i \(-0.196914\pi\)
0.0545468 + 0.998511i \(0.482629\pi\)
\(398\) 21.9121 + 10.5523i 1.09836 + 0.528941i
\(399\) 0.746980 3.27273i 0.0373958 0.163842i
\(400\) −20.6854 25.9387i −1.03427 1.29694i
\(401\) 6.87465 8.62054i 0.343304 0.430489i −0.579967 0.814640i \(-0.696934\pi\)
0.923270 + 0.384151i \(0.125506\pi\)
\(402\) −7.47434 32.7472i −0.372786 1.63328i
\(403\) 0.636826 2.79012i 0.0317226 0.138986i
\(404\) −0.891576 + 1.11800i −0.0443575 + 0.0556226i
\(405\) 39.1933 1.94753
\(406\) 0 0
\(407\) −8.12737 −0.402859
\(408\) 5.49396 6.88921i 0.271992 0.341067i
\(409\) −7.52595 + 32.9733i −0.372134 + 1.63043i 0.348640 + 0.937257i \(0.386644\pi\)
−0.720774 + 0.693170i \(0.756213\pi\)
\(410\) 7.29590 + 31.9654i 0.360319 + 1.57866i
\(411\) −19.0906 + 23.9389i −0.941670 + 1.18082i
\(412\) 1.81282 + 2.27321i 0.0893114 + 0.111993i
\(413\) 0.984935 4.31528i 0.0484655 0.212341i
\(414\) 1.43147 + 0.689359i 0.0703528 + 0.0338801i
\(415\) −14.6712 7.06528i −0.720181 0.346821i
\(416\) −0.805159 3.52763i −0.0394761 0.172956i
\(417\) −20.2359 + 9.74508i −0.990954 + 0.477218i
\(418\) 9.57002 0.468085
\(419\) 32.0916 15.4545i 1.56778 0.755001i 0.569998 0.821646i \(-0.306944\pi\)
0.997777 + 0.0666451i \(0.0212295\pi\)
\(420\) 1.40097 + 1.75676i 0.0683603 + 0.0857211i
\(421\) −5.89642 7.39388i −0.287374 0.360356i 0.617100 0.786885i \(-0.288307\pi\)
−0.904474 + 0.426529i \(0.859736\pi\)
\(422\) 23.1787 11.1623i 1.12832 0.543372i
\(423\) −1.17390 −0.0570769
\(424\) 0.134375 0.0647116i 0.00652582 0.00314267i
\(425\) 4.06638 + 17.8160i 0.197248 + 0.864201i
\(426\) 4.57338 + 2.20242i 0.221581 + 0.106708i
\(427\) 0.815511 + 0.392730i 0.0394654 + 0.0190055i
\(428\) −0.572844 + 2.50979i −0.0276894 + 0.121315i
\(429\) −4.69806 5.89118i −0.226825 0.284429i
\(430\) −2.09299 + 2.62453i −0.100933 + 0.126566i
\(431\) −0.219300 0.960816i −0.0105633 0.0462809i 0.969372 0.245599i \(-0.0789845\pi\)
−0.979935 + 0.199318i \(0.936127\pi\)
\(432\) −3.21432 + 14.0829i −0.154649 + 0.677563i
\(433\) −17.8843 + 22.4263i −0.859466 + 1.07774i 0.136731 + 0.990608i \(0.456341\pi\)
−0.996197 + 0.0871286i \(0.972231\pi\)
\(434\) −1.68366 −0.0808183
\(435\) 0 0
\(436\) −4.08815 −0.195787
\(437\) 8.65883 10.8578i 0.414208 0.519401i
\(438\) −4.16152 + 18.2328i −0.198845 + 0.871198i
\(439\) 1.46734 + 6.42886i 0.0700325 + 0.306833i 0.997798 0.0663323i \(-0.0211297\pi\)
−0.927765 + 0.373165i \(0.878273\pi\)
\(440\) −21.9426 + 27.5152i −1.04607 + 1.31174i
\(441\) −1.00418 1.25920i −0.0478181 0.0599620i
\(442\) 0.652793 2.86007i 0.0310502 0.136040i
\(443\) 19.2702 + 9.28006i 0.915557 + 0.440909i 0.831483 0.555551i \(-0.187492\pi\)
0.0840741 + 0.996460i \(0.473207\pi\)
\(444\) 2.05980 + 0.991949i 0.0977539 + 0.0470758i
\(445\) 10.1419 + 44.4346i 0.480773 + 2.10640i
\(446\) 23.7066 11.4165i 1.12254 0.540586i
\(447\) −33.0030 −1.56099
\(448\) −5.54892 + 2.67222i −0.262162 + 0.126250i
\(449\) 18.2412 + 22.8738i 0.860857 + 1.07948i 0.996062 + 0.0886629i \(0.0282594\pi\)
−0.135205 + 0.990818i \(0.543169\pi\)
\(450\) 2.18784 + 2.74347i 0.103136 + 0.129328i
\(451\) 16.6799 8.03264i 0.785428 0.378242i
\(452\) 3.99031 0.187688
\(453\) 30.9061 14.8836i 1.45210 0.699292i
\(454\) −1.97972 8.67373i −0.0929129 0.407078i
\(455\) 3.70291 + 1.78323i 0.173595 + 0.0835989i
\(456\) −13.3252 6.41708i −0.624010 0.300507i
\(457\) 0.0537617 0.235545i 0.00251487 0.0110183i −0.973655 0.228027i \(-0.926773\pi\)
0.976170 + 0.217008i \(0.0696298\pi\)
\(458\) −1.75116 2.19589i −0.0818263 0.102607i
\(459\) 4.96077 6.22061i 0.231549 0.290353i
\(460\) 2.06853 + 9.06283i 0.0964458 + 0.422557i
\(461\) −3.85809 + 16.9034i −0.179689 + 0.787270i 0.802084 + 0.597212i \(0.203725\pi\)
−0.981773 + 0.190058i \(0.939132\pi\)
\(462\) −2.76391 + 3.46583i −0.128589 + 0.161245i
\(463\) 4.24996 0.197513 0.0987563 0.995112i \(-0.468514\pi\)
0.0987563 + 0.995112i \(0.468514\pi\)
\(464\) 0 0
\(465\) 14.2349 0.660128
\(466\) 14.7017 18.4354i 0.681044 0.854002i
\(467\) 6.41603 28.1105i 0.296899 1.30080i −0.577819 0.816165i \(-0.696096\pi\)
0.874718 0.484633i \(-0.161047\pi\)
\(468\) 0.0358763 + 0.157184i 0.00165838 + 0.00726584i
\(469\) 6.44989 8.08790i 0.297828 0.373465i
\(470\) 14.9623 + 18.7621i 0.690158 + 0.865430i
\(471\) 4.58642 20.0944i 0.211331 0.925901i
\(472\) −17.5700 8.46128i −0.808726 0.389462i
\(473\) 1.70775 + 0.822410i 0.0785225 + 0.0378144i
\(474\) 4.87047 + 21.3389i 0.223708 + 0.980129i
\(475\) 27.6347 13.3082i 1.26797 0.610620i
\(476\) 0.493959 0.0226406
\(477\) −0.0108851 + 0.00524200i −0.000498396 + 0.000240015i
\(478\) −15.9167 19.9589i −0.728013 0.912899i
\(479\) −15.0740 18.9022i −0.688750 0.863666i 0.307377 0.951588i \(-0.400549\pi\)
−0.996127 + 0.0879221i \(0.971977\pi\)
\(480\) 16.2153 7.80887i 0.740123 0.356424i
\(481\) 4.18167 0.190668
\(482\) −8.27897 + 3.98694i −0.377097 + 0.181600i
\(483\) 1.43147 + 6.27167i 0.0651341 + 0.285371i
\(484\) −1.15183 0.554694i −0.0523561 0.0252133i
\(485\) −16.6712 8.02843i −0.757001 0.364552i
\(486\) 0.710439 3.11264i 0.0322262 0.141192i
\(487\) 12.0402 + 15.0979i 0.545593 + 0.684152i 0.975822 0.218568i \(-0.0701385\pi\)
−0.430229 + 0.902720i \(0.641567\pi\)
\(488\) 2.48643 3.11788i 0.112555 0.141140i
\(489\) 2.67629 + 11.7256i 0.121026 + 0.530250i
\(490\) −7.32640 + 32.0990i −0.330973 + 1.45009i
\(491\) 23.0010 28.8423i 1.03802 1.30163i 0.0857687 0.996315i \(-0.472665\pi\)
0.952250 0.305319i \(-0.0987632\pi\)
\(492\) −5.20775 −0.234784
\(493\) 0 0
\(494\) −4.92394 −0.221538
\(495\) 1.77748 2.22889i 0.0798917 0.100181i
\(496\) −1.26420 + 5.53883i −0.0567643 + 0.248701i
\(497\) 0.347871 + 1.52412i 0.0156042 + 0.0683663i
\(498\) −5.63437 + 7.06528i −0.252482 + 0.316603i
\(499\) 23.5154 + 29.4873i 1.05269 + 1.32003i 0.945438 + 0.325803i \(0.105634\pi\)
0.107254 + 0.994232i \(0.465794\pi\)
\(500\) −2.56369 + 11.2322i −0.114652 + 0.502321i
\(501\) 23.8131 + 11.4678i 1.06389 + 0.512343i
\(502\) −14.5553 7.00944i −0.649633 0.312847i
\(503\) 1.55980 + 6.83394i 0.0695482 + 0.304710i 0.997724 0.0674318i \(-0.0214805\pi\)
−0.928176 + 0.372142i \(0.878623\pi\)
\(504\) 0.469501 0.226100i 0.0209132 0.0100713i
\(505\) −13.0097 −0.578924
\(506\) −16.5233 + 7.95718i −0.734549 + 0.353740i
\(507\) −12.1881 15.2834i −0.541294 0.678761i
\(508\) −4.31886 5.41568i −0.191619 0.240282i
\(509\) −16.5661 + 7.97783i −0.734281 + 0.353611i −0.763366 0.645966i \(-0.776455\pi\)
0.0290852 + 0.999577i \(0.490741\pi\)
\(510\) 14.5918 0.646135
\(511\) −5.18933 + 2.49905i −0.229563 + 0.110552i
\(512\) 5.54945 + 24.3137i 0.245253 + 1.07453i
\(513\) −12.0320 5.79430i −0.531225 0.255825i
\(514\) −18.7533 9.03112i −0.827173 0.398346i
\(515\) −5.88620 + 25.7891i −0.259377 + 1.13640i
\(516\) −0.332437 0.416863i −0.0146347 0.0183514i
\(517\) 8.44839 10.5940i 0.371560 0.465921i
\(518\) −0.547425 2.39843i −0.0240525 0.105381i
\(519\) 9.36658 41.0377i 0.411147 1.80135i
\(520\) 11.2899 14.1570i 0.495093 0.620827i
\(521\) 3.94571 0.172865 0.0864323 0.996258i \(-0.472453\pi\)
0.0864323 + 0.996258i \(0.472453\pi\)
\(522\) 0 0
\(523\) −33.9952 −1.48651 −0.743253 0.669010i \(-0.766718\pi\)
−0.743253 + 0.669010i \(0.766718\pi\)
\(524\) −3.72737 + 4.67397i −0.162831 + 0.204183i
\(525\) −3.16152 + 13.8515i −0.137980 + 0.604530i
\(526\) −4.88620 21.4078i −0.213048 0.933426i
\(527\) 1.95108 2.44658i 0.0849905 0.106575i
\(528\) 9.32640 + 11.6949i 0.405879 + 0.508957i
\(529\) −0.804094 + 3.52296i −0.0349606 + 0.153172i
\(530\) 0.222521 + 0.107160i 0.00966569 + 0.00465475i
\(531\) 1.42327 + 0.685411i 0.0617647 + 0.0297443i
\(532\) −0.184489 0.808298i −0.00799860 0.0350442i
\(533\) −8.58211 + 4.13292i −0.371732 + 0.179017i
\(534\) 25.2935 1.09456
\(535\) −21.1015 + 10.1619i −0.912297 + 0.439339i
\(536\) −28.4170 35.6338i −1.22743 1.53915i
\(537\) −0.746980 0.936683i −0.0322345 0.0404208i
\(538\) −7.53803 + 3.63012i −0.324988 + 0.156506i
\(539\) 18.5907 0.800759
\(540\) 8.05376 3.87849i 0.346579 0.166904i
\(541\) −5.21499 22.8484i −0.224210 0.982328i −0.954270 0.298945i \(-0.903365\pi\)
0.730060 0.683383i \(-0.239492\pi\)
\(542\) −14.2322 6.85387i −0.611326 0.294399i
\(543\) −17.8034 8.57368i −0.764018 0.367932i
\(544\) 0.880395 3.85726i 0.0377466 0.165379i
\(545\) −23.1896 29.0789i −0.993335 1.24560i
\(546\) 1.42208 1.78323i 0.0608592 0.0763150i
\(547\) −7.18651 31.4862i −0.307273 1.34625i −0.858893 0.512156i \(-0.828847\pi\)
0.551620 0.834096i \(-0.314010\pi\)
\(548\) −1.68276 + 7.37265i −0.0718839 + 0.314944i
\(549\) −0.201415 + 0.252566i −0.00859617 + 0.0107793i
\(550\) −40.5042 −1.72711
\(551\) 0 0
\(552\) 28.3424 1.20633
\(553\) −4.20291 + 5.27028i −0.178726 + 0.224115i
\(554\) −4.36778 + 19.1365i −0.185569 + 0.813032i
\(555\) 4.62833 + 20.2781i 0.196462 + 0.860756i
\(556\) −3.45862 + 4.33697i −0.146678 + 0.183928i
\(557\) 10.1163 + 12.6854i 0.428639 + 0.537497i 0.948510 0.316748i \(-0.102591\pi\)
−0.519870 + 0.854245i \(0.674020\pi\)
\(558\) 0.133711 0.585826i 0.00566044 0.0248000i
\(559\) −0.878666 0.423143i −0.0371636 0.0178971i
\(560\) −7.35086 3.53999i −0.310630 0.149592i
\(561\) −1.83340 8.03264i −0.0774061 0.339138i
\(562\) −13.2736 + 6.39223i −0.559913 + 0.269640i
\(563\) −21.9168 −0.923681 −0.461841 0.886963i \(-0.652811\pi\)
−0.461841 + 0.886963i \(0.652811\pi\)
\(564\) −3.43416 + 1.65380i −0.144604 + 0.0696377i
\(565\) 22.6347 + 28.3830i 0.952248 + 1.19408i
\(566\) −1.70895 2.14295i −0.0718324 0.0900750i
\(567\) 6.03534 2.90647i 0.253461 0.122060i
\(568\) 6.88769 0.289001
\(569\) 33.7836 16.2693i 1.41628 0.682045i 0.439889 0.898052i \(-0.355018\pi\)
0.976392 + 0.216007i \(0.0693033\pi\)
\(570\) −5.44989 23.8775i −0.228271 1.00012i
\(571\) −24.8838 11.9834i −1.04135 0.501490i −0.166584 0.986027i \(-0.553274\pi\)
−0.874771 + 0.484537i \(0.838988\pi\)
\(572\) −1.67672 0.807465i −0.0701071 0.0337618i
\(573\) 0.207751 0.910216i 0.00867892 0.0380248i
\(574\) 3.49396 + 4.38129i 0.145835 + 0.182871i
\(575\) −36.6477 + 45.9548i −1.52832 + 1.91645i
\(576\) −0.489115 2.14295i −0.0203798 0.0892897i
\(577\) 1.40874 6.17209i 0.0586466 0.256947i −0.937103 0.349054i \(-0.886503\pi\)
0.995749 + 0.0921067i \(0.0293601\pi\)
\(578\) −11.2171 + 14.0659i −0.466572 + 0.585062i
\(579\) 2.49827 0.103825
\(580\) 0 0
\(581\) −2.78315 −0.115465
\(582\) −6.40246 + 8.02843i −0.265391 + 0.332789i
\(583\) 0.0310319 0.135960i 0.00128521 0.00563088i
\(584\) 5.64675 + 24.7400i 0.233664 + 1.02375i
\(585\) −0.914542 + 1.14680i −0.0378117 + 0.0474143i
\(586\) −16.0500 20.1261i −0.663021 0.831402i
\(587\) 4.34535 19.0382i 0.179352 0.785791i −0.802578 0.596547i \(-0.796539\pi\)
0.981930 0.189244i \(-0.0606038\pi\)
\(588\) −4.71164 2.26900i −0.194305 0.0935722i
\(589\) −4.73221 2.27891i −0.194987 0.0939009i
\(590\) −7.18598 31.4838i −0.295842 1.29617i
\(591\) −21.0378 + 10.1313i −0.865379 + 0.416745i
\(592\) −8.30127 −0.341180
\(593\) 2.22132 1.06973i 0.0912189 0.0439287i −0.387718 0.921778i \(-0.626737\pi\)
0.478937 + 0.877849i \(0.341022\pi\)
\(594\) 10.9955 + 13.7879i 0.451149 + 0.565723i
\(595\) 2.80194 + 3.51352i 0.114868 + 0.144040i
\(596\) −7.34385 + 3.53661i −0.300816 + 0.144865i
\(597\) −35.1444 −1.43836
\(598\) 8.50149 4.09410i 0.347652 0.167420i
\(599\) 1.14861 + 5.03240i 0.0469310 + 0.205618i 0.992958 0.118471i \(-0.0377993\pi\)
−0.946026 + 0.324089i \(0.894942\pi\)
\(600\) 56.3977 + 27.1597i 2.30243 + 1.10879i
\(601\) 26.5487 + 12.7852i 1.08294 + 0.521518i 0.888257 0.459348i \(-0.151917\pi\)
0.194687 + 0.980865i \(0.437631\pi\)
\(602\) −0.127670 + 0.559360i −0.00520345 + 0.0227978i
\(603\) 2.30194 + 2.88654i 0.0937422 + 0.117549i
\(604\) 5.28232 6.62382i 0.214935 0.269520i
\(605\) −2.58815 11.3394i −0.105223 0.461013i
\(606\) −1.60656 + 7.03882i −0.0652622 + 0.285932i
\(607\) 21.6048 27.0916i 0.876913 1.09961i −0.117396 0.993085i \(-0.537455\pi\)
0.994310 0.106529i \(-0.0339738\pi\)
\(608\) −6.64071 −0.269316
\(609\) 0 0
\(610\) 6.60388 0.267383
\(611\) −4.34684 + 5.45076i −0.175854 + 0.220514i
\(612\) −0.0392287 + 0.171872i −0.00158572 + 0.00694751i
\(613\) −6.11045 26.7716i −0.246799 1.08130i −0.934685 0.355477i \(-0.884318\pi\)
0.687886 0.725819i \(-0.258539\pi\)
\(614\) 17.7356 22.2397i 0.715749 0.897521i
\(615\) −29.5405 37.0426i −1.19119 1.49370i
\(616\) −1.33848 + 5.86426i −0.0539288 + 0.236278i
\(617\) −30.8838 14.8729i −1.24334 0.598759i −0.307618 0.951510i \(-0.599532\pi\)
−0.935717 + 0.352751i \(0.885246\pi\)
\(618\) 13.2262 + 6.36939i 0.532035 + 0.256214i
\(619\) −5.71134 25.0230i −0.229558 1.00576i −0.950001 0.312246i \(-0.898919\pi\)
0.720443 0.693514i \(-0.243938\pi\)
\(620\) 3.16756 1.52542i 0.127212 0.0612623i
\(621\) 25.5918 1.02696
\(622\) −34.9294 + 16.8211i −1.40054 + 0.674465i
\(623\) 4.85690 + 6.09035i 0.194587 + 0.244005i
\(624\) −4.79859 6.01724i −0.192097 0.240882i
\(625\) −43.1100 + 20.7607i −1.72440 + 0.830427i
\(626\) −14.0067 −0.559821
\(627\) −12.4596 + 6.00022i −0.497587 + 0.239626i
\(628\) −1.13275 4.96291i −0.0452017 0.198042i
\(629\) 4.11960 + 1.98390i 0.164259 + 0.0791032i
\(630\) 0.777479 + 0.374414i 0.0309755 + 0.0149170i
\(631\) 6.54234 28.6639i 0.260447 1.14109i −0.660322 0.750982i \(-0.729580\pi\)
0.920769 0.390109i \(-0.127563\pi\)
\(632\) 18.5172 + 23.2199i 0.736576 + 0.923636i
\(633\) −23.1787 + 29.0652i −0.921272 + 1.15524i
\(634\) 1.64460 + 7.20545i 0.0653153 + 0.286165i
\(635\) 14.0233 61.4399i 0.556496 2.43817i
\(636\) −0.0244587 + 0.0306702i −0.000969849 + 0.00121615i
\(637\) −9.56524 −0.378989
\(638\) 0 0
\(639\) −0.557942 −0.0220718
\(640\) −15.5613 + 19.5132i −0.615114 + 0.771329i
\(641\) 2.32922 10.2050i 0.0919985 0.403072i −0.907871 0.419250i \(-0.862293\pi\)
0.999869 + 0.0161787i \(0.00515005\pi\)
\(642\) 2.89224 + 12.6717i 0.114148 + 0.500113i
\(643\) 1.90180 2.38478i 0.0749995 0.0940465i −0.742916 0.669384i \(-0.766558\pi\)
0.817916 + 0.575338i \(0.195129\pi\)
\(644\) 0.990607 + 1.24218i 0.0390354 + 0.0489488i
\(645\) 1.07942 4.72923i 0.0425020 0.186213i
\(646\) −4.85086 2.33605i −0.190854 0.0919106i
\(647\) 26.8523 + 12.9314i 1.05567 + 0.508386i 0.879464 0.475966i \(-0.157902\pi\)
0.176211 + 0.984352i \(0.443616\pi\)
\(648\) −6.56734 28.7734i −0.257989 1.13032i
\(649\) −16.4286 + 7.91162i −0.644881 + 0.310558i
\(650\) 20.8401 0.817416
\(651\) 2.19202 1.05562i 0.0859121 0.0413731i
\(652\) 1.85205 + 2.32240i 0.0725319 + 0.0909522i
\(653\) 7.10119 + 8.90461i 0.277891 + 0.348464i 0.901116 0.433578i \(-0.142749\pi\)
−0.623225 + 0.782043i \(0.714178\pi\)
\(654\) −18.5966 + 8.95567i −0.727186 + 0.350194i
\(655\) −54.3889 −2.12515
\(656\) 17.0368 8.20451i 0.665177 0.320332i
\(657\) −0.457419 2.00408i −0.0178456 0.0781867i
\(658\) 3.69537 + 1.77960i 0.144061 + 0.0693760i
\(659\) 4.13318 + 1.99043i 0.161006 + 0.0775363i 0.512651 0.858597i \(-0.328663\pi\)
−0.351645 + 0.936133i \(0.614378\pi\)
\(660\) 2.05980 9.02458i 0.0801777 0.351281i
\(661\) −8.03348 10.0737i −0.312466 0.391820i 0.600655 0.799508i \(-0.294907\pi\)
−0.913121 + 0.407688i \(0.866335\pi\)
\(662\) 24.0315 30.1345i 0.934009 1.17121i
\(663\) 0.943313 + 4.13292i 0.0366352 + 0.160509i
\(664\) −2.72856 + 11.9546i −0.105889 + 0.463929i
\(665\) 4.70291 5.89726i 0.182371 0.228686i
\(666\) 0.878002 0.0340219
\(667\) 0 0
\(668\) 6.52781 0.252569
\(669\) −23.7066 + 29.7271i −0.916548 + 1.14932i
\(670\) 16.7947 73.5824i 0.648836 2.84274i
\(671\) −0.829749 3.63537i −0.0320321 0.140342i
\(672\) 1.91789 2.40496i 0.0739844 0.0927735i
\(673\) 2.98457 + 3.74253i 0.115047 + 0.144264i 0.836020 0.548699i \(-0.184877\pi\)
−0.720974 + 0.692962i \(0.756305\pi\)
\(674\) −2.22401 + 9.74404i −0.0856658 + 0.375326i
\(675\) 50.9243 + 24.5238i 1.96008 + 0.943923i
\(676\) −4.34990 2.09480i −0.167304 0.0805692i
\(677\) 6.79278 + 29.7611i 0.261068 + 1.14381i 0.920095 + 0.391694i \(0.128111\pi\)
−0.659028 + 0.752119i \(0.729032\pi\)
\(678\) 18.1516 8.74135i 0.697108 0.335709i
\(679\) −3.16255 −0.121368
\(680\) 17.8388 8.59070i 0.684086 0.329438i
\(681\) 8.01573 + 10.0514i 0.307163 + 0.385171i
\(682\) 4.32454 + 5.42280i 0.165595 + 0.207650i
\(683\) −8.59999 + 4.14154i −0.329069 + 0.158472i −0.591122 0.806582i \(-0.701315\pi\)
0.262053 + 0.965054i \(0.415601\pi\)
\(684\) 0.295897 0.0113139
\(685\) −61.9868 + 29.8513i −2.36839 + 1.14056i
\(686\) 2.59634 + 11.3753i 0.0991288 + 0.434312i
\(687\) 3.65668 + 1.76096i 0.139511 + 0.0671849i
\(688\) 1.74429 + 0.840006i 0.0665005 + 0.0320249i
\(689\) −0.0159664 + 0.0699536i −0.000608273 + 0.00266502i
\(690\) 29.2630 + 36.6946i 1.11402 + 1.39694i
\(691\) −10.2775 + 12.8876i −0.390974 + 0.490266i −0.937895 0.346918i \(-0.887228\pi\)
0.546922 + 0.837184i \(0.315800\pi\)
\(692\) −2.31336 10.1355i −0.0879406 0.385293i
\(693\) 0.108424 0.475038i 0.00411870 0.0180452i
\(694\) −1.75973 + 2.20663i −0.0667983 + 0.0837624i
\(695\) −50.4674 −1.91434
\(696\) 0 0
\(697\) −10.4155 −0.394515
\(698\) −18.3244 + 22.9780i −0.693588 + 0.869731i
\(699\) −7.58211 + 33.2194i −0.286782 + 1.25647i
\(700\) 0.780831 + 3.42105i 0.0295127 + 0.129303i
\(701\) 29.2208 36.6417i 1.10365 1.38394i 0.187905 0.982187i \(-0.439830\pi\)
0.915749 0.401751i \(-0.131598\pi\)
\(702\) −5.65734 7.09408i −0.213523 0.267749i
\(703\) 1.70775 7.48215i 0.0644090 0.282194i
\(704\) 22.8593 + 11.0085i 0.861544 + 0.414898i
\(705\) −31.2434 15.0460i −1.17669 0.566666i
\(706\) 0.272635 + 1.19449i 0.0102607 + 0.0449553i
\(707\) −2.00335 + 0.964764i −0.0753438 + 0.0362837i
\(708\) 5.12929 0.192771
\(709\) −9.55107 + 4.59955i −0.358698 + 0.172740i −0.604549 0.796568i \(-0.706647\pi\)
0.245851 + 0.969308i \(0.420933\pi\)
\(710\) 7.11141 + 8.91742i 0.266886 + 0.334665i
\(711\) −1.50000 1.88094i −0.0562544 0.0705408i
\(712\) 30.9218 14.8912i 1.15884 0.558070i
\(713\) 10.0653 0.376949
\(714\) 2.24698 1.08209i 0.0840911 0.0404961i
\(715\) −3.76755 16.5067i −0.140899 0.617317i
\(716\) −0.266594 0.128385i −0.00996308 0.00479797i
\(717\) 33.2364 + 16.0058i 1.24124 + 0.597748i
\(718\) 2.18718 9.58265i 0.0816247 0.357621i
\(719\) −8.29553 10.4023i −0.309371 0.387939i 0.602702 0.797966i \(-0.294091\pi\)
−0.912073 + 0.410027i \(0.865519\pi\)
\(720\) 1.81551 2.27658i 0.0676601 0.0848431i
\(721\) 1.00604 + 4.40775i 0.0374669 + 0.164153i
\(722\) 3.26122 14.2883i 0.121370 0.531756i
\(723\) 8.27897 10.3815i 0.307898 0.386092i
\(724\) −4.88040 −0.181378
\(725\) 0 0
\(726\) −6.45473 −0.239558
\(727\) 20.5860 25.8141i 0.763494 0.957392i −0.236404 0.971655i \(-0.575969\pi\)
0.999898 + 0.0142633i \(0.00454031\pi\)
\(728\) 0.688669 3.01726i 0.0255238 0.111827i
\(729\) −5.43535 23.8138i −0.201309 0.881994i
\(730\) −26.2005 + 32.8544i −0.969725 + 1.21600i
\(731\) −0.664874 0.833726i −0.0245913 0.0308365i
\(732\) −0.233406 + 1.02262i −0.00862694 + 0.0377971i
\(733\) −28.6465 13.7954i −1.05808 0.509546i −0.177835 0.984060i \(-0.556909\pi\)
−0.880248 + 0.474514i \(0.842624\pi\)
\(734\) 32.9272 + 15.8569i 1.21537 + 0.585289i
\(735\) −10.5869 46.3845i −0.390506 1.71092i
\(736\) 11.4656 5.52155i 0.422628 0.203527i
\(737\) −42.6165 −1.56980
\(738\) −1.80194 + 0.867767i −0.0663302 + 0.0319430i
\(739\) −14.9236 18.7136i −0.548972 0.688389i 0.427504 0.904013i \(-0.359393\pi\)
−0.976476 + 0.215624i \(0.930821\pi\)
\(740\) 3.20291 + 4.01632i 0.117741 + 0.147643i
\(741\) 6.41066 3.08721i 0.235501 0.113411i
\(742\) 0.0422126 0.00154967
\(743\) 6.67845 3.21617i 0.245008 0.117990i −0.307350 0.951597i \(-0.599442\pi\)
0.552359 + 0.833607i \(0.313728\pi\)
\(744\) −2.38524 10.4504i −0.0874471 0.383131i
\(745\) −66.8132 32.1755i −2.44785 1.17882i
\(746\) 4.28352 + 2.06283i 0.156831 + 0.0755257i
\(747\) 0.221029 0.968391i 0.00808703 0.0354316i
\(748\) −1.26875 1.59096i −0.0463901 0.0581713i
\(749\) −2.49582 + 3.12966i −0.0911953 + 0.114355i
\(750\) 12.9438 + 56.7107i 0.472642 + 2.07078i
\(751\) 4.30851 18.8768i 0.157220 0.688825i −0.833456 0.552586i \(-0.813641\pi\)
0.990676 0.136239i \(-0.0435016\pi\)
\(752\) 8.62916 10.8206i 0.314673 0.394588i
\(753\) 23.3448 0.850732
\(754\) 0 0
\(755\) 77.0786 2.80518
\(756\) 0.952575 1.19449i 0.0346448 0.0434432i
\(757\) 7.61841 33.3784i 0.276896 1.21316i −0.624799 0.780786i \(-0.714819\pi\)
0.901694 0.432374i \(-0.142324\pi\)
\(758\) −2.50455 10.9731i −0.0909693 0.398563i
\(759\) 16.5233 20.7195i 0.599756 0.752071i
\(760\) −20.7201 25.9822i −0.751598 0.942474i
\(761\) −3.23974 + 14.1942i −0.117441 + 0.514541i 0.881650 + 0.471904i \(0.156433\pi\)
−0.999091 + 0.0426370i \(0.986424\pi\)
\(762\) −31.5100 15.1744i −1.14149 0.549711i
\(763\) −5.72737 2.75815i −0.207345 0.0998519i
\(764\) −0.0513102 0.224805i −0.00185634 0.00813315i
\(765\) −1.44504 + 0.695895i −0.0522456 + 0.0251602i
\(766\) −41.3860 −1.49534
\(767\) 8.45281 4.07066i 0.305213 0.146983i
\(768\) −11.3617 14.2472i −0.409981 0.514101i
\(769\) 7.20978 + 9.04077i 0.259991 + 0.326019i 0.894645 0.446778i \(-0.147429\pi\)
−0.634654 + 0.772797i \(0.718857\pi\)
\(770\) −8.97434 + 4.32182i −0.323413 + 0.155747i
\(771\) 30.0780 1.08323
\(772\) 0.555918 0.267716i 0.0200079 0.00963530i
\(773\) −1.86347 8.16439i −0.0670243 0.293653i 0.930296 0.366809i \(-0.119550\pi\)
−0.997320 + 0.0731566i \(0.976693\pi\)
\(774\) −0.184489 0.0888451i −0.00663131 0.00319347i
\(775\) 20.0286 + 9.64528i 0.719450 + 0.346469i
\(776\) −3.10052 + 13.5843i −0.111302 + 0.487647i
\(777\) 2.21648 + 2.77938i 0.0795158 + 0.0997096i
\(778\) 21.4088 26.8458i 0.767543 0.962468i
\(779\) 3.89008 + 17.0436i 0.139377 + 0.610649i
\(780\) −1.05980 + 4.64330i −0.0379470 + 0.166257i
\(781\) 4.01543 5.03519i 0.143684 0.180173i
\(782\) 10.3177 0.368959
\(783\) 0 0
\(784\) 18.9885 0.678161
\(785\) 28.8756 36.2089i 1.03061 1.29235i
\(786\) −6.71648 + 29.4268i −0.239569 + 1.04962i
\(787\) 2.16368 + 9.47969i 0.0771268 + 0.337915i 0.998739 0.0501966i \(-0.0159848\pi\)
−0.921613 + 0.388111i \(0.873128\pi\)
\(788\) −3.59568 + 4.50884i −0.128091 + 0.160621i
\(789\) 19.7838 + 24.8081i 0.704322 + 0.883192i
\(790\) −10.9438 + 47.9481i −0.389365 + 1.70592i
\(791\) 5.59030 + 2.69215i 0.198768 + 0.0957217i
\(792\) −1.93416 0.931441i −0.0687273 0.0330973i
\(793\) 0.426919 + 1.87046i 0.0151604 + 0.0664219i
\(794\) 21.5966 10.4004i 0.766436 0.369096i
\(795\) −0.356896 −0.0126578
\(796\) −7.82036 + 3.76608i −0.277185 + 0.133485i
\(797\) −16.4664 20.6483i −0.583271 0.731399i 0.399396 0.916779i \(-0.369220\pi\)
−0.982667 + 0.185380i \(0.940649\pi\)
\(798\) −2.60992 3.27273i −0.0923900 0.115853i
\(799\) −6.86831 + 3.30761i −0.242983 + 0.117015i
\(800\) 28.1062 0.993704
\(801\) −2.50484 + 1.20627i −0.0885043 + 0.0426214i
\(802\) −3.05951 13.4046i −0.108035 0.473332i
\(803\) 21.3780 + 10.2951i 0.754413 + 0.363306i
\(804\) 10.8007 + 5.20136i 0.380913 + 0.183438i
\(805\) −3.21648 + 14.0923i −0.113366 + 0.496689i
\(806\) −2.22505 2.79012i −0.0783739 0.0982777i
\(807\) 7.53803 9.45239i 0.265351 0.332740i
\(808\) 2.17994 + 9.55094i 0.0766900 + 0.336001i
\(809\) −4.18114 + 18.3188i −0.147001 + 0.644053i 0.846708 + 0.532058i \(0.178581\pi\)
−0.993709 + 0.111995i \(0.964276\pi\)
\(810\) 30.4720 38.2106i 1.07068 1.34258i
\(811\) 48.6983 1.71003 0.855013 0.518606i \(-0.173549\pi\)
0.855013 + 0.518606i \(0.173549\pi\)
\(812\) 0 0
\(813\) 22.8267 0.800567
\(814\) −6.31886 + 7.92360i −0.221476 + 0.277722i
\(815\) −6.01357 + 26.3472i −0.210646 + 0.922902i
\(816\) −1.87263 8.20451i −0.0655550 0.287215i
\(817\) −1.11596 + 1.39937i −0.0390424 + 0.0489576i
\(818\) 26.2954 + 32.9733i 0.919396 + 1.15289i
\(819\) −0.0557861 + 0.244415i −0.00194932 + 0.00854055i
\(820\) −10.5429 5.07718i −0.368173 0.177303i
\(821\) −5.63922 2.71570i −0.196810 0.0947788i 0.332883 0.942968i \(-0.391979\pi\)
−0.529693 + 0.848189i \(0.677693\pi\)
\(822\) 8.49612 + 37.2239i 0.296336 + 1.29833i
\(823\) 13.5293 6.51537i 0.471602 0.227111i −0.182959 0.983120i \(-0.558568\pi\)
0.654561 + 0.756009i \(0.272853\pi\)
\(824\) 19.9191 0.693916
\(825\) 52.7340 25.3954i 1.83596 0.884153i
\(826\) −3.44132 4.31528i −0.119739 0.150148i
\(827\) 7.45510 + 9.34840i 0.259239 + 0.325076i 0.894369 0.447330i \(-0.147625\pi\)
−0.635130 + 0.772405i \(0.719053\pi\)
\(828\) −0.510885 + 0.246029i −0.0177545 + 0.00855011i
\(829\) 28.6305 0.994380 0.497190 0.867642i \(-0.334365\pi\)
0.497190 + 0.867642i \(0.334365\pi\)
\(830\) −18.2947 + 8.81026i −0.635018 + 0.305809i
\(831\) −6.31163 27.6530i −0.218948 0.959273i
\(832\) −11.7615 5.66405i −0.407757 0.196365i
\(833\) −9.42327 4.53801i −0.326497 0.157233i
\(834\) −6.23221 + 27.3051i −0.215804 + 0.945498i
\(835\) 37.0284 + 46.4321i 1.28142 + 1.60685i
\(836\) −2.12953 + 2.67035i −0.0736514 + 0.0923559i
\(837\) −2.15375 9.43621i −0.0744446 0.326163i
\(838\) 9.88351 43.3025i 0.341420 1.49586i
\(839\) −30.1289 + 37.7805i −1.04017 + 1.30433i −0.0888716 + 0.996043i \(0.528326\pi\)
−0.951294 + 0.308284i \(0.900245\pi\)
\(840\) 15.3937 0.531134
\(841\) 0 0
\(842\) −11.7928 −0.406408
\(843\) 13.2736 16.6446i 0.457167 0.573269i
\(844\) −2.04311 + 8.95147i −0.0703269 + 0.308122i
\(845\) −9.77413 42.8232i −0.336240 1.47316i
\(846\) −0.912682 + 1.14447i −0.0313787 + 0.0393476i
\(847\) −1.23945 1.55422i −0.0425879 0.0534035i
\(848\) 0.0316959 0.138869i 0.00108844 0.00476878i
\(849\) 3.56853 + 1.71851i 0.122472 + 0.0589793i
\(850\) 20.5308 + 9.88711i 0.704200 + 0.339125i
\(851\) 3.27263 + 14.3383i 0.112184 + 0.491512i
\(852\) −1.63222 + 0.786035i −0.0559189 + 0.0269291i
\(853\) −6.40688 −0.219367 −0.109684 0.993967i \(-0.534984\pi\)
−0.109684 + 0.993967i \(0.534984\pi\)
\(854\) 1.01693 0.489726i 0.0347985 0.0167581i
\(855\) 1.67845 + 2.10471i 0.0574017 + 0.0719795i
\(856\) 10.9961 + 13.7887i 0.375839 + 0.471288i
\(857\) 0.646989 0.311573i 0.0221007 0.0106431i −0.422801 0.906223i \(-0.638953\pi\)
0.444901 + 0.895580i \(0.353239\pi\)
\(858\) −9.39612 −0.320778
\(859\) 14.0528 6.76747i 0.479475 0.230903i −0.178504 0.983939i \(-0.557126\pi\)
0.657979 + 0.753036i \(0.271411\pi\)
\(860\) −0.266594 1.16802i −0.00909078 0.0398293i
\(861\) −7.29590 3.51352i −0.248644 0.119740i
\(862\) −1.10723 0.533213i −0.0377123 0.0181613i
\(863\) −3.00293 + 13.1567i −0.102221 + 0.447858i 0.897752 + 0.440501i \(0.145199\pi\)
−0.999973 + 0.00735754i \(0.997658\pi\)
\(864\) −7.62983 9.56750i −0.259572 0.325493i
\(865\) 58.9711 73.9474i 2.00508 2.51429i
\(866\) 7.95928 + 34.8719i 0.270467 + 1.18499i
\(867\) 5.78501 25.3458i 0.196469 0.860788i
\(868\) 0.374650 0.469796i 0.0127164 0.0159459i
\(869\) 27.7700 0.942033
\(870\) 0 0
\(871\) 21.9269 0.742965
\(872\) −17.4623 + 21.8970i −0.591347 + 0.741525i
\(873\) 0.251160 1.10040i 0.00850048 0.0372430i
\(874\) −3.85354 16.8835i −0.130348 0.571092i
\(875\) −11.1697 + 14.0064i −0.377605 + 0.473502i
\(876\) −4.16152 5.21838i −0.140605 0.176313i
\(877\) 3.49343 15.3057i 0.117965 0.516837i −0.881073 0.472980i \(-0.843178\pi\)
0.999038 0.0438569i \(-0.0139646\pi\)
\(878\) 7.40850 + 3.56775i 0.250025 + 0.120406i
\(879\) 33.5148 + 16.1399i 1.13043 + 0.544385i
\(880\) 7.47919 + 32.7685i 0.252123 + 1.10462i
\(881\) 9.75882 4.69960i 0.328783 0.158334i −0.262209 0.965011i \(-0.584451\pi\)
0.590992 + 0.806678i \(0.298737\pi\)
\(882\) −2.00836 −0.0676250
\(883\) 14.8470 7.14992i 0.499640 0.240614i −0.167051 0.985948i \(-0.553424\pi\)
0.666691 + 0.745334i \(0.267710\pi\)
\(884\) 0.652793 + 0.818576i 0.0219558 + 0.0275317i
\(885\) 29.0954 + 36.4845i 0.978033 + 1.22641i
\(886\) 24.0296 11.5720i 0.807290 0.388770i
\(887\) −28.5763 −0.959497 −0.479748 0.877406i \(-0.659272\pi\)
−0.479748 + 0.877406i \(0.659272\pi\)
\(888\) 14.1114 6.79570i 0.473548 0.228049i
\(889\) −2.39679 10.5010i −0.0803857 0.352193i
\(890\) 51.2057 + 24.6593i 1.71642 + 0.826583i
\(891\) −24.8632 11.9735i −0.832950 0.401127i
\(892\) −2.08964 + 9.15530i −0.0699663 + 0.306542i
\(893\) 7.97770 + 10.0037i 0.266963 + 0.334762i
\(894\) −25.6591 + 32.1755i −0.858170 + 1.07611i
\(895\) −0.599031 2.62453i −0.0200234 0.0877283i
\(896\) −0.949222 + 4.15881i −0.0317113 + 0.138936i
\(897\) −8.50149 + 10.6605i −0.283857 + 0.355945i
\(898\) 36.4825 1.21744
\(899\) 0 0
\(900\) −1.25236 −0.0417452
\(901\) −0.0489173 + 0.0613404i −0.00162967 + 0.00204355i
\(902\) 5.13706 22.5069i 0.171045 0.749399i
\(903\) −0.184489 0.808298i −0.00613940 0.0268985i
\(904\) 17.0444 21.3730i 0.566887 0.710854i
\(905\) −27.6836 34.7141i −0.920234 1.15394i
\(906\) 9.51842 41.7029i 0.316228 1.38549i
\(907\) −29.6054 14.2572i −0.983030 0.473402i −0.127884 0.991789i \(-0.540818\pi\)
−0.855146 + 0.518387i \(0.826533\pi\)
\(908\) 2.86078 + 1.37768i 0.0949383 + 0.0457199i
\(909\) −0.176587 0.773680i −0.00585704 0.0256614i
\(910\) 4.61745 2.22365i 0.153067 0.0737132i
\(911\) 10.9638 0.363245 0.181623 0.983368i \(-0.441865\pi\)
0.181623 + 0.983368i \(0.441865\pi\)
\(912\) −12.7262 + 6.12860i −0.421406 + 0.202938i
\(913\) 7.14861 + 8.96408i 0.236585 + 0.296668i
\(914\) −0.187841 0.235545i −0.00621323 0.00779115i
\(915\) −8.59783 + 4.14050i −0.284236 + 0.136881i
\(916\) 1.00239 0.0331200
\(917\) −8.37531 + 4.03334i −0.276577 + 0.133193i
\(918\) −2.20775 9.67279i −0.0728666 0.319250i
\(919\) −6.90366 3.32463i −0.227731 0.109669i 0.316539 0.948579i \(-0.397479\pi\)
−0.544270 + 0.838910i \(0.683193\pi\)
\(920\) 57.3781 + 27.6318i 1.89170 + 0.910994i
\(921\) −9.14675 + 40.0745i −0.301396 + 1.32050i
\(922\) 13.4800 + 16.9034i 0.443941 + 0.556684i
\(923\) −2.06601 + 2.59069i −0.0680035 + 0.0852736i
\(924\) −0.352052 1.54244i −0.0115816 0.0507425i
\(925\) −7.22790 + 31.6675i −0.237652 + 1.04122i
\(926\) 3.30426 4.14341i 0.108585 0.136161i
\(927\) −1.61356 −0.0529964
\(928\) 0 0
\(929\) 9.35988 0.307088 0.153544 0.988142i \(-0.450931\pi\)
0.153544 + 0.988142i \(0.450931\pi\)
\(930\) 11.0673 13.8780i 0.362912 0.455078i
\(931\) −3.90635 + 17.1148i −0.128025 + 0.560916i
\(932\) 1.87263 + 8.20451i 0.0613399 + 0.268748i
\(933\) 34.9294 43.8000i 1.14354 1.43395i
\(934\) −22.4174 28.1105i −0.733519 0.919803i
\(935\) 4.11960 18.0492i 0.134725 0.590271i
\(936\) 0.995156 + 0.479242i 0.0325277 + 0.0156645i
\(937\) −7.03103 3.38597i −0.229694 0.110615i 0.315497 0.948926i \(-0.397829\pi\)
−0.545191 + 0.838312i \(0.683543\pi\)
\(938\) −2.87047 12.5763i −0.0937241 0.410632i
\(939\) 18.2359 8.78193i 0.595105 0.286587i
\(940\) −8.56465 −0.279348
\(941\) 25.9013 12.4734i 0.844357 0.406621i 0.0388772 0.999244i \(-0.487622\pi\)
0.805480 + 0.592623i \(0.201908\pi\)
\(942\) −16.0248 20.0944i −0.522115 0.654711i
\(943\) −20.8877 26.1923i −0.680197 0.852940i
\(944\) −16.7802 + 8.08090i −0.546148 + 0.263011i
\(945\) 13.8998 0.452160
\(946\) 2.12953 1.02553i 0.0692370 0.0333428i
\(947\) 0.513869 + 2.25141i 0.0166985 + 0.0731609i 0.982591 0.185784i \(-0.0594824\pi\)
−0.965892 + 0.258945i \(0.916625\pi\)
\(948\) −7.03803 3.38934i −0.228585 0.110081i
\(949\) −10.9993 5.29700i −0.357054 0.171948i
\(950\) 8.51089 37.2886i 0.276130 1.20980i
\(951\) −6.65883 8.34991i −0.215927 0.270764i
\(952\) 2.10992 2.64575i 0.0683828 0.0857493i
\(953\) 7.68372 + 33.6646i 0.248900 + 1.09050i 0.932649 + 0.360785i \(0.117491\pi\)
−0.683749 + 0.729717i \(0.739652\pi\)
\(954\) −0.00335239 + 0.0146878i −0.000108538 + 0.000475534i
\(955\) 1.30798 1.64015i 0.0423252 0.0530741i
\(956\) 9.11098 0.294670
\(957\) 0 0
\(958\) −30.1481 −0.974040
\(959\) −7.33161 + 9.19355i −0.236750 + 0.296875i
\(960\) 14.4487 63.3038i 0.466329 2.04312i
\(961\) 6.05107 + 26.5115i 0.195196 + 0.855209i
\(962\) 3.25116 4.07683i 0.104822 0.131442i
\(963\) −0.890748 1.11696i −0.0287039 0.0359936i
\(964\) 0.729758 3.19728i 0.0235039 0.102977i
\(965\) 5.05765 + 2.43563i 0.162811 + 0.0784058i
\(966\) 7.22737 + 3.48052i 0.232537 + 0.111984i
\(967\) −11.4639 50.2266i −0.368654 1.61518i −0.730481 0.682933i \(-0.760704\pi\)
0.361828 0.932245i \(-0.382153\pi\)
\(968\) −7.89104 + 3.80013i −0.253628 + 0.122141i
\(969\) 7.78017 0.249935
\(970\) −20.7887 + 10.0113i −0.667484 + 0.321443i
\(971\) 4.94773 + 6.20426i 0.158780 + 0.199104i 0.854858 0.518863i \(-0.173644\pi\)
−0.696077 + 0.717967i \(0.745073\pi\)
\(972\) 0.710439 + 0.890863i 0.0227874 + 0.0285744i
\(973\) −7.77144 + 3.74253i −0.249141 + 0.119980i
\(974\) 24.0804 0.771585
\(975\) −27.1325 + 13.0663i −0.868936 + 0.418457i
\(976\) −0.847503 3.71315i −0.0271279 0.118855i
\(977\) −24.8663 11.9750i −0.795545 0.383114i −0.00846415 0.999964i \(-0.502694\pi\)
−0.787081 + 0.616850i \(0.788409\pi\)
\(978\) 13.5124 + 6.50722i 0.432078 + 0.208078i
\(979\) 7.14095 31.2865i 0.228226 0.999922i
\(980\) −7.32640 9.18701i −0.234033 0.293468i
\(981\) 1.41454 1.77378i 0.0451629 0.0566324i
\(982\) −10.2364 44.8486i −0.326656 1.43117i
\(983\) −7.86108 + 34.4416i −0.250729 + 1.09852i 0.680116 + 0.733104i \(0.261929\pi\)
−0.930846 + 0.365413i \(0.880928\pi\)
\(984\) −22.2446 + 27.8938i −0.709132 + 0.889223i
\(985\) −52.4674 −1.67175
\(986\) 0 0
\(987\) −5.92692 −0.188656
\(988\) 1.09568 1.37394i 0.0348582 0.0437108i
\(989\) 0.763242 3.34398i 0.0242697 0.106332i
\(990\) −0.791053 3.46583i −0.0251413 0.110151i
\(991\) −0.345183 + 0.432845i −0.0109651 + 0.0137498i −0.787284 0.616591i \(-0.788513\pi\)
0.776319 + 0.630341i \(0.217085\pi\)
\(992\) −3.00083 3.76292i −0.0952764 0.119473i
\(993\) −12.3937 + 54.3005i −0.393303 + 1.72317i
\(994\) 1.75637 + 0.845825i 0.0557088 + 0.0268279i
\(995\) −71.1483 34.2632i −2.25555 1.08622i
\(996\) −0.717677 3.14435i −0.0227405 0.0996324i
\(997\) −20.0426 + 9.65203i −0.634757 + 0.305683i −0.723451 0.690376i \(-0.757445\pi\)
0.0886938 + 0.996059i \(0.471731\pi\)
\(998\) 47.0307 1.48873
\(999\) 12.7419 6.13617i 0.403136 0.194140i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.d.e.574.1 6
29.2 odd 28 841.2.e.b.63.2 12
29.3 odd 28 841.2.e.d.236.2 12
29.4 even 14 841.2.d.c.571.1 6
29.5 even 14 841.2.d.a.778.1 6
29.6 even 14 841.2.d.c.190.1 6
29.7 even 7 29.2.d.a.25.1 yes 6
29.8 odd 28 841.2.e.d.196.2 12
29.9 even 14 841.2.d.d.645.1 6
29.10 odd 28 841.2.e.c.270.1 12
29.11 odd 28 841.2.b.c.840.2 6
29.12 odd 4 841.2.e.b.267.2 12
29.13 even 14 841.2.a.f.1.1 3
29.14 odd 28 841.2.e.c.651.1 12
29.15 odd 28 841.2.e.c.651.2 12
29.16 even 7 841.2.a.e.1.3 3
29.17 odd 4 841.2.e.b.267.1 12
29.18 odd 28 841.2.b.c.840.5 6
29.19 odd 28 841.2.e.c.270.2 12
29.20 even 7 29.2.d.a.7.1 6
29.21 odd 28 841.2.e.d.196.1 12
29.22 even 14 841.2.d.d.605.1 6
29.23 even 7 841.2.d.b.190.1 6
29.24 even 7 inner 841.2.d.e.778.1 6
29.25 even 7 841.2.d.b.571.1 6
29.26 odd 28 841.2.e.d.236.1 12
29.27 odd 28 841.2.e.b.63.1 12
29.28 even 2 841.2.d.a.574.1 6
87.20 odd 14 261.2.k.a.181.1 6
87.65 odd 14 261.2.k.a.199.1 6
87.71 odd 14 7569.2.a.p.1.3 3
87.74 odd 14 7569.2.a.r.1.1 3
116.7 odd 14 464.2.u.f.257.1 6
116.107 odd 14 464.2.u.f.65.1 6
145.7 odd 28 725.2.r.b.199.1 12
145.49 even 14 725.2.l.b.326.1 6
145.78 odd 28 725.2.r.b.674.1 12
145.94 even 14 725.2.l.b.576.1 6
145.107 odd 28 725.2.r.b.674.2 12
145.123 odd 28 725.2.r.b.199.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.7.1 6 29.20 even 7
29.2.d.a.25.1 yes 6 29.7 even 7
261.2.k.a.181.1 6 87.20 odd 14
261.2.k.a.199.1 6 87.65 odd 14
464.2.u.f.65.1 6 116.107 odd 14
464.2.u.f.257.1 6 116.7 odd 14
725.2.l.b.326.1 6 145.49 even 14
725.2.l.b.576.1 6 145.94 even 14
725.2.r.b.199.1 12 145.7 odd 28
725.2.r.b.199.2 12 145.123 odd 28
725.2.r.b.674.1 12 145.78 odd 28
725.2.r.b.674.2 12 145.107 odd 28
841.2.a.e.1.3 3 29.16 even 7
841.2.a.f.1.1 3 29.13 even 14
841.2.b.c.840.2 6 29.11 odd 28
841.2.b.c.840.5 6 29.18 odd 28
841.2.d.a.574.1 6 29.28 even 2
841.2.d.a.778.1 6 29.5 even 14
841.2.d.b.190.1 6 29.23 even 7
841.2.d.b.571.1 6 29.25 even 7
841.2.d.c.190.1 6 29.6 even 14
841.2.d.c.571.1 6 29.4 even 14
841.2.d.d.605.1 6 29.22 even 14
841.2.d.d.645.1 6 29.9 even 14
841.2.d.e.574.1 6 1.1 even 1 trivial
841.2.d.e.778.1 6 29.24 even 7 inner
841.2.e.b.63.1 12 29.27 odd 28
841.2.e.b.63.2 12 29.2 odd 28
841.2.e.b.267.1 12 29.17 odd 4
841.2.e.b.267.2 12 29.12 odd 4
841.2.e.c.270.1 12 29.10 odd 28
841.2.e.c.270.2 12 29.19 odd 28
841.2.e.c.651.1 12 29.14 odd 28
841.2.e.c.651.2 12 29.15 odd 28
841.2.e.d.196.1 12 29.21 odd 28
841.2.e.d.196.2 12 29.8 odd 28
841.2.e.d.236.1 12 29.26 odd 28
841.2.e.d.236.2 12 29.3 odd 28
7569.2.a.p.1.3 3 87.71 odd 14
7569.2.a.r.1.1 3 87.74 odd 14