Properties

Label 464.2.u.f.257.1
Level $464$
Weight $2$
Character 464.257
Analytic conductor $3.705$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [464,2,Mod(49,464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(464, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 0, 12])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("464.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.u (of order \(7\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,5,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 257.1
Root \(0.900969 + 0.433884i\) of defining polynomial
Character \(\chi\) \(=\) 464.257
Dual form 464.2.u.f.65.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.62349 - 0.781831i) q^{3} +(0.900969 - 3.94740i) q^{5} +(0.623490 - 0.300257i) q^{7} +(0.153989 - 0.193096i) q^{9} +(1.77748 + 2.22889i) q^{11} +(0.914542 + 1.14680i) q^{13} +(-1.62349 - 7.11297i) q^{15} -1.60388 q^{17} +(-2.42543 - 1.16802i) q^{19} +(0.777479 - 0.974928i) q^{21} +(-1.14795 - 5.02949i) q^{23} +(-10.2654 - 4.94355i) q^{25} +(-1.10388 + 4.83639i) q^{27} +(3.71379 + 3.89971i) q^{29} +(-0.434157 + 1.90216i) q^{31} +(4.62833 + 2.22889i) q^{33} +(-0.623490 - 2.73169i) q^{35} +(1.77748 - 2.22889i) q^{37} +(2.38135 + 1.14680i) q^{39} +6.49396 q^{41} +(0.147948 + 0.648205i) q^{43} +(-0.623490 - 0.781831i) q^{45} +(2.96346 + 3.71606i) q^{47} +(-4.06584 + 5.09841i) q^{49} +(-2.60388 + 1.25396i) q^{51} +(-0.0108851 + 0.0476909i) q^{53} +(10.3998 - 5.00827i) q^{55} -4.85086 q^{57} +6.39612 q^{59} +(1.17845 - 0.567511i) q^{61} +(0.0380322 - 0.166630i) q^{63} +(5.35086 - 2.57684i) q^{65} +(-9.32036 + 11.6874i) q^{67} +(-5.79590 - 7.26782i) q^{69} +(1.40850 + 1.76621i) q^{71} +(-1.85205 - 8.11437i) q^{73} -20.5308 q^{75} +(1.77748 + 0.855989i) q^{77} +(6.07338 - 7.61577i) q^{79} +(2.15399 + 9.43724i) q^{81} +(-3.62349 - 1.74498i) q^{83} +(-1.44504 + 6.33114i) q^{85} +(9.07822 + 3.42758i) q^{87} +(-2.50484 + 10.9744i) q^{89} +(0.914542 + 0.440420i) q^{91} +(0.782323 + 3.42758i) q^{93} +(-6.79590 + 8.52179i) q^{95} +(4.11745 + 1.98286i) q^{97} +0.704103 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} + q^{5} - q^{7} + 6 q^{9} + 11 q^{11} - 5 q^{13} - 5 q^{15} + 8 q^{17} - q^{19} + 5 q^{21} + 7 q^{23} - 24 q^{25} + 11 q^{27} + 6 q^{29} - 5 q^{31} + q^{33} + q^{35} + 11 q^{37} - 3 q^{39}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.62349 0.781831i 0.937322 0.451391i 0.0980984 0.995177i \(-0.468724\pi\)
0.839224 + 0.543786i \(0.183010\pi\)
\(4\) 0 0
\(5\) 0.900969 3.94740i 0.402926 1.76533i −0.212524 0.977156i \(-0.568168\pi\)
0.615450 0.788176i \(-0.288974\pi\)
\(6\) 0 0
\(7\) 0.623490 0.300257i 0.235657 0.113486i −0.312329 0.949974i \(-0.601109\pi\)
0.547986 + 0.836488i \(0.315395\pi\)
\(8\) 0 0
\(9\) 0.153989 0.193096i 0.0513298 0.0643655i
\(10\) 0 0
\(11\) 1.77748 + 2.22889i 0.535930 + 0.672035i 0.973906 0.226952i \(-0.0728759\pi\)
−0.437976 + 0.898987i \(0.644304\pi\)
\(12\) 0 0
\(13\) 0.914542 + 1.14680i 0.253648 + 0.318065i 0.892310 0.451422i \(-0.149083\pi\)
−0.638662 + 0.769487i \(0.720512\pi\)
\(14\) 0 0
\(15\) −1.62349 7.11297i −0.419183 1.83656i
\(16\) 0 0
\(17\) −1.60388 −0.388997 −0.194498 0.980903i \(-0.562308\pi\)
−0.194498 + 0.980903i \(0.562308\pi\)
\(18\) 0 0
\(19\) −2.42543 1.16802i −0.556431 0.267963i 0.134463 0.990919i \(-0.457069\pi\)
−0.690895 + 0.722955i \(0.742783\pi\)
\(20\) 0 0
\(21\) 0.777479 0.974928i 0.169660 0.212747i
\(22\) 0 0
\(23\) −1.14795 5.02949i −0.239364 1.04872i −0.941588 0.336766i \(-0.890667\pi\)
0.702225 0.711955i \(-0.252190\pi\)
\(24\) 0 0
\(25\) −10.2654 4.94355i −2.05308 0.988711i
\(26\) 0 0
\(27\) −1.10388 + 4.83639i −0.212441 + 0.930765i
\(28\) 0 0
\(29\) 3.71379 + 3.89971i 0.689634 + 0.724158i
\(30\) 0 0
\(31\) −0.434157 + 1.90216i −0.0779769 + 0.341639i −0.998835 0.0482592i \(-0.984633\pi\)
0.920858 + 0.389898i \(0.127490\pi\)
\(32\) 0 0
\(33\) 4.62833 + 2.22889i 0.805690 + 0.388000i
\(34\) 0 0
\(35\) −0.623490 2.73169i −0.105389 0.461739i
\(36\) 0 0
\(37\) 1.77748 2.22889i 0.292216 0.366427i −0.613953 0.789342i \(-0.710422\pi\)
0.906169 + 0.422915i \(0.138993\pi\)
\(38\) 0 0
\(39\) 2.38135 + 1.14680i 0.381322 + 0.183635i
\(40\) 0 0
\(41\) 6.49396 1.01419 0.507093 0.861891i \(-0.330720\pi\)
0.507093 + 0.861891i \(0.330720\pi\)
\(42\) 0 0
\(43\) 0.147948 + 0.648205i 0.0225619 + 0.0988503i 0.984955 0.172810i \(-0.0552846\pi\)
−0.962393 + 0.271660i \(0.912427\pi\)
\(44\) 0 0
\(45\) −0.623490 0.781831i −0.0929444 0.116549i
\(46\) 0 0
\(47\) 2.96346 + 3.71606i 0.432265 + 0.542043i 0.949486 0.313809i \(-0.101605\pi\)
−0.517221 + 0.855852i \(0.673034\pi\)
\(48\) 0 0
\(49\) −4.06584 + 5.09841i −0.580835 + 0.728344i
\(50\) 0 0
\(51\) −2.60388 + 1.25396i −0.364615 + 0.175590i
\(52\) 0 0
\(53\) −0.0108851 + 0.0476909i −0.00149519 + 0.00655085i −0.975670 0.219244i \(-0.929641\pi\)
0.974175 + 0.225795i \(0.0724980\pi\)
\(54\) 0 0
\(55\) 10.3998 5.00827i 1.40231 0.675315i
\(56\) 0 0
\(57\) −4.85086 −0.642511
\(58\) 0 0
\(59\) 6.39612 0.832704 0.416352 0.909203i \(-0.363308\pi\)
0.416352 + 0.909203i \(0.363308\pi\)
\(60\) 0 0
\(61\) 1.17845 0.567511i 0.150885 0.0726623i −0.356918 0.934136i \(-0.616172\pi\)
0.507802 + 0.861474i \(0.330458\pi\)
\(62\) 0 0
\(63\) 0.0380322 0.166630i 0.00479161 0.0209934i
\(64\) 0 0
\(65\) 5.35086 2.57684i 0.663692 0.319617i
\(66\) 0 0
\(67\) −9.32036 + 11.6874i −1.13866 + 1.42784i −0.250615 + 0.968087i \(0.580633\pi\)
−0.888048 + 0.459751i \(0.847939\pi\)
\(68\) 0 0
\(69\) −5.79590 7.26782i −0.697744 0.874943i
\(70\) 0 0
\(71\) 1.40850 + 1.76621i 0.167158 + 0.209610i 0.858354 0.513057i \(-0.171487\pi\)
−0.691196 + 0.722667i \(0.742916\pi\)
\(72\) 0 0
\(73\) −1.85205 8.11437i −0.216766 0.949715i −0.959849 0.280516i \(-0.909494\pi\)
0.743083 0.669199i \(-0.233363\pi\)
\(74\) 0 0
\(75\) −20.5308 −2.37069
\(76\) 0 0
\(77\) 1.77748 + 0.855989i 0.202563 + 0.0975490i
\(78\) 0 0
\(79\) 6.07338 7.61577i 0.683308 0.856841i −0.312346 0.949968i \(-0.601115\pi\)
0.995654 + 0.0931270i \(0.0296863\pi\)
\(80\) 0 0
\(81\) 2.15399 + 9.43724i 0.239332 + 1.04858i
\(82\) 0 0
\(83\) −3.62349 1.74498i −0.397730 0.191537i 0.224318 0.974516i \(-0.427985\pi\)
−0.622047 + 0.782980i \(0.713699\pi\)
\(84\) 0 0
\(85\) −1.44504 + 6.33114i −0.156737 + 0.686709i
\(86\) 0 0
\(87\) 9.07822 + 3.42758i 0.973287 + 0.367475i
\(88\) 0 0
\(89\) −2.50484 + 10.9744i −0.265513 + 1.16329i 0.649659 + 0.760225i \(0.274912\pi\)
−0.915172 + 0.403063i \(0.867946\pi\)
\(90\) 0 0
\(91\) 0.914542 + 0.440420i 0.0958701 + 0.0461686i
\(92\) 0 0
\(93\) 0.782323 + 3.42758i 0.0811232 + 0.355424i
\(94\) 0 0
\(95\) −6.79590 + 8.52179i −0.697244 + 0.874317i
\(96\) 0 0
\(97\) 4.11745 + 1.98286i 0.418064 + 0.201329i 0.631077 0.775721i \(-0.282613\pi\)
−0.213013 + 0.977049i \(0.568328\pi\)
\(98\) 0 0
\(99\) 0.704103 0.0707650
\(100\) 0 0
\(101\) −0.714988 3.13257i −0.0711440 0.311702i 0.926818 0.375510i \(-0.122533\pi\)
−0.997962 + 0.0638082i \(0.979675\pi\)
\(102\) 0 0
\(103\) 4.07338 + 5.10785i 0.401362 + 0.503292i 0.940907 0.338665i \(-0.109975\pi\)
−0.539545 + 0.841957i \(0.681404\pi\)
\(104\) 0 0
\(105\) −3.14795 3.94740i −0.307208 0.385227i
\(106\) 0 0
\(107\) 3.60656 4.52249i 0.348660 0.437205i −0.576319 0.817225i \(-0.695511\pi\)
0.924978 + 0.380020i \(0.124083\pi\)
\(108\) 0 0
\(109\) −8.27628 + 3.98565i −0.792724 + 0.381756i −0.786004 0.618222i \(-0.787853\pi\)
−0.00672026 + 0.999977i \(0.502139\pi\)
\(110\) 0 0
\(111\) 1.14310 5.00827i 0.108499 0.475364i
\(112\) 0 0
\(113\) 8.07822 3.89027i 0.759935 0.365965i −0.0134437 0.999910i \(-0.504279\pi\)
0.773379 + 0.633944i \(0.218565\pi\)
\(114\) 0 0
\(115\) −20.8877 −1.94779
\(116\) 0 0
\(117\) 0.362273 0.0334921
\(118\) 0 0
\(119\) −1.00000 + 0.481575i −0.0916698 + 0.0441459i
\(120\) 0 0
\(121\) 0.639219 2.80060i 0.0581108 0.254600i
\(122\) 0 0
\(123\) 10.5429 5.07718i 0.950619 0.457794i
\(124\) 0 0
\(125\) −16.1407 + 20.2398i −1.44367 + 1.81030i
\(126\) 0 0
\(127\) −9.70440 12.1689i −0.861126 1.07982i −0.996035 0.0889600i \(-0.971646\pi\)
0.134909 0.990858i \(-0.456926\pi\)
\(128\) 0 0
\(129\) 0.746980 + 0.936683i 0.0657679 + 0.0824703i
\(130\) 0 0
\(131\) 2.98911 + 13.0962i 0.261160 + 1.14422i 0.919995 + 0.391930i \(0.128192\pi\)
−0.658835 + 0.752288i \(0.728950\pi\)
\(132\) 0 0
\(133\) −1.86294 −0.161537
\(134\) 0 0
\(135\) 18.0966 + 8.71488i 1.55751 + 0.750058i
\(136\) 0 0
\(137\) −10.5945 + 13.2851i −0.905148 + 1.13502i 0.0851931 + 0.996364i \(0.472849\pi\)
−0.990341 + 0.138655i \(0.955722\pi\)
\(138\) 0 0
\(139\) 2.77359 + 12.1519i 0.235253 + 1.03071i 0.945209 + 0.326465i \(0.105858\pi\)
−0.709956 + 0.704246i \(0.751285\pi\)
\(140\) 0 0
\(141\) 7.71648 + 3.71606i 0.649845 + 0.312949i
\(142\) 0 0
\(143\) −0.930509 + 4.07683i −0.0778131 + 0.340921i
\(144\) 0 0
\(145\) 18.7397 11.1463i 1.55625 0.925651i
\(146\) 0 0
\(147\) −2.61476 + 11.4560i −0.215662 + 0.944876i
\(148\) 0 0
\(149\) 16.5015 + 7.94670i 1.35185 + 0.651019i 0.962805 0.270198i \(-0.0870890\pi\)
0.389050 + 0.921217i \(0.372803\pi\)
\(150\) 0 0
\(151\) −4.23609 18.5595i −0.344728 1.51035i −0.788961 0.614443i \(-0.789381\pi\)
0.444233 0.895911i \(-0.353476\pi\)
\(152\) 0 0
\(153\) −0.246980 + 0.309703i −0.0199671 + 0.0250380i
\(154\) 0 0
\(155\) 7.11745 + 3.42758i 0.571687 + 0.275310i
\(156\) 0 0
\(157\) −11.4383 −0.912879 −0.456439 0.889755i \(-0.650875\pi\)
−0.456439 + 0.889755i \(0.650875\pi\)
\(158\) 0 0
\(159\) 0.0196143 + 0.0859360i 0.00155552 + 0.00681517i
\(160\) 0 0
\(161\) −2.22587 2.79116i −0.175423 0.219974i
\(162\) 0 0
\(163\) 4.16152 + 5.21838i 0.325956 + 0.408735i 0.917626 0.397444i \(-0.130103\pi\)
−0.591671 + 0.806180i \(0.701531\pi\)
\(164\) 0 0
\(165\) 12.9683 16.2617i 1.00958 1.26597i
\(166\) 0 0
\(167\) −13.2153 + 6.36415i −1.02263 + 0.492472i −0.868558 0.495587i \(-0.834953\pi\)
−0.154071 + 0.988060i \(0.549239\pi\)
\(168\) 0 0
\(169\) 2.41401 10.5765i 0.185693 0.813575i
\(170\) 0 0
\(171\) −0.599031 + 0.288478i −0.0458091 + 0.0220605i
\(172\) 0 0
\(173\) −23.3599 −1.77602 −0.888009 0.459825i \(-0.847912\pi\)
−0.888009 + 0.459825i \(0.847912\pi\)
\(174\) 0 0
\(175\) −7.88471 −0.596028
\(176\) 0 0
\(177\) 10.3840 5.00069i 0.780512 0.375875i
\(178\) 0 0
\(179\) −0.147948 + 0.648205i −0.0110582 + 0.0484491i −0.980156 0.198228i \(-0.936481\pi\)
0.969098 + 0.246677i \(0.0793386\pi\)
\(180\) 0 0
\(181\) −9.88016 + 4.75803i −0.734386 + 0.353662i −0.763408 0.645917i \(-0.776475\pi\)
0.0290213 + 0.999579i \(0.490761\pi\)
\(182\) 0 0
\(183\) 1.46950 1.84270i 0.108629 0.136216i
\(184\) 0 0
\(185\) −7.19687 9.02458i −0.529124 0.663501i
\(186\) 0 0
\(187\) −2.85086 3.57486i −0.208475 0.261420i
\(188\) 0 0
\(189\) 0.763906 + 3.34689i 0.0555660 + 0.243450i
\(190\) 0 0
\(191\) 0.518122 0.0374900 0.0187450 0.999824i \(-0.494033\pi\)
0.0187450 + 0.999824i \(0.494033\pi\)
\(192\) 0 0
\(193\) −1.24914 0.601552i −0.0899147 0.0433007i 0.388386 0.921497i \(-0.373033\pi\)
−0.478301 + 0.878196i \(0.658747\pi\)
\(194\) 0 0
\(195\) 6.67241 8.36693i 0.477821 0.599169i
\(196\) 0 0
\(197\) −2.88351 12.6335i −0.205442 0.900099i −0.967556 0.252656i \(-0.918696\pi\)
0.762114 0.647442i \(-0.224161\pi\)
\(198\) 0 0
\(199\) −17.5722 8.46232i −1.24566 0.599878i −0.309314 0.950960i \(-0.600099\pi\)
−0.936345 + 0.351082i \(0.885814\pi\)
\(200\) 0 0
\(201\) −5.99396 + 26.2613i −0.422781 + 1.85233i
\(202\) 0 0
\(203\) 3.48643 + 1.31634i 0.244699 + 0.0923889i
\(204\) 0 0
\(205\) 5.85086 25.6343i 0.408641 1.79038i
\(206\) 0 0
\(207\) −1.14795 0.552823i −0.0797879 0.0384238i
\(208\) 0 0
\(209\) −1.70775 7.48215i −0.118128 0.517551i
\(210\) 0 0
\(211\) 12.8632 16.1300i 0.885541 1.11043i −0.107679 0.994186i \(-0.534342\pi\)
0.993220 0.116248i \(-0.0370868\pi\)
\(212\) 0 0
\(213\) 3.66756 + 1.76621i 0.251297 + 0.121018i
\(214\) 0 0
\(215\) 2.69202 0.183594
\(216\) 0 0
\(217\) 0.300446 + 1.31634i 0.0203956 + 0.0893589i
\(218\) 0 0
\(219\) −9.35086 11.7256i −0.631872 0.792343i
\(220\) 0 0
\(221\) −1.46681 1.83932i −0.0986685 0.123726i
\(222\) 0 0
\(223\) 13.1561 16.4973i 0.881001 1.10474i −0.112806 0.993617i \(-0.535984\pi\)
0.993807 0.111123i \(-0.0354447\pi\)
\(224\) 0 0
\(225\) −2.53534 + 1.22096i −0.169023 + 0.0813971i
\(226\) 0 0
\(227\) 1.58761 6.95579i 0.105374 0.461672i −0.894519 0.447030i \(-0.852482\pi\)
0.999893 0.0146424i \(-0.00466098\pi\)
\(228\) 0 0
\(229\) 2.02930 0.977261i 0.134100 0.0645792i −0.365631 0.930760i \(-0.619147\pi\)
0.499731 + 0.866181i \(0.333432\pi\)
\(230\) 0 0
\(231\) 3.55496 0.233899
\(232\) 0 0
\(233\) 18.9095 1.23880 0.619400 0.785076i \(-0.287376\pi\)
0.619400 + 0.785076i \(0.287376\pi\)
\(234\) 0 0
\(235\) 17.3388 8.34991i 1.13106 0.544688i
\(236\) 0 0
\(237\) 3.90581 17.1125i 0.253710 1.11158i
\(238\) 0 0
\(239\) −18.4448 + 8.88255i −1.19310 + 0.574564i −0.921700 0.387904i \(-0.873199\pi\)
−0.271395 + 0.962468i \(0.587485\pi\)
\(240\) 0 0
\(241\) 4.59448 5.76130i 0.295957 0.371118i −0.611514 0.791234i \(-0.709439\pi\)
0.907470 + 0.420116i \(0.138011\pi\)
\(242\) 0 0
\(243\) 1.59634 + 2.00175i 0.102405 + 0.128412i
\(244\) 0 0
\(245\) 16.4623 + 20.6430i 1.05174 + 1.31883i
\(246\) 0 0
\(247\) −0.878666 3.84969i −0.0559082 0.244950i
\(248\) 0 0
\(249\) −7.24698 −0.459259
\(250\) 0 0
\(251\) 11.6724 + 5.62114i 0.736756 + 0.354803i 0.764337 0.644817i \(-0.223066\pi\)
−0.0275815 + 0.999620i \(0.508781\pi\)
\(252\) 0 0
\(253\) 9.16972 11.4985i 0.576495 0.722902i
\(254\) 0 0
\(255\) 2.60388 + 11.4083i 0.163061 + 0.714417i
\(256\) 0 0
\(257\) −15.0390 7.24240i −0.938107 0.451768i −0.0986056 0.995127i \(-0.531438\pi\)
−0.839501 + 0.543358i \(0.817153\pi\)
\(258\) 0 0
\(259\) 0.439001 1.92339i 0.0272782 0.119514i
\(260\) 0 0
\(261\) 1.32490 0.116606i 0.0820095 0.00721774i
\(262\) 0 0
\(263\) 3.91843 17.1678i 0.241621 1.05861i −0.697921 0.716175i \(-0.745891\pi\)
0.939542 0.342434i \(-0.111251\pi\)
\(264\) 0 0
\(265\) 0.178448 + 0.0859360i 0.0109620 + 0.00527901i
\(266\) 0 0
\(267\) 4.51357 + 19.7753i 0.276226 + 1.21023i
\(268\) 0 0
\(269\) 4.18329 5.24568i 0.255060 0.319835i −0.637772 0.770225i \(-0.720144\pi\)
0.892832 + 0.450390i \(0.148715\pi\)
\(270\) 0 0
\(271\) 11.4133 + 5.49638i 0.693311 + 0.333881i 0.747138 0.664669i \(-0.231427\pi\)
−0.0538264 + 0.998550i \(0.517142\pi\)
\(272\) 0 0
\(273\) 1.82908 0.110701
\(274\) 0 0
\(275\) −7.22790 31.6675i −0.435859 1.90962i
\(276\) 0 0
\(277\) 9.81431 + 12.3068i 0.589685 + 0.739442i 0.983731 0.179649i \(-0.0574963\pi\)
−0.394046 + 0.919091i \(0.628925\pi\)
\(278\) 0 0
\(279\) 0.300446 + 0.376747i 0.0179872 + 0.0225553i
\(280\) 0 0
\(281\) 7.36629 9.23703i 0.439436 0.551035i −0.511959 0.859010i \(-0.671080\pi\)
0.951394 + 0.307975i \(0.0996513\pi\)
\(282\) 0 0
\(283\) −1.98039 + 0.953703i −0.117722 + 0.0566918i −0.491818 0.870698i \(-0.663667\pi\)
0.374096 + 0.927390i \(0.377953\pi\)
\(284\) 0 0
\(285\) −4.37047 + 19.1483i −0.258884 + 1.13425i
\(286\) 0 0
\(287\) 4.04892 1.94986i 0.239000 0.115096i
\(288\) 0 0
\(289\) −14.4276 −0.848681
\(290\) 0 0
\(291\) 8.23490 0.482738
\(292\) 0 0
\(293\) 18.5993 8.95696i 1.08658 0.523271i 0.197168 0.980370i \(-0.436826\pi\)
0.889416 + 0.457098i \(0.151111\pi\)
\(294\) 0 0
\(295\) 5.76271 25.2481i 0.335518 1.47000i
\(296\) 0 0
\(297\) −12.7419 + 6.13617i −0.739360 + 0.356057i
\(298\) 0 0
\(299\) 4.71797 5.91615i 0.272847 0.342140i
\(300\) 0 0
\(301\) 0.286872 + 0.359726i 0.0165350 + 0.0207343i
\(302\) 0 0
\(303\) −3.60992 4.52669i −0.207384 0.260052i
\(304\) 0 0
\(305\) −1.17845 5.16312i −0.0674777 0.295639i
\(306\) 0 0
\(307\) −22.8116 −1.30193 −0.650964 0.759108i \(-0.725635\pi\)
−0.650964 + 0.759108i \(0.725635\pi\)
\(308\) 0 0
\(309\) 10.6066 + 5.10785i 0.603386 + 0.290576i
\(310\) 0 0
\(311\) −19.3843 + 24.3072i −1.09918 + 1.37833i −0.180392 + 0.983595i \(0.557737\pi\)
−0.918793 + 0.394740i \(0.870835\pi\)
\(312\) 0 0
\(313\) 2.49947 + 10.9509i 0.141278 + 0.618980i 0.995139 + 0.0984792i \(0.0313978\pi\)
−0.853861 + 0.520501i \(0.825745\pi\)
\(314\) 0 0
\(315\) −0.623490 0.300257i −0.0351297 0.0169176i
\(316\) 0 0
\(317\) 1.31886 5.77832i 0.0740748 0.324543i −0.924291 0.381688i \(-0.875343\pi\)
0.998366 + 0.0571456i \(0.0181999\pi\)
\(318\) 0 0
\(319\) −2.09083 + 15.2093i −0.117064 + 0.851556i
\(320\) 0 0
\(321\) 2.31940 10.1619i 0.129456 0.567184i
\(322\) 0 0
\(323\) 3.89008 + 1.87337i 0.216450 + 0.104237i
\(324\) 0 0
\(325\) −3.71887 16.2934i −0.206286 0.903798i
\(326\) 0 0
\(327\) −10.3204 + 12.9413i −0.570717 + 0.715656i
\(328\) 0 0
\(329\) 2.96346 + 1.42713i 0.163381 + 0.0786801i
\(330\) 0 0
\(331\) −30.9095 −1.69894 −0.849469 0.527639i \(-0.823077\pi\)
−0.849469 + 0.527639i \(0.823077\pi\)
\(332\) 0 0
\(333\) −0.156678 0.686450i −0.00858588 0.0376172i
\(334\) 0 0
\(335\) 37.7373 + 47.3211i 2.06181 + 2.58543i
\(336\) 0 0
\(337\) 4.99731 + 6.26643i 0.272221 + 0.341354i 0.899085 0.437775i \(-0.144233\pi\)
−0.626864 + 0.779129i \(0.715662\pi\)
\(338\) 0 0
\(339\) 10.0734 12.6316i 0.547111 0.686055i
\(340\) 0 0
\(341\) −5.01142 + 2.41337i −0.271383 + 0.130691i
\(342\) 0 0
\(343\) −2.08211 + 9.12230i −0.112423 + 0.492558i
\(344\) 0 0
\(345\) −33.9110 + 16.3307i −1.82570 + 0.879213i
\(346\) 0 0
\(347\) 2.26337 0.121504 0.0607521 0.998153i \(-0.480650\pi\)
0.0607521 + 0.998153i \(0.480650\pi\)
\(348\) 0 0
\(349\) −23.5690 −1.26162 −0.630809 0.775938i \(-0.717277\pi\)
−0.630809 + 0.775938i \(0.717277\pi\)
\(350\) 0 0
\(351\) −6.55592 + 3.15716i −0.349929 + 0.168517i
\(352\) 0 0
\(353\) 0.218636 0.957907i 0.0116368 0.0509843i −0.968776 0.247937i \(-0.920247\pi\)
0.980413 + 0.196953i \(0.0631045\pi\)
\(354\) 0 0
\(355\) 8.24094 3.96863i 0.437384 0.210633i
\(356\) 0 0
\(357\) −1.24698 + 1.56366i −0.0659972 + 0.0827578i
\(358\) 0 0
\(359\) 4.91454 + 6.16264i 0.259380 + 0.325252i 0.894421 0.447227i \(-0.147588\pi\)
−0.635041 + 0.772478i \(0.719017\pi\)
\(360\) 0 0
\(361\) −7.32789 9.18888i −0.385678 0.483625i
\(362\) 0 0
\(363\) −1.15183 5.04651i −0.0604556 0.264873i
\(364\) 0 0
\(365\) −33.6993 −1.76390
\(366\) 0 0
\(367\) −26.4056 12.7163i −1.37836 0.663783i −0.409711 0.912216i \(-0.634370\pi\)
−0.968649 + 0.248432i \(0.920085\pi\)
\(368\) 0 0
\(369\) 1.00000 1.25396i 0.0520579 0.0652786i
\(370\) 0 0
\(371\) 0.00753275 + 0.0330031i 0.000391081 + 0.00171344i
\(372\) 0 0
\(373\) 3.43512 + 1.65426i 0.177864 + 0.0856546i 0.520697 0.853742i \(-0.325672\pi\)
−0.342833 + 0.939396i \(0.611387\pi\)
\(374\) 0 0
\(375\) −10.3802 + 45.4784i −0.536029 + 2.34850i
\(376\) 0 0
\(377\) −1.07577 + 7.82543i −0.0554049 + 0.403030i
\(378\) 0 0
\(379\) 2.00849 8.79978i 0.103169 0.452014i −0.896785 0.442466i \(-0.854104\pi\)
0.999954 0.00954794i \(-0.00303925\pi\)
\(380\) 0 0
\(381\) −25.2690 12.1689i −1.29457 0.623433i
\(382\) 0 0
\(383\) −7.38524 32.3568i −0.377368 1.65336i −0.705488 0.708722i \(-0.749272\pi\)
0.328120 0.944636i \(-0.393585\pi\)
\(384\) 0 0
\(385\) 4.98039 6.24521i 0.253824 0.318285i
\(386\) 0 0
\(387\) 0.147948 + 0.0712482i 0.00752064 + 0.00362175i
\(388\) 0 0
\(389\) 27.5362 1.39614 0.698070 0.716030i \(-0.254043\pi\)
0.698070 + 0.716030i \(0.254043\pi\)
\(390\) 0 0
\(391\) 1.84117 + 8.06668i 0.0931118 + 0.407949i
\(392\) 0 0
\(393\) 15.0918 + 18.9245i 0.761280 + 0.954615i
\(394\) 0 0
\(395\) −24.5906 30.8356i −1.23729 1.55151i
\(396\) 0 0
\(397\) −11.9852 + 15.0290i −0.601521 + 0.754284i −0.985614 0.169010i \(-0.945943\pi\)
0.384093 + 0.923294i \(0.374514\pi\)
\(398\) 0 0
\(399\) −3.02446 + 1.45650i −0.151412 + 0.0729163i
\(400\) 0 0
\(401\) −2.45353 + 10.7496i −0.122524 + 0.536811i 0.875991 + 0.482327i \(0.160208\pi\)
−0.998515 + 0.0544837i \(0.982649\pi\)
\(402\) 0 0
\(403\) −2.57846 + 1.24172i −0.128442 + 0.0618545i
\(404\) 0 0
\(405\) 39.1933 1.94753
\(406\) 0 0
\(407\) 8.12737 0.402859
\(408\) 0 0
\(409\) −30.4720 + 14.6745i −1.50674 + 0.725608i −0.991337 0.131339i \(-0.958072\pi\)
−0.515404 + 0.856948i \(0.672358\pi\)
\(410\) 0 0
\(411\) −6.81336 + 29.8513i −0.336078 + 1.47245i
\(412\) 0 0
\(413\) 3.98792 1.92048i 0.196233 0.0945007i
\(414\) 0 0
\(415\) −10.1528 + 12.7312i −0.498381 + 0.624950i
\(416\) 0 0
\(417\) 14.0036 + 17.5600i 0.685762 + 0.859918i
\(418\) 0 0
\(419\) 22.2080 + 27.8480i 1.08493 + 1.36046i 0.927882 + 0.372874i \(0.121628\pi\)
0.157052 + 0.987590i \(0.449801\pi\)
\(420\) 0 0
\(421\) 2.10441 + 9.22001i 0.102563 + 0.449356i 0.999967 + 0.00814670i \(0.00259320\pi\)
−0.897404 + 0.441209i \(0.854550\pi\)
\(422\) 0 0
\(423\) 1.17390 0.0570769
\(424\) 0 0
\(425\) 16.4644 + 7.92885i 0.798642 + 0.384606i
\(426\) 0 0
\(427\) 0.564351 0.707674i 0.0273109 0.0342468i
\(428\) 0 0
\(429\) 1.67672 + 7.34619i 0.0809528 + 0.354677i
\(430\) 0 0
\(431\) 0.887928 + 0.427603i 0.0427700 + 0.0205969i 0.455146 0.890417i \(-0.349587\pi\)
−0.412377 + 0.911014i \(0.635301\pi\)
\(432\) 0 0
\(433\) 6.38285 27.9651i 0.306740 1.34392i −0.552999 0.833182i \(-0.686517\pi\)
0.859739 0.510734i \(-0.170626\pi\)
\(434\) 0 0
\(435\) 21.7092 32.7472i 1.04088 1.57011i
\(436\) 0 0
\(437\) −3.09030 + 13.5395i −0.147829 + 0.647682i
\(438\) 0 0
\(439\) −5.94116 2.86111i −0.283556 0.136553i 0.286700 0.958020i \(-0.407442\pi\)
−0.570256 + 0.821467i \(0.693156\pi\)
\(440\) 0 0
\(441\) 0.358388 + 1.57020i 0.0170661 + 0.0747714i
\(442\) 0 0
\(443\) 13.3354 16.7221i 0.633585 0.794490i −0.356599 0.934257i \(-0.616064\pi\)
0.990184 + 0.139767i \(0.0446353\pi\)
\(444\) 0 0
\(445\) 41.0637 + 19.7753i 1.94661 + 0.937437i
\(446\) 0 0
\(447\) 33.0030 1.56099
\(448\) 0 0
\(449\) −6.51022 28.5231i −0.307236 1.34609i −0.858951 0.512058i \(-0.828883\pi\)
0.551715 0.834033i \(-0.313974\pi\)
\(450\) 0 0
\(451\) 11.5429 + 14.4743i 0.543533 + 0.681569i
\(452\) 0 0
\(453\) −21.3877 26.8193i −1.00488 1.26008i
\(454\) 0 0
\(455\) 2.56249 3.21326i 0.120131 0.150640i
\(456\) 0 0
\(457\) 0.217677 0.104828i 0.0101825 0.00490362i −0.428786 0.903406i \(-0.641058\pi\)
0.438968 + 0.898503i \(0.355344\pi\)
\(458\) 0 0
\(459\) 1.77048 7.75697i 0.0826389 0.362065i
\(460\) 0 0
\(461\) −15.6211 + 7.52272i −0.727547 + 0.350368i −0.760719 0.649081i \(-0.775153\pi\)
0.0331719 + 0.999450i \(0.489439\pi\)
\(462\) 0 0
\(463\) −4.24996 −0.197513 −0.0987563 0.995112i \(-0.531486\pi\)
−0.0987563 + 0.995112i \(0.531486\pi\)
\(464\) 0 0
\(465\) 14.2349 0.660128
\(466\) 0 0
\(467\) −25.9780 + 12.5103i −1.20212 + 0.578910i −0.924279 0.381718i \(-0.875333\pi\)
−0.277839 + 0.960628i \(0.589618\pi\)
\(468\) 0 0
\(469\) −2.30194 + 10.0854i −0.106294 + 0.465703i
\(470\) 0 0
\(471\) −18.5700 + 8.94285i −0.855662 + 0.412065i
\(472\) 0 0
\(473\) −1.18180 + 1.48193i −0.0543392 + 0.0681392i
\(474\) 0 0
\(475\) 19.1238 + 23.9805i 0.877459 + 1.10030i
\(476\) 0 0
\(477\) 0.00753275 + 0.00944576i 0.000344901 + 0.000432492i
\(478\) 0 0
\(479\) −5.37986 23.5707i −0.245812 1.07697i −0.935628 0.352988i \(-0.885166\pi\)
0.689816 0.723985i \(-0.257692\pi\)
\(480\) 0 0
\(481\) 4.18167 0.190668
\(482\) 0 0
\(483\) −5.79590 2.79116i −0.263722 0.127002i
\(484\) 0 0
\(485\) 11.5368 14.4667i 0.523861 0.656901i
\(486\) 0 0
\(487\) 4.29709 + 18.8268i 0.194720 + 0.853124i 0.974018 + 0.226470i \(0.0727186\pi\)
−0.779298 + 0.626653i \(0.784424\pi\)
\(488\) 0 0
\(489\) 10.8361 + 5.21838i 0.490025 + 0.235983i
\(490\) 0 0
\(491\) 8.20895 35.9657i 0.370465 1.62311i −0.355010 0.934863i \(-0.615523\pi\)
0.725475 0.688249i \(-0.241620\pi\)
\(492\) 0 0
\(493\) −5.95646 6.25465i −0.268265 0.281695i
\(494\) 0 0
\(495\) 0.634375 2.77938i 0.0285130 0.124924i
\(496\) 0 0
\(497\) 1.40850 + 0.678299i 0.0631799 + 0.0304259i
\(498\) 0 0
\(499\) 8.39254 + 36.7701i 0.375701 + 1.64606i 0.710450 + 0.703748i \(0.248492\pi\)
−0.334748 + 0.942308i \(0.608651\pi\)
\(500\) 0 0
\(501\) −16.4792 + 20.6642i −0.736236 + 0.923211i
\(502\) 0 0
\(503\) −6.31551 3.04139i −0.281595 0.135609i 0.287756 0.957704i \(-0.407091\pi\)
−0.569350 + 0.822095i \(0.692805\pi\)
\(504\) 0 0
\(505\) −13.0097 −0.578924
\(506\) 0 0
\(507\) −4.34990 19.0581i −0.193186 0.846402i
\(508\) 0 0
\(509\) 11.4641 + 14.3756i 0.508138 + 0.637185i 0.968043 0.250783i \(-0.0806880\pi\)
−0.459905 + 0.887968i \(0.652117\pi\)
\(510\) 0 0
\(511\) −3.59113 4.50313i −0.158862 0.199207i
\(512\) 0 0
\(513\) 8.32640 10.4410i 0.367619 0.460980i
\(514\) 0 0
\(515\) 23.8327 11.4772i 1.05020 0.505748i
\(516\) 0 0
\(517\) −3.01520 + 13.2104i −0.132608 + 0.580995i
\(518\) 0 0
\(519\) −37.9245 + 18.2635i −1.66470 + 0.801678i
\(520\) 0 0
\(521\) 3.94571 0.172865 0.0864323 0.996258i \(-0.472453\pi\)
0.0864323 + 0.996258i \(0.472453\pi\)
\(522\) 0 0
\(523\) 33.9952 1.48651 0.743253 0.669010i \(-0.233282\pi\)
0.743253 + 0.669010i \(0.233282\pi\)
\(524\) 0 0
\(525\) −12.8007 + 6.16451i −0.558670 + 0.269041i
\(526\) 0 0
\(527\) 0.696333 3.05084i 0.0303328 0.132896i
\(528\) 0 0
\(529\) −3.25571 + 1.56787i −0.141553 + 0.0681681i
\(530\) 0 0
\(531\) 0.984935 1.23507i 0.0427425 0.0535974i
\(532\) 0 0
\(533\) 5.93900 + 7.44727i 0.257247 + 0.322577i
\(534\) 0 0
\(535\) −14.6027 18.3112i −0.631329 0.791661i
\(536\) 0 0
\(537\) 0.266594 + 1.16802i 0.0115044 + 0.0504040i
\(538\) 0 0
\(539\) −18.5907 −0.800759
\(540\) 0 0
\(541\) −21.1151 10.1685i −0.907807 0.437177i −0.0791047 0.996866i \(-0.525206\pi\)
−0.828702 + 0.559689i \(0.810920\pi\)
\(542\) 0 0
\(543\) −12.3204 + 15.4492i −0.528717 + 0.662990i
\(544\) 0 0
\(545\) 8.27628 + 36.2608i 0.354517 + 1.55324i
\(546\) 0 0
\(547\) 29.0976 + 14.0127i 1.24412 + 0.599138i 0.935930 0.352186i \(-0.114561\pi\)
0.308193 + 0.951324i \(0.400276\pi\)
\(548\) 0 0
\(549\) 0.0718841 0.314945i 0.00306794 0.0134415i
\(550\) 0 0
\(551\) −4.45257 13.7963i −0.189686 0.587741i
\(552\) 0 0
\(553\) 1.50000 6.57193i 0.0637865 0.279467i
\(554\) 0 0
\(555\) −18.7397 9.02458i −0.795458 0.383072i
\(556\) 0 0
\(557\) −3.61045 15.8184i −0.152980 0.670248i −0.992010 0.126162i \(-0.959734\pi\)
0.839030 0.544085i \(-0.183123\pi\)
\(558\) 0 0
\(559\) −0.608056 + 0.762478i −0.0257180 + 0.0322494i
\(560\) 0 0
\(561\) −7.42327 3.57486i −0.313411 0.150931i
\(562\) 0 0
\(563\) 21.9168 0.923681 0.461841 0.886963i \(-0.347189\pi\)
0.461841 + 0.886963i \(0.347189\pi\)
\(564\) 0 0
\(565\) −8.07822 35.3930i −0.339853 1.48899i
\(566\) 0 0
\(567\) 4.17659 + 5.23728i 0.175400 + 0.219945i
\(568\) 0 0
\(569\) −23.3790 29.3163i −0.980097 1.22900i −0.973421 0.229025i \(-0.926446\pi\)
−0.00667655 0.999978i \(-0.502125\pi\)
\(570\) 0 0
\(571\) −17.2201 + 21.5934i −0.720640 + 0.903654i −0.998374 0.0570041i \(-0.981845\pi\)
0.277734 + 0.960658i \(0.410417\pi\)
\(572\) 0 0
\(573\) 0.841166 0.405084i 0.0351402 0.0169226i
\(574\) 0 0
\(575\) −13.0794 + 57.3047i −0.545449 + 2.38977i
\(576\) 0 0
\(577\) 5.70387 2.74684i 0.237455 0.114352i −0.311372 0.950288i \(-0.600789\pi\)
0.548827 + 0.835936i \(0.315074\pi\)
\(578\) 0 0
\(579\) −2.49827 −0.103825
\(580\) 0 0
\(581\) −2.78315 −0.115465
\(582\) 0 0
\(583\) −0.125646 + 0.0605078i −0.00520371 + 0.00250598i
\(584\) 0 0
\(585\) 0.326396 1.43004i 0.0134948 0.0591247i
\(586\) 0 0
\(587\) −17.5939 + 8.47280i −0.726180 + 0.349710i −0.760180 0.649712i \(-0.774890\pi\)
0.0340005 + 0.999422i \(0.489175\pi\)
\(588\) 0 0
\(589\) 3.27479 4.10646i 0.134935 0.169204i
\(590\) 0 0
\(591\) −14.5586 18.2559i −0.598861 0.750948i
\(592\) 0 0
\(593\) −1.53720 1.92759i −0.0631254 0.0791568i 0.749266 0.662269i \(-0.230406\pi\)
−0.812392 + 0.583112i \(0.801835\pi\)
\(594\) 0 0
\(595\) 1.00000 + 4.38129i 0.0409960 + 0.179615i
\(596\) 0 0
\(597\) −35.1444 −1.43836
\(598\) 0 0
\(599\) −4.65064 2.23963i −0.190020 0.0915087i 0.336455 0.941700i \(-0.390772\pi\)
−0.526474 + 0.850191i \(0.676486\pi\)
\(600\) 0 0
\(601\) −18.3723 + 23.0381i −0.749420 + 0.939743i −0.999595 0.0284577i \(-0.990940\pi\)
0.250175 + 0.968201i \(0.419512\pi\)
\(602\) 0 0
\(603\) 0.821552 + 3.59945i 0.0334562 + 0.146581i
\(604\) 0 0
\(605\) −10.4792 5.04651i −0.426040 0.205170i
\(606\) 0 0
\(607\) 7.71068 33.7827i 0.312967 1.37120i −0.536654 0.843802i \(-0.680312\pi\)
0.849621 0.527394i \(-0.176831\pi\)
\(608\) 0 0
\(609\) 6.68933 0.588735i 0.271065 0.0238567i
\(610\) 0 0
\(611\) −1.55137 + 6.79699i −0.0627617 + 0.274977i
\(612\) 0 0
\(613\) −24.7407 11.9145i −0.999268 0.481222i −0.138578 0.990352i \(-0.544253\pi\)
−0.860690 + 0.509130i \(0.829967\pi\)
\(614\) 0 0
\(615\) −10.5429 46.1914i −0.425130 1.86262i
\(616\) 0 0
\(617\) 21.3723 26.8000i 0.860415 1.07893i −0.135690 0.990751i \(-0.543325\pi\)
0.996105 0.0881746i \(-0.0281033\pi\)
\(618\) 0 0
\(619\) 23.1247 + 11.1363i 0.929462 + 0.447605i 0.836440 0.548059i \(-0.184633\pi\)
0.0930221 + 0.995664i \(0.470347\pi\)
\(620\) 0 0
\(621\) 25.5918 1.02696
\(622\) 0 0
\(623\) 1.73341 + 7.59455i 0.0694474 + 0.304269i
\(624\) 0 0
\(625\) 29.8330 + 37.4094i 1.19332 + 1.49638i
\(626\) 0 0
\(627\) −8.62229 10.8120i −0.344341 0.431790i
\(628\) 0 0
\(629\) −2.85086 + 3.57486i −0.113671 + 0.142539i
\(630\) 0 0
\(631\) −26.4894 + 12.7566i −1.05453 + 0.507833i −0.879089 0.476657i \(-0.841848\pi\)
−0.175438 + 0.984491i \(0.556134\pi\)
\(632\) 0 0
\(633\) 8.27240 36.2437i 0.328798 1.44056i
\(634\) 0 0
\(635\) −56.7790 + 27.3433i −2.25321 + 1.08509i
\(636\) 0 0
\(637\) −9.56524 −0.378989
\(638\) 0 0
\(639\) 0.557942 0.0220718
\(640\) 0 0
\(641\) 9.43080 4.54164i 0.372494 0.179384i −0.238265 0.971200i \(-0.576579\pi\)
0.610759 + 0.791816i \(0.290864\pi\)
\(642\) 0 0
\(643\) 0.678743 2.97377i 0.0267670 0.117274i −0.959779 0.280755i \(-0.909415\pi\)
0.986546 + 0.163481i \(0.0522723\pi\)
\(644\) 0 0
\(645\) 4.37047 2.10471i 0.172087 0.0828728i
\(646\) 0 0
\(647\) 18.5824 23.3016i 0.730550 0.916080i −0.268334 0.963326i \(-0.586473\pi\)
0.998883 + 0.0472458i \(0.0150444\pi\)
\(648\) 0 0
\(649\) 11.3690 + 14.2562i 0.446271 + 0.559607i
\(650\) 0 0
\(651\) 1.51693 + 1.90216i 0.0594530 + 0.0745517i
\(652\) 0 0
\(653\) −2.53438 11.1039i −0.0991781 0.434528i −1.00000 0.000338791i \(-0.999892\pi\)
0.900822 0.434189i \(-0.142965\pi\)
\(654\) 0 0
\(655\) 54.3889 2.12515
\(656\) 0 0
\(657\) −1.85205 0.891901i −0.0722554 0.0347964i
\(658\) 0 0
\(659\) 2.86025 3.58664i 0.111419 0.139716i −0.722995 0.690854i \(-0.757235\pi\)
0.834414 + 0.551138i \(0.185806\pi\)
\(660\) 0 0
\(661\) 2.86712 + 12.5617i 0.111518 + 0.488592i 0.999583 + 0.0288743i \(0.00919225\pi\)
−0.888065 + 0.459718i \(0.847951\pi\)
\(662\) 0 0
\(663\) −3.81940 1.83932i −0.148333 0.0714334i
\(664\) 0 0
\(665\) −1.67845 + 7.35376i −0.0650874 + 0.285167i
\(666\) 0 0
\(667\) 15.3503 23.1551i 0.594367 0.896571i
\(668\) 0 0
\(669\) 8.46077 37.0691i 0.327112 1.43317i
\(670\) 0 0
\(671\) 3.35958 + 1.61789i 0.129695 + 0.0624580i
\(672\) 0 0
\(673\) −1.06518 4.66686i −0.0410596 0.179894i 0.950240 0.311519i \(-0.100838\pi\)
−0.991300 + 0.131625i \(0.957981\pi\)
\(674\) 0 0
\(675\) 35.2407 44.1904i 1.35642 1.70089i
\(676\) 0 0
\(677\) 27.5034 + 13.2449i 1.05704 + 0.509045i 0.879909 0.475142i \(-0.157603\pi\)
0.177133 + 0.984187i \(0.443318\pi\)
\(678\) 0 0
\(679\) 3.16255 0.121368
\(680\) 0 0
\(681\) −2.86078 12.5339i −0.109625 0.480300i
\(682\) 0 0
\(683\) −5.95138 7.46279i −0.227723 0.285556i 0.654822 0.755783i \(-0.272743\pi\)
−0.882545 + 0.470227i \(0.844172\pi\)
\(684\) 0 0
\(685\) 42.8962 + 53.7901i 1.63898 + 2.05521i
\(686\) 0 0
\(687\) 2.53050 3.17315i 0.0965446 0.121063i
\(688\) 0 0
\(689\) −0.0646468 + 0.0311323i −0.00246285 + 0.00118604i
\(690\) 0 0
\(691\) −3.66799 + 16.0705i −0.139537 + 0.611351i 0.856000 + 0.516976i \(0.172942\pi\)
−0.995537 + 0.0943750i \(0.969915\pi\)
\(692\) 0 0
\(693\) 0.439001 0.211412i 0.0166763 0.00803087i
\(694\) 0 0
\(695\) 50.4674 1.91434
\(696\) 0 0
\(697\) −10.4155 −0.394515
\(698\) 0 0
\(699\) 30.6993 14.7840i 1.16115 0.559183i
\(700\) 0 0
\(701\) −10.4288 + 45.6915i −0.393890 + 1.72574i 0.256858 + 0.966449i \(0.417313\pi\)
−0.650748 + 0.759294i \(0.725544\pi\)
\(702\) 0 0
\(703\) −6.91454 + 3.32987i −0.260787 + 0.125588i
\(704\) 0 0
\(705\) 21.6211 27.1120i 0.814298 1.02110i
\(706\) 0 0
\(707\) −1.38636 1.73844i −0.0521395 0.0653809i
\(708\) 0 0
\(709\) 6.60955 + 8.28811i 0.248227 + 0.311267i 0.890298 0.455379i \(-0.150496\pi\)
−0.642071 + 0.766645i \(0.721925\pi\)
\(710\) 0 0
\(711\) −0.535344 2.34549i −0.0200770 0.0879629i
\(712\) 0 0
\(713\) 10.0653 0.376949
\(714\) 0 0
\(715\) 15.2545 + 7.34619i 0.570486 + 0.274732i
\(716\) 0 0
\(717\) −23.0003 + 28.8415i −0.858962 + 1.07710i
\(718\) 0 0
\(719\) −2.96064 12.9714i −0.110413 0.483752i −0.999654 0.0263121i \(-0.991624\pi\)
0.889241 0.457440i \(-0.151234\pi\)
\(720\) 0 0
\(721\) 4.07338 + 1.96163i 0.151700 + 0.0730551i
\(722\) 0 0
\(723\) 2.95473 12.9455i 0.109888 0.481449i
\(724\) 0 0
\(725\) −18.8451 58.3914i −0.699890 2.16860i
\(726\) 0 0
\(727\) 7.34708 32.1896i 0.272488 1.19385i −0.634578 0.772859i \(-0.718826\pi\)
0.907066 0.420989i \(-0.138317\pi\)
\(728\) 0 0
\(729\) −22.0073 10.5982i −0.815085 0.392524i
\(730\) 0 0
\(731\) −0.237291 1.03964i −0.00877652 0.0384525i
\(732\) 0 0
\(733\) 19.8240 24.8585i 0.732216 0.918170i −0.266744 0.963768i \(-0.585948\pi\)
0.998960 + 0.0455974i \(0.0145191\pi\)
\(734\) 0 0
\(735\) 42.8657 + 20.6430i 1.58112 + 0.761429i
\(736\) 0 0
\(737\) −42.6165 −1.56980
\(738\) 0 0
\(739\) −5.32616 23.3354i −0.195926 0.858408i −0.973331 0.229407i \(-0.926321\pi\)
0.777405 0.629001i \(-0.216536\pi\)
\(740\) 0 0
\(741\) −4.43631 5.56296i −0.162972 0.204360i
\(742\) 0 0
\(743\) 4.62163 + 5.79534i 0.169551 + 0.212610i 0.859346 0.511394i \(-0.170871\pi\)
−0.689795 + 0.724005i \(0.742299\pi\)
\(744\) 0 0
\(745\) 46.2362 57.9783i 1.69396 2.12416i
\(746\) 0 0
\(747\) −0.894928 + 0.430975i −0.0327437 + 0.0157685i
\(748\) 0 0
\(749\) 0.890748 3.90262i 0.0325472 0.142599i
\(750\) 0 0
\(751\) −17.4448 + 8.40098i −0.636570 + 0.306556i −0.724193 0.689598i \(-0.757787\pi\)
0.0876226 + 0.996154i \(0.472073\pi\)
\(752\) 0 0
\(753\) 23.3448 0.850732
\(754\) 0 0
\(755\) −77.0786 −2.80518
\(756\) 0 0
\(757\) 30.8463 14.8548i 1.12113 0.539907i 0.220887 0.975299i \(-0.429105\pi\)
0.900241 + 0.435393i \(0.143390\pi\)
\(758\) 0 0
\(759\) 5.89708 25.8368i 0.214051 0.937817i
\(760\) 0 0
\(761\) −13.1174 + 6.31703i −0.475507 + 0.228992i −0.656258 0.754537i \(-0.727862\pi\)
0.180751 + 0.983529i \(0.442147\pi\)
\(762\) 0 0
\(763\) −3.96346 + 4.97002i −0.143487 + 0.179927i
\(764\) 0 0
\(765\) 1.00000 + 1.25396i 0.0361551 + 0.0453370i
\(766\) 0 0
\(767\) 5.84953 + 7.33507i 0.211214 + 0.264854i
\(768\) 0 0
\(769\) −2.57314 11.2737i −0.0927898 0.406539i 0.907107 0.420900i \(-0.138286\pi\)
−0.999897 + 0.0143613i \(0.995428\pi\)
\(770\) 0 0
\(771\) −30.0780 −1.08323
\(772\) 0 0
\(773\) −7.54503 3.63350i −0.271376 0.130688i 0.293247 0.956037i \(-0.405264\pi\)
−0.564623 + 0.825349i \(0.690978\pi\)
\(774\) 0 0
\(775\) 13.8602 17.3802i 0.497875 0.624315i
\(776\) 0 0
\(777\) −0.791053 3.46583i −0.0283789 0.124336i
\(778\) 0 0
\(779\) −15.7506 7.58510i −0.564325 0.271764i
\(780\) 0 0
\(781\) −1.43309 + 6.27879i −0.0512801 + 0.224673i
\(782\) 0 0
\(783\) −22.9601 + 13.6566i −0.820527 + 0.488046i
\(784\) 0 0
\(785\) −10.3056 + 45.1517i −0.367822 + 1.61153i
\(786\) 0 0
\(787\) −8.76055 4.21886i −0.312280 0.150386i 0.271179 0.962529i \(-0.412587\pi\)
−0.583458 + 0.812143i \(0.698301\pi\)
\(788\) 0 0
\(789\) −7.06076 30.9352i −0.251370 1.10132i
\(790\) 0 0
\(791\) 3.86861 4.85108i 0.137552 0.172485i
\(792\) 0 0
\(793\) 1.72856 + 0.832431i 0.0613830 + 0.0295605i
\(794\) 0 0
\(795\) 0.356896 0.0126578
\(796\) 0 0
\(797\) 5.87681 + 25.7480i 0.208167 + 0.912040i 0.965786 + 0.259342i \(0.0835057\pi\)
−0.757618 + 0.652698i \(0.773637\pi\)
\(798\) 0 0
\(799\) −4.75302 5.96010i −0.168150 0.210853i
\(800\) 0 0
\(801\) 1.73341 + 2.17362i 0.0612469 + 0.0768012i
\(802\) 0 0
\(803\) 14.7940 18.5511i 0.522070 0.654655i
\(804\) 0 0
\(805\) −13.0233 + 6.27167i −0.459010 + 0.221047i
\(806\) 0 0
\(807\) 2.69029 11.7869i 0.0947028 0.414920i
\(808\) 0 0
\(809\) −16.9291 + 8.15261i −0.595195 + 0.286631i −0.707129 0.707085i \(-0.750010\pi\)
0.111934 + 0.993716i \(0.464296\pi\)
\(810\) 0 0
\(811\) −48.6983 −1.71003 −0.855013 0.518606i \(-0.826451\pi\)
−0.855013 + 0.518606i \(0.826451\pi\)
\(812\) 0 0
\(813\) 22.8267 0.800567
\(814\) 0 0
\(815\) 24.3485 11.7256i 0.852889 0.410730i
\(816\) 0 0
\(817\) 0.398280 1.74498i 0.0139341 0.0610491i
\(818\) 0 0
\(819\) 0.225873 0.108775i 0.00789265 0.00380090i
\(820\) 0 0
\(821\) 3.90246 4.89353i 0.136197 0.170785i −0.709056 0.705152i \(-0.750879\pi\)
0.845253 + 0.534367i \(0.179450\pi\)
\(822\) 0 0
\(823\) 9.36257 + 11.7403i 0.326359 + 0.409241i 0.917759 0.397137i \(-0.129996\pi\)
−0.591401 + 0.806378i \(0.701425\pi\)
\(824\) 0 0
\(825\) −36.4931 45.7608i −1.27053 1.59319i
\(826\) 0 0
\(827\) 2.66069 + 11.6573i 0.0925214 + 0.405363i 0.999888 0.0149778i \(-0.00476776\pi\)
−0.907366 + 0.420341i \(0.861911\pi\)
\(828\) 0 0
\(829\) 28.6305 0.994380 0.497190 0.867642i \(-0.334365\pi\)
0.497190 + 0.867642i \(0.334365\pi\)
\(830\) 0 0
\(831\) 25.5553 + 12.3068i 0.886502 + 0.426917i
\(832\) 0 0
\(833\) 6.52111 8.17721i 0.225943 0.283323i
\(834\) 0 0
\(835\) 13.2153 + 57.8999i 0.457334 + 2.00371i
\(836\) 0 0
\(837\) −8.72037 4.19951i −0.301420 0.145156i
\(838\) 0 0
\(839\) −10.7529 + 47.1115i −0.371231 + 1.62647i 0.352096 + 0.935964i \(0.385469\pi\)
−0.723327 + 0.690505i \(0.757388\pi\)
\(840\) 0 0
\(841\) −1.41550 + 28.9654i −0.0488104 + 0.998808i
\(842\) 0 0
\(843\) 4.73729 20.7554i 0.163161 0.714855i
\(844\) 0 0
\(845\) −39.5746 19.0581i −1.36141 0.655620i
\(846\) 0 0
\(847\) −0.442353 1.93808i −0.0151994 0.0665931i
\(848\) 0 0
\(849\) −2.46950 + 3.09666i −0.0847530 + 0.106277i
\(850\) 0 0
\(851\) −13.2506 6.38117i −0.454226 0.218744i
\(852\) 0 0
\(853\) −6.40688 −0.219367 −0.109684 0.993967i \(-0.534984\pi\)
−0.109684 + 0.993967i \(0.534984\pi\)
\(854\) 0 0
\(855\) 0.599031 + 2.62453i 0.0204864 + 0.0897569i
\(856\) 0 0
\(857\) −0.447730 0.561436i −0.0152942 0.0191783i 0.774126 0.633032i \(-0.218190\pi\)
−0.789420 + 0.613854i \(0.789618\pi\)
\(858\) 0 0
\(859\) 9.72484 + 12.1946i 0.331807 + 0.416073i 0.919549 0.392975i \(-0.128554\pi\)
−0.587742 + 0.809049i \(0.699983\pi\)
\(860\) 0 0
\(861\) 5.04892 6.33114i 0.172067 0.215765i
\(862\) 0 0
\(863\) 12.1586 5.85527i 0.413883 0.199316i −0.215342 0.976539i \(-0.569087\pi\)
0.629225 + 0.777223i \(0.283372\pi\)
\(864\) 0 0
\(865\) −21.0465 + 92.2108i −0.715603 + 3.13526i
\(866\) 0 0
\(867\) −23.4230 + 11.2799i −0.795488 + 0.383087i
\(868\) 0 0
\(869\) 27.7700 0.942033
\(870\) 0 0
\(871\) −21.9269 −0.742965
\(872\) 0 0
\(873\) 1.01693 0.489726i 0.0344177 0.0165747i
\(874\) 0 0
\(875\) −3.98643 + 17.4657i −0.134766 + 0.590448i
\(876\) 0 0
\(877\) 14.1446 6.81168i 0.477629 0.230014i −0.179550 0.983749i \(-0.557464\pi\)
0.657179 + 0.753735i \(0.271750\pi\)
\(878\) 0 0
\(879\) 23.1930 29.0831i 0.782280 0.980948i
\(880\) 0 0
\(881\) −6.75332 8.46839i −0.227525 0.285307i 0.654944 0.755677i \(-0.272692\pi\)
−0.882469 + 0.470370i \(0.844121\pi\)
\(882\) 0 0
\(883\) 10.2744 + 12.8837i 0.345762 + 0.433572i 0.924056 0.382257i \(-0.124853\pi\)
−0.578294 + 0.815828i \(0.696281\pi\)
\(884\) 0 0
\(885\) −10.3840 45.4955i −0.349056 1.52931i
\(886\) 0 0
\(887\) 28.5763 0.959497 0.479748 0.877406i \(-0.340728\pi\)
0.479748 + 0.877406i \(0.340728\pi\)
\(888\) 0 0
\(889\) −9.70440 4.67339i −0.325475 0.156741i
\(890\) 0 0
\(891\) −17.2059 + 21.5755i −0.576419 + 0.722807i
\(892\) 0 0
\(893\) −2.84721 12.4744i −0.0952782 0.417441i
\(894\) 0 0
\(895\) 2.42543 + 1.16802i 0.0810731 + 0.0390427i
\(896\) 0 0
\(897\) 3.03415 13.2935i 0.101307 0.443856i
\(898\) 0 0
\(899\) −9.03026 + 5.37116i −0.301176 + 0.179138i
\(900\) 0 0
\(901\) 0.0174584 0.0764902i 0.000581624 0.00254826i
\(902\) 0 0
\(903\) 0.746980 + 0.359726i 0.0248579 + 0.0119709i
\(904\) 0 0
\(905\) 9.88016 + 43.2878i 0.328428 + 1.43894i
\(906\) 0 0
\(907\) −20.4875 + 25.6906i −0.680278 + 0.853042i −0.995380 0.0960163i \(-0.969390\pi\)
0.315102 + 0.949058i \(0.397961\pi\)
\(908\) 0 0
\(909\) −0.714988 0.344320i −0.0237147 0.0114204i
\(910\) 0 0
\(911\) −10.9638 −0.363245 −0.181623 0.983368i \(-0.558135\pi\)
−0.181623 + 0.983368i \(0.558135\pi\)
\(912\) 0 0
\(913\) −2.55131 11.1780i −0.0844360 0.369938i
\(914\) 0 0
\(915\) −5.94989 7.46092i −0.196697 0.246650i
\(916\) 0 0
\(917\) 5.79590 + 7.26782i 0.191397 + 0.240005i
\(918\) 0 0
\(919\) −4.77748 + 5.99077i −0.157594 + 0.197617i −0.854360 0.519682i \(-0.826050\pi\)
0.696765 + 0.717299i \(0.254622\pi\)
\(920\) 0 0
\(921\) −37.0344 + 17.8348i −1.22033 + 0.587678i
\(922\) 0 0
\(923\) −0.737349 + 3.23054i −0.0242702 + 0.106334i
\(924\) 0 0
\(925\) −29.2652 + 14.0934i −0.962233 + 0.463387i
\(926\) 0 0
\(927\) 1.61356 0.0529964
\(928\) 0 0
\(929\) 9.35988 0.307088 0.153544 0.988142i \(-0.450931\pi\)
0.153544 + 0.988142i \(0.450931\pi\)
\(930\) 0 0
\(931\) 15.8165 7.61681i 0.518364 0.249631i
\(932\) 0 0
\(933\) −12.4661 + 54.6178i −0.408123 + 1.78811i
\(934\) 0 0
\(935\) −16.6799 + 8.03264i −0.545492 + 0.262695i
\(936\) 0 0
\(937\) 4.86563 6.10130i 0.158953 0.199321i −0.695977 0.718064i \(-0.745028\pi\)
0.854930 + 0.518743i \(0.173600\pi\)
\(938\) 0 0
\(939\) 12.6196 + 15.8245i 0.411825 + 0.516413i
\(940\) 0 0
\(941\) −17.9242 22.4763i −0.584313 0.732706i 0.398529 0.917156i \(-0.369521\pi\)
−0.982842 + 0.184450i \(0.940950\pi\)
\(942\) 0 0
\(943\) −7.45473 32.6613i −0.242759 1.06360i
\(944\) 0 0
\(945\) 13.8998 0.452160
\(946\) 0 0
\(947\) −2.08061 1.00197i −0.0676108 0.0325597i 0.399773 0.916614i \(-0.369089\pi\)
−0.467384 + 0.884055i \(0.654803\pi\)
\(948\) 0 0
\(949\) 7.61178 9.54487i 0.247089 0.309839i
\(950\) 0 0
\(951\) −2.37651 10.4122i −0.0770636 0.337638i
\(952\) 0 0
\(953\) 31.1107 + 14.9821i 1.00778 + 0.485319i 0.863570 0.504228i \(-0.168223\pi\)
0.144206 + 0.989548i \(0.453937\pi\)
\(954\) 0 0
\(955\) 0.466812 2.04524i 0.0151057 0.0661823i
\(956\) 0 0
\(957\) 8.49665 + 26.3268i 0.274658 + 0.851024i
\(958\) 0 0
\(959\) −2.61662 + 11.4642i −0.0844951 + 0.370197i
\(960\) 0 0
\(961\) 24.5003 + 11.7987i 0.790332 + 0.380604i
\(962\) 0 0
\(963\) −0.317904 1.39283i −0.0102443 0.0448833i
\(964\) 0 0
\(965\) −3.50000 + 4.38886i −0.112669 + 0.141282i
\(966\) 0 0
\(967\) 46.4163 + 22.3529i 1.49265 + 0.718822i 0.989386 0.145312i \(-0.0464185\pi\)
0.503263 + 0.864134i \(0.332133\pi\)
\(968\) 0 0
\(969\) 7.78017 0.249935
\(970\) 0 0
\(971\) 1.76582 + 7.73658i 0.0566680 + 0.248279i 0.995326 0.0965703i \(-0.0307873\pi\)
−0.938658 + 0.344849i \(0.887930\pi\)
\(972\) 0 0
\(973\) 5.37800 + 6.74380i 0.172411 + 0.216196i
\(974\) 0 0
\(975\) −18.7763 23.5447i −0.601322 0.754034i
\(976\) 0 0
\(977\) 17.2080 21.5782i 0.550534 0.690348i −0.426242 0.904609i \(-0.640163\pi\)
0.976776 + 0.214261i \(0.0687343\pi\)
\(978\) 0 0
\(979\) −28.9131 + 13.9238i −0.924067 + 0.445007i
\(980\) 0 0
\(981\) −0.504844 + 2.21187i −0.0161184 + 0.0706195i
\(982\) 0 0
\(983\) 31.8288 15.3280i 1.01518 0.488886i 0.149119 0.988819i \(-0.452356\pi\)
0.866064 + 0.499933i \(0.166642\pi\)
\(984\) 0 0
\(985\) −52.4674 −1.67175
\(986\) 0 0
\(987\) 5.92692 0.188656
\(988\) 0 0
\(989\) 3.09030 1.48821i 0.0982659 0.0473224i
\(990\) 0 0
\(991\) −0.123194 + 0.539750i −0.00391340 + 0.0171457i −0.976847 0.213939i \(-0.931370\pi\)
0.972934 + 0.231085i \(0.0742276\pi\)
\(992\) 0 0
\(993\) −50.1812 + 24.1660i −1.59245 + 0.766885i
\(994\) 0 0
\(995\) −49.2362 + 61.7402i −1.56089 + 1.95730i
\(996\) 0 0
\(997\) 13.8699 + 17.3924i 0.439265 + 0.550821i 0.951349 0.308114i \(-0.0996978\pi\)
−0.512084 + 0.858935i \(0.671126\pi\)
\(998\) 0 0
\(999\) 8.81767 + 11.0570i 0.278979 + 0.349828i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.u.f.257.1 6
4.3 odd 2 29.2.d.a.25.1 yes 6
12.11 even 2 261.2.k.a.199.1 6
20.3 even 4 725.2.r.b.199.2 12
20.7 even 4 725.2.r.b.199.1 12
20.19 odd 2 725.2.l.b.576.1 6
29.7 even 7 inner 464.2.u.f.65.1 6
116.3 even 28 841.2.e.d.196.1 12
116.7 odd 14 29.2.d.a.7.1 6
116.11 even 28 841.2.e.c.270.2 12
116.15 even 28 841.2.b.c.840.5 6
116.19 even 28 841.2.e.b.267.1 12
116.23 odd 14 841.2.a.e.1.3 3
116.27 even 28 841.2.e.c.651.2 12
116.31 even 28 841.2.e.c.651.1 12
116.35 odd 14 841.2.a.f.1.1 3
116.39 even 28 841.2.e.b.267.2 12
116.43 even 28 841.2.b.c.840.2 6
116.47 even 28 841.2.e.c.270.1 12
116.51 odd 14 841.2.d.d.645.1 6
116.55 even 28 841.2.e.d.196.2 12
116.63 odd 14 841.2.d.c.190.1 6
116.67 odd 14 841.2.d.a.778.1 6
116.71 odd 14 841.2.d.c.571.1 6
116.75 even 4 841.2.e.d.236.2 12
116.79 even 28 841.2.e.b.63.2 12
116.83 odd 14 841.2.d.e.574.1 6
116.91 odd 14 841.2.d.a.574.1 6
116.95 even 28 841.2.e.b.63.1 12
116.99 even 4 841.2.e.d.236.1 12
116.103 odd 14 841.2.d.b.571.1 6
116.107 odd 14 841.2.d.e.778.1 6
116.111 odd 14 841.2.d.b.190.1 6
116.115 odd 2 841.2.d.d.605.1 6
348.23 even 14 7569.2.a.r.1.1 3
348.35 even 14 7569.2.a.p.1.3 3
348.239 even 14 261.2.k.a.181.1 6
580.7 even 28 725.2.r.b.674.2 12
580.123 even 28 725.2.r.b.674.1 12
580.239 odd 14 725.2.l.b.326.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.7.1 6 116.7 odd 14
29.2.d.a.25.1 yes 6 4.3 odd 2
261.2.k.a.181.1 6 348.239 even 14
261.2.k.a.199.1 6 12.11 even 2
464.2.u.f.65.1 6 29.7 even 7 inner
464.2.u.f.257.1 6 1.1 even 1 trivial
725.2.l.b.326.1 6 580.239 odd 14
725.2.l.b.576.1 6 20.19 odd 2
725.2.r.b.199.1 12 20.7 even 4
725.2.r.b.199.2 12 20.3 even 4
725.2.r.b.674.1 12 580.123 even 28
725.2.r.b.674.2 12 580.7 even 28
841.2.a.e.1.3 3 116.23 odd 14
841.2.a.f.1.1 3 116.35 odd 14
841.2.b.c.840.2 6 116.43 even 28
841.2.b.c.840.5 6 116.15 even 28
841.2.d.a.574.1 6 116.91 odd 14
841.2.d.a.778.1 6 116.67 odd 14
841.2.d.b.190.1 6 116.111 odd 14
841.2.d.b.571.1 6 116.103 odd 14
841.2.d.c.190.1 6 116.63 odd 14
841.2.d.c.571.1 6 116.71 odd 14
841.2.d.d.605.1 6 116.115 odd 2
841.2.d.d.645.1 6 116.51 odd 14
841.2.d.e.574.1 6 116.83 odd 14
841.2.d.e.778.1 6 116.107 odd 14
841.2.e.b.63.1 12 116.95 even 28
841.2.e.b.63.2 12 116.79 even 28
841.2.e.b.267.1 12 116.19 even 28
841.2.e.b.267.2 12 116.39 even 28
841.2.e.c.270.1 12 116.47 even 28
841.2.e.c.270.2 12 116.11 even 28
841.2.e.c.651.1 12 116.31 even 28
841.2.e.c.651.2 12 116.27 even 28
841.2.e.d.196.1 12 116.3 even 28
841.2.e.d.196.2 12 116.55 even 28
841.2.e.d.236.1 12 116.99 even 4
841.2.e.d.236.2 12 116.75 even 4
7569.2.a.p.1.3 3 348.35 even 14
7569.2.a.r.1.1 3 348.23 even 14