Properties

Label 261.2.k.a.199.1
Level $261$
Weight $2$
Character 261.199
Analytic conductor $2.084$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [261,2,Mod(82,261)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(261, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("261.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 199.1
Root \(0.900969 + 0.433884i\) of defining polynomial
Character \(\chi\) \(=\) 261.199
Dual form 261.2.k.a.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.277479 - 1.21572i) q^{2} +(0.400969 + 0.193096i) q^{4} +(-0.900969 + 3.94740i) q^{5} +(-0.623490 + 0.300257i) q^{7} +(1.90097 - 2.38374i) q^{8} +(4.54892 + 2.19064i) q^{10} +(1.77748 + 2.22889i) q^{11} +(0.914542 + 1.14680i) q^{13} +(0.192021 + 0.841301i) q^{14} +(-1.81551 - 2.27658i) q^{16} +1.60388 q^{17} +(2.42543 + 1.16802i) q^{19} +(-1.12349 + 1.40881i) q^{20} +(3.20291 - 1.54244i) q^{22} +(-1.14795 - 5.02949i) q^{23} +(-10.2654 - 4.94355i) q^{25} +(1.64795 - 0.793610i) q^{26} -0.307979 q^{28} +(-3.71379 - 3.89971i) q^{29} +(0.434157 - 1.90216i) q^{31} +(2.22252 - 1.07031i) q^{32} +(0.445042 - 1.94986i) q^{34} +(-0.623490 - 2.73169i) q^{35} +(1.77748 - 2.22889i) q^{37} +(2.09299 - 2.62453i) q^{38} +(7.69687 + 9.65156i) q^{40} -6.49396 q^{41} +(-0.147948 - 0.648205i) q^{43} +(0.282323 + 1.23694i) q^{44} -6.43296 q^{46} +(2.96346 + 3.71606i) q^{47} +(-4.06584 + 5.09841i) q^{49} +(-8.85839 + 11.1081i) q^{50} +(0.145260 + 0.636426i) q^{52} +(0.0108851 - 0.0476909i) q^{53} +(-10.3998 + 5.00827i) q^{55} +(-0.469501 + 2.05702i) q^{56} +(-5.77144 + 3.43282i) q^{58} +6.39612 q^{59} +(1.17845 - 0.567511i) q^{61} +(-2.19202 - 1.05562i) q^{62} +(-1.98039 - 8.67664i) q^{64} +(-5.35086 + 2.57684i) q^{65} +(9.32036 - 11.6874i) q^{67} +(0.643104 + 0.309703i) q^{68} -3.49396 q^{70} +(1.40850 + 1.76621i) q^{71} +(-1.85205 - 8.11437i) q^{73} +(-2.21648 - 2.77938i) q^{74} +(0.746980 + 0.936683i) q^{76} +(-1.77748 - 0.855989i) q^{77} +(-6.07338 + 7.61577i) q^{79} +(10.6223 - 5.11543i) q^{80} +(-1.80194 + 7.89481i) q^{82} +(-3.62349 - 1.74498i) q^{83} +(-1.44504 + 6.33114i) q^{85} -0.829085 q^{86} +8.69202 q^{88} +(2.50484 - 10.9744i) q^{89} +(-0.914542 - 0.440420i) q^{91} +(0.510885 - 2.23833i) q^{92} +(5.33997 - 2.57159i) q^{94} +(-6.79590 + 8.52179i) q^{95} +(4.11745 + 1.98286i) q^{97} +(5.07002 + 6.35761i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 2 q^{4} - q^{5} + q^{7} + 7 q^{8} + 9 q^{10} + 11 q^{11} - 5 q^{13} - 9 q^{14} + 4 q^{16} - 8 q^{17} + q^{19} - 2 q^{20} + 6 q^{22} + 7 q^{23} - 24 q^{25} - 4 q^{26} - 12 q^{28} - 6 q^{29}+ \cdots - 19 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.277479 1.21572i 0.196207 0.859640i −0.776961 0.629548i \(-0.783240\pi\)
0.973169 0.230092i \(-0.0739028\pi\)
\(3\) 0 0
\(4\) 0.400969 + 0.193096i 0.200484 + 0.0965482i
\(5\) −0.900969 + 3.94740i −0.402926 + 1.76533i 0.212524 + 0.977156i \(0.431832\pi\)
−0.615450 + 0.788176i \(0.711026\pi\)
\(6\) 0 0
\(7\) −0.623490 + 0.300257i −0.235657 + 0.113486i −0.547986 0.836488i \(-0.684605\pi\)
0.312329 + 0.949974i \(0.398891\pi\)
\(8\) 1.90097 2.38374i 0.672094 0.842779i
\(9\) 0 0
\(10\) 4.54892 + 2.19064i 1.43849 + 0.692742i
\(11\) 1.77748 + 2.22889i 0.535930 + 0.672035i 0.973906 0.226952i \(-0.0728759\pi\)
−0.437976 + 0.898987i \(0.644304\pi\)
\(12\) 0 0
\(13\) 0.914542 + 1.14680i 0.253648 + 0.318065i 0.892310 0.451422i \(-0.149083\pi\)
−0.638662 + 0.769487i \(0.720512\pi\)
\(14\) 0.192021 + 0.841301i 0.0513199 + 0.224847i
\(15\) 0 0
\(16\) −1.81551 2.27658i −0.453878 0.569145i
\(17\) 1.60388 0.388997 0.194498 0.980903i \(-0.437692\pi\)
0.194498 + 0.980903i \(0.437692\pi\)
\(18\) 0 0
\(19\) 2.42543 + 1.16802i 0.556431 + 0.267963i 0.690895 0.722955i \(-0.257217\pi\)
−0.134463 + 0.990919i \(0.542931\pi\)
\(20\) −1.12349 + 1.40881i −0.251220 + 0.315020i
\(21\) 0 0
\(22\) 3.20291 1.54244i 0.682862 0.328849i
\(23\) −1.14795 5.02949i −0.239364 1.04872i −0.941588 0.336766i \(-0.890667\pi\)
0.702225 0.711955i \(-0.252190\pi\)
\(24\) 0 0
\(25\) −10.2654 4.94355i −2.05308 0.988711i
\(26\) 1.64795 0.793610i 0.323189 0.155640i
\(27\) 0 0
\(28\) −0.307979 −0.0582025
\(29\) −3.71379 3.89971i −0.689634 0.724158i
\(30\) 0 0
\(31\) 0.434157 1.90216i 0.0779769 0.341639i −0.920858 0.389898i \(-0.872510\pi\)
0.998835 + 0.0482592i \(0.0153674\pi\)
\(32\) 2.22252 1.07031i 0.392890 0.189206i
\(33\) 0 0
\(34\) 0.445042 1.94986i 0.0763241 0.334398i
\(35\) −0.623490 2.73169i −0.105389 0.461739i
\(36\) 0 0
\(37\) 1.77748 2.22889i 0.292216 0.366427i −0.613953 0.789342i \(-0.710422\pi\)
0.906169 + 0.422915i \(0.138993\pi\)
\(38\) 2.09299 2.62453i 0.339528 0.425754i
\(39\) 0 0
\(40\) 7.69687 + 9.65156i 1.21698 + 1.52605i
\(41\) −6.49396 −1.01419 −0.507093 0.861891i \(-0.669280\pi\)
−0.507093 + 0.861891i \(0.669280\pi\)
\(42\) 0 0
\(43\) −0.147948 0.648205i −0.0225619 0.0988503i 0.962393 0.271660i \(-0.0875726\pi\)
−0.984955 + 0.172810i \(0.944715\pi\)
\(44\) 0.282323 + 1.23694i 0.0425619 + 0.186476i
\(45\) 0 0
\(46\) −6.43296 −0.948488
\(47\) 2.96346 + 3.71606i 0.432265 + 0.542043i 0.949486 0.313809i \(-0.101605\pi\)
−0.517221 + 0.855852i \(0.673034\pi\)
\(48\) 0 0
\(49\) −4.06584 + 5.09841i −0.580835 + 0.728344i
\(50\) −8.85839 + 11.1081i −1.25277 + 1.57092i
\(51\) 0 0
\(52\) 0.145260 + 0.636426i 0.0201439 + 0.0882564i
\(53\) 0.0108851 0.0476909i 0.00149519 0.00655085i −0.974175 0.225795i \(-0.927502\pi\)
0.975670 + 0.219244i \(0.0703592\pi\)
\(54\) 0 0
\(55\) −10.3998 + 5.00827i −1.40231 + 0.675315i
\(56\) −0.469501 + 2.05702i −0.0627396 + 0.274880i
\(57\) 0 0
\(58\) −5.77144 + 3.43282i −0.757827 + 0.450752i
\(59\) 6.39612 0.832704 0.416352 0.909203i \(-0.363308\pi\)
0.416352 + 0.909203i \(0.363308\pi\)
\(60\) 0 0
\(61\) 1.17845 0.567511i 0.150885 0.0726623i −0.356918 0.934136i \(-0.616172\pi\)
0.507802 + 0.861474i \(0.330458\pi\)
\(62\) −2.19202 1.05562i −0.278387 0.134064i
\(63\) 0 0
\(64\) −1.98039 8.67664i −0.247548 1.08458i
\(65\) −5.35086 + 2.57684i −0.663692 + 0.319617i
\(66\) 0 0
\(67\) 9.32036 11.6874i 1.13866 1.42784i 0.250615 0.968087i \(-0.419367\pi\)
0.888048 0.459751i \(-0.152061\pi\)
\(68\) 0.643104 + 0.309703i 0.0779878 + 0.0375570i
\(69\) 0 0
\(70\) −3.49396 −0.417608
\(71\) 1.40850 + 1.76621i 0.167158 + 0.209610i 0.858354 0.513057i \(-0.171487\pi\)
−0.691196 + 0.722667i \(0.742916\pi\)
\(72\) 0 0
\(73\) −1.85205 8.11437i −0.216766 0.949715i −0.959849 0.280516i \(-0.909494\pi\)
0.743083 0.669199i \(-0.233363\pi\)
\(74\) −2.21648 2.77938i −0.257661 0.323096i
\(75\) 0 0
\(76\) 0.746980 + 0.936683i 0.0856844 + 0.107445i
\(77\) −1.77748 0.855989i −0.202563 0.0975490i
\(78\) 0 0
\(79\) −6.07338 + 7.61577i −0.683308 + 0.856841i −0.995654 0.0931270i \(-0.970314\pi\)
0.312346 + 0.949968i \(0.398885\pi\)
\(80\) 10.6223 5.11543i 1.18761 0.571922i
\(81\) 0 0
\(82\) −1.80194 + 7.89481i −0.198991 + 0.871835i
\(83\) −3.62349 1.74498i −0.397730 0.191537i 0.224318 0.974516i \(-0.427985\pi\)
−0.622047 + 0.782980i \(0.713699\pi\)
\(84\) 0 0
\(85\) −1.44504 + 6.33114i −0.156737 + 0.686709i
\(86\) −0.829085 −0.0894025
\(87\) 0 0
\(88\) 8.69202 0.926573
\(89\) 2.50484 10.9744i 0.265513 1.16329i −0.649659 0.760225i \(-0.725088\pi\)
0.915172 0.403063i \(-0.132054\pi\)
\(90\) 0 0
\(91\) −0.914542 0.440420i −0.0958701 0.0461686i
\(92\) 0.510885 2.23833i 0.0532635 0.233362i
\(93\) 0 0
\(94\) 5.33997 2.57159i 0.550776 0.265240i
\(95\) −6.79590 + 8.52179i −0.697244 + 0.874317i
\(96\) 0 0
\(97\) 4.11745 + 1.98286i 0.418064 + 0.201329i 0.631077 0.775721i \(-0.282613\pi\)
−0.213013 + 0.977049i \(0.568328\pi\)
\(98\) 5.07002 + 6.35761i 0.512150 + 0.642215i
\(99\) 0 0
\(100\) −3.16152 3.96442i −0.316152 0.396442i
\(101\) 0.714988 + 3.13257i 0.0711440 + 0.311702i 0.997962 0.0638082i \(-0.0203246\pi\)
−0.926818 + 0.375510i \(0.877467\pi\)
\(102\) 0 0
\(103\) −4.07338 5.10785i −0.401362 0.503292i 0.539545 0.841957i \(-0.318596\pi\)
−0.940907 + 0.338665i \(0.890025\pi\)
\(104\) 4.47219 0.438534
\(105\) 0 0
\(106\) −0.0549581 0.0264664i −0.00533801 0.00257065i
\(107\) 3.60656 4.52249i 0.348660 0.437205i −0.576319 0.817225i \(-0.695511\pi\)
0.924978 + 0.380020i \(0.124083\pi\)
\(108\) 0 0
\(109\) −8.27628 + 3.98565i −0.792724 + 0.381756i −0.786004 0.618222i \(-0.787853\pi\)
−0.00672026 + 0.999977i \(0.502139\pi\)
\(110\) 3.20291 + 14.0329i 0.305385 + 1.33798i
\(111\) 0 0
\(112\) 1.81551 + 0.874304i 0.171550 + 0.0826140i
\(113\) −8.07822 + 3.89027i −0.759935 + 0.365965i −0.773379 0.633944i \(-0.781435\pi\)
0.0134437 + 0.999910i \(0.495721\pi\)
\(114\) 0 0
\(115\) 20.8877 1.94779
\(116\) −0.736094 2.28078i −0.0683447 0.211765i
\(117\) 0 0
\(118\) 1.77479 7.77587i 0.163383 0.715826i
\(119\) −1.00000 + 0.481575i −0.0916698 + 0.0441459i
\(120\) 0 0
\(121\) 0.639219 2.80060i 0.0581108 0.254600i
\(122\) −0.362937 1.59013i −0.0328587 0.143964i
\(123\) 0 0
\(124\) 0.541385 0.678875i 0.0486178 0.0609648i
\(125\) 16.1407 20.2398i 1.44367 1.81030i
\(126\) 0 0
\(127\) 9.70440 + 12.1689i 0.861126 + 1.07982i 0.996035 + 0.0889600i \(0.0283543\pi\)
−0.134909 + 0.990858i \(0.543074\pi\)
\(128\) −6.16421 −0.544844
\(129\) 0 0
\(130\) 1.64795 + 7.22013i 0.144535 + 0.633248i
\(131\) 2.98911 + 13.0962i 0.261160 + 1.14422i 0.919995 + 0.391930i \(0.128192\pi\)
−0.658835 + 0.752288i \(0.728950\pi\)
\(132\) 0 0
\(133\) −1.86294 −0.161537
\(134\) −11.6223 14.5739i −1.00401 1.25899i
\(135\) 0 0
\(136\) 3.04892 3.82322i 0.261443 0.327839i
\(137\) 10.5945 13.2851i 0.905148 1.13502i −0.0851931 0.996364i \(-0.527151\pi\)
0.990341 0.138655i \(-0.0442779\pi\)
\(138\) 0 0
\(139\) −2.77359 12.1519i −0.235253 1.03071i −0.945209 0.326465i \(-0.894142\pi\)
0.709956 0.704246i \(-0.248715\pi\)
\(140\) 0.277479 1.21572i 0.0234513 0.102747i
\(141\) 0 0
\(142\) 2.53803 1.22225i 0.212987 0.102569i
\(143\) −0.930509 + 4.07683i −0.0778131 + 0.340921i
\(144\) 0 0
\(145\) 18.7397 11.1463i 1.55625 0.925651i
\(146\) −10.3787 −0.858945
\(147\) 0 0
\(148\) 1.14310 0.550490i 0.0939626 0.0452500i
\(149\) −16.5015 7.94670i −1.35185 0.651019i −0.389050 0.921217i \(-0.627197\pi\)
−0.962805 + 0.270198i \(0.912911\pi\)
\(150\) 0 0
\(151\) 4.23609 + 18.5595i 0.344728 + 1.51035i 0.788961 + 0.614443i \(0.210619\pi\)
−0.444233 + 0.895911i \(0.646524\pi\)
\(152\) 7.39493 3.56121i 0.599808 0.288852i
\(153\) 0 0
\(154\) −1.53385 + 1.92339i −0.123601 + 0.154991i
\(155\) 7.11745 + 3.42758i 0.571687 + 0.275310i
\(156\) 0 0
\(157\) −11.4383 −0.912879 −0.456439 0.889755i \(-0.650875\pi\)
−0.456439 + 0.889755i \(0.650875\pi\)
\(158\) 7.57338 + 9.49671i 0.602505 + 0.755518i
\(159\) 0 0
\(160\) 2.22252 + 9.73750i 0.175706 + 0.769817i
\(161\) 2.22587 + 2.79116i 0.175423 + 0.219974i
\(162\) 0 0
\(163\) −4.16152 5.21838i −0.325956 0.408735i 0.591671 0.806180i \(-0.298469\pi\)
−0.917626 + 0.397444i \(0.869897\pi\)
\(164\) −2.60388 1.25396i −0.203329 0.0979179i
\(165\) 0 0
\(166\) −3.12684 + 3.92094i −0.242690 + 0.304324i
\(167\) −13.2153 + 6.36415i −1.02263 + 0.492472i −0.868558 0.495587i \(-0.834953\pi\)
−0.154071 + 0.988060i \(0.549239\pi\)
\(168\) 0 0
\(169\) 2.41401 10.5765i 0.185693 0.813575i
\(170\) 7.29590 + 3.51352i 0.559570 + 0.269475i
\(171\) 0 0
\(172\) 0.0658433 0.288478i 0.00502050 0.0219963i
\(173\) 23.3599 1.77602 0.888009 0.459825i \(-0.152088\pi\)
0.888009 + 0.459825i \(0.152088\pi\)
\(174\) 0 0
\(175\) 7.88471 0.596028
\(176\) 1.84721 8.09314i 0.139238 0.610044i
\(177\) 0 0
\(178\) −12.6468 6.09035i −0.947914 0.456491i
\(179\) −0.147948 + 0.648205i −0.0110582 + 0.0484491i −0.980156 0.198228i \(-0.936481\pi\)
0.969098 + 0.246677i \(0.0793386\pi\)
\(180\) 0 0
\(181\) −9.88016 + 4.75803i −0.734386 + 0.353662i −0.763408 0.645917i \(-0.776475\pi\)
0.0290213 + 0.999579i \(0.490761\pi\)
\(182\) −0.789192 + 0.989616i −0.0584988 + 0.0733552i
\(183\) 0 0
\(184\) −14.1712 6.82450i −1.04472 0.503108i
\(185\) 7.19687 + 9.02458i 0.529124 + 0.663501i
\(186\) 0 0
\(187\) 2.85086 + 3.57486i 0.208475 + 0.261420i
\(188\) 0.470697 + 2.06226i 0.0343291 + 0.150406i
\(189\) 0 0
\(190\) 8.47434 + 10.6265i 0.614794 + 0.770927i
\(191\) 0.518122 0.0374900 0.0187450 0.999824i \(-0.494033\pi\)
0.0187450 + 0.999824i \(0.494033\pi\)
\(192\) 0 0
\(193\) −1.24914 0.601552i −0.0899147 0.0433007i 0.388386 0.921497i \(-0.373033\pi\)
−0.478301 + 0.878196i \(0.658747\pi\)
\(194\) 3.55310 4.45544i 0.255098 0.319882i
\(195\) 0 0
\(196\) −2.61476 + 1.25920i −0.186769 + 0.0899430i
\(197\) 2.88351 + 12.6335i 0.205442 + 0.900099i 0.967556 + 0.252656i \(0.0813042\pi\)
−0.762114 + 0.647442i \(0.775839\pi\)
\(198\) 0 0
\(199\) 17.5722 + 8.46232i 1.24566 + 0.599878i 0.936345 0.351082i \(-0.114186\pi\)
0.309314 + 0.950960i \(0.399901\pi\)
\(200\) −31.2983 + 15.0725i −2.21313 + 1.06579i
\(201\) 0 0
\(202\) 4.00670 0.281911
\(203\) 3.48643 + 1.31634i 0.244699 + 0.0923889i
\(204\) 0 0
\(205\) 5.85086 25.6343i 0.408641 1.79038i
\(206\) −7.33997 + 3.53474i −0.511400 + 0.246277i
\(207\) 0 0
\(208\) 0.950419 4.16406i 0.0658997 0.288725i
\(209\) 1.70775 + 7.48215i 0.118128 + 0.517551i
\(210\) 0 0
\(211\) −12.8632 + 16.1300i −0.885541 + 1.11043i 0.107679 + 0.994186i \(0.465658\pi\)
−0.993220 + 0.116248i \(0.962913\pi\)
\(212\) 0.0135735 0.0170207i 0.000932234 0.00116898i
\(213\) 0 0
\(214\) −4.49731 5.63945i −0.307430 0.385505i
\(215\) 2.69202 0.183594
\(216\) 0 0
\(217\) 0.300446 + 1.31634i 0.0203956 + 0.0893589i
\(218\) 2.54892 + 11.1675i 0.172634 + 0.756361i
\(219\) 0 0
\(220\) −5.13706 −0.346341
\(221\) 1.46681 + 1.83932i 0.0986685 + 0.123726i
\(222\) 0 0
\(223\) −13.1561 + 16.4973i −0.881001 + 1.10474i 0.112806 + 0.993617i \(0.464016\pi\)
−0.993807 + 0.111123i \(0.964555\pi\)
\(224\) −1.06435 + 1.33465i −0.0711150 + 0.0891753i
\(225\) 0 0
\(226\) 2.48792 + 10.9003i 0.165494 + 0.725076i
\(227\) 1.58761 6.95579i 0.105374 0.461672i −0.894519 0.447030i \(-0.852482\pi\)
0.999893 0.0146424i \(-0.00466098\pi\)
\(228\) 0 0
\(229\) 2.02930 0.977261i 0.134100 0.0645792i −0.365631 0.930760i \(-0.619147\pi\)
0.499731 + 0.866181i \(0.333432\pi\)
\(230\) 5.79590 25.3935i 0.382170 1.67440i
\(231\) 0 0
\(232\) −16.3557 + 1.43948i −1.07380 + 0.0945066i
\(233\) −18.9095 −1.23880 −0.619400 0.785076i \(-0.712624\pi\)
−0.619400 + 0.785076i \(0.712624\pi\)
\(234\) 0 0
\(235\) −17.3388 + 8.34991i −1.13106 + 0.544688i
\(236\) 2.56465 + 1.23507i 0.166944 + 0.0803961i
\(237\) 0 0
\(238\) 0.307979 + 1.34934i 0.0199633 + 0.0874649i
\(239\) −18.4448 + 8.88255i −1.19310 + 0.574564i −0.921700 0.387904i \(-0.873199\pi\)
−0.271395 + 0.962468i \(0.587485\pi\)
\(240\) 0 0
\(241\) 4.59448 5.76130i 0.295957 0.371118i −0.611514 0.791234i \(-0.709439\pi\)
0.907470 + 0.420116i \(0.138011\pi\)
\(242\) −3.22737 1.55422i −0.207463 0.0999089i
\(243\) 0 0
\(244\) 0.582105 0.0372655
\(245\) −16.4623 20.6430i −1.05174 1.31883i
\(246\) 0 0
\(247\) 0.878666 + 3.84969i 0.0559082 + 0.244950i
\(248\) −3.70895 4.65087i −0.235518 0.295331i
\(249\) 0 0
\(250\) −20.1271 25.2386i −1.27295 1.59623i
\(251\) 11.6724 + 5.62114i 0.736756 + 0.354803i 0.764337 0.644817i \(-0.223066\pi\)
−0.0275815 + 0.999620i \(0.508781\pi\)
\(252\) 0 0
\(253\) 9.16972 11.4985i 0.576495 0.722902i
\(254\) 17.4867 8.42116i 1.09721 0.528391i
\(255\) 0 0
\(256\) 2.25033 9.85935i 0.140646 0.616209i
\(257\) 15.0390 + 7.24240i 0.938107 + 0.451768i 0.839501 0.543358i \(-0.182847\pi\)
0.0986056 + 0.995127i \(0.468562\pi\)
\(258\) 0 0
\(259\) −0.439001 + 1.92339i −0.0272782 + 0.119514i
\(260\) −2.64310 −0.163918
\(261\) 0 0
\(262\) 16.7506 1.03486
\(263\) 3.91843 17.1678i 0.241621 1.05861i −0.697921 0.716175i \(-0.745891\pi\)
0.939542 0.342434i \(-0.111251\pi\)
\(264\) 0 0
\(265\) 0.178448 + 0.0859360i 0.0109620 + 0.00527901i
\(266\) −0.516926 + 2.26480i −0.0316948 + 0.138864i
\(267\) 0 0
\(268\) 5.99396 2.88654i 0.366139 0.176323i
\(269\) −4.18329 + 5.24568i −0.255060 + 0.319835i −0.892832 0.450390i \(-0.851285\pi\)
0.637772 + 0.770225i \(0.279856\pi\)
\(270\) 0 0
\(271\) −11.4133 5.49638i −0.693311 0.333881i 0.0538264 0.998550i \(-0.482858\pi\)
−0.747138 + 0.664669i \(0.768573\pi\)
\(272\) −2.91185 3.65135i −0.176557 0.221396i
\(273\) 0 0
\(274\) −13.2111 16.5662i −0.798112 1.00080i
\(275\) −7.22790 31.6675i −0.435859 1.90962i
\(276\) 0 0
\(277\) 9.81431 + 12.3068i 0.589685 + 0.739442i 0.983731 0.179649i \(-0.0574963\pi\)
−0.394046 + 0.919091i \(0.628925\pi\)
\(278\) −15.5429 −0.932200
\(279\) 0 0
\(280\) −7.69687 3.70662i −0.459976 0.221513i
\(281\) −7.36629 + 9.23703i −0.439436 + 0.551035i −0.951394 0.307975i \(-0.900349\pi\)
0.511959 + 0.859010i \(0.328920\pi\)
\(282\) 0 0
\(283\) 1.98039 0.953703i 0.117722 0.0566918i −0.374096 0.927390i \(-0.622047\pi\)
0.491818 + 0.870698i \(0.336333\pi\)
\(284\) 0.223717 + 0.980170i 0.0132752 + 0.0581624i
\(285\) 0 0
\(286\) 4.69806 + 2.26247i 0.277802 + 0.133783i
\(287\) 4.04892 1.94986i 0.239000 0.115096i
\(288\) 0 0
\(289\) −14.4276 −0.848681
\(290\) −8.35086 25.8751i −0.490379 1.51944i
\(291\) 0 0
\(292\) 0.824240 3.61123i 0.0482350 0.211331i
\(293\) −18.5993 + 8.95696i −1.08658 + 0.523271i −0.889416 0.457098i \(-0.848889\pi\)
−0.197168 + 0.980370i \(0.563174\pi\)
\(294\) 0 0
\(295\) −5.76271 + 25.2481i −0.335518 + 1.47000i
\(296\) −1.93416 8.47409i −0.112421 0.492547i
\(297\) 0 0
\(298\) −14.2397 + 17.8561i −0.824886 + 1.03437i
\(299\) 4.71797 5.91615i 0.272847 0.342140i
\(300\) 0 0
\(301\) 0.286872 + 0.359726i 0.0165350 + 0.0207343i
\(302\) 23.7385 1.36600
\(303\) 0 0
\(304\) −1.74429 7.64224i −0.100042 0.438312i
\(305\) 1.17845 + 5.16312i 0.0674777 + 0.295639i
\(306\) 0 0
\(307\) 22.8116 1.30193 0.650964 0.759108i \(-0.274365\pi\)
0.650964 + 0.759108i \(0.274365\pi\)
\(308\) −0.547425 0.686450i −0.0311925 0.0391141i
\(309\) 0 0
\(310\) 6.14191 7.70171i 0.348837 0.437428i
\(311\) −19.3843 + 24.3072i −1.09918 + 1.37833i −0.180392 + 0.983595i \(0.557737\pi\)
−0.918793 + 0.394740i \(0.870835\pi\)
\(312\) 0 0
\(313\) 2.49947 + 10.9509i 0.141278 + 0.618980i 0.995139 + 0.0984792i \(0.0313978\pi\)
−0.853861 + 0.520501i \(0.825745\pi\)
\(314\) −3.17390 + 13.9058i −0.179113 + 0.784747i
\(315\) 0 0
\(316\) −3.90581 + 1.88094i −0.219719 + 0.105811i
\(317\) −1.31886 + 5.77832i −0.0740748 + 0.324543i −0.998366 0.0571456i \(-0.981800\pi\)
0.924291 + 0.381688i \(0.124657\pi\)
\(318\) 0 0
\(319\) 2.09083 15.2093i 0.117064 0.851556i
\(320\) 36.0344 2.01439
\(321\) 0 0
\(322\) 4.01089 1.93154i 0.223518 0.107641i
\(323\) 3.89008 + 1.87337i 0.216450 + 0.104237i
\(324\) 0 0
\(325\) −3.71887 16.2934i −0.206286 0.903798i
\(326\) −7.49880 + 3.61123i −0.415320 + 0.200008i
\(327\) 0 0
\(328\) −12.3448 + 15.4799i −0.681628 + 0.854735i
\(329\) −2.96346 1.42713i −0.163381 0.0786801i
\(330\) 0 0
\(331\) 30.9095 1.69894 0.849469 0.527639i \(-0.176923\pi\)
0.849469 + 0.527639i \(0.176923\pi\)
\(332\) −1.11596 1.39937i −0.0612461 0.0768002i
\(333\) 0 0
\(334\) 4.07002 + 17.8319i 0.222702 + 0.975720i
\(335\) 37.7373 + 47.3211i 2.06181 + 2.58543i
\(336\) 0 0
\(337\) 4.99731 + 6.26643i 0.272221 + 0.341354i 0.899085 0.437775i \(-0.144233\pi\)
−0.626864 + 0.779129i \(0.715662\pi\)
\(338\) −12.1881 5.86950i −0.662947 0.319259i
\(339\) 0 0
\(340\) −1.80194 + 2.25956i −0.0977238 + 0.122542i
\(341\) 5.01142 2.41337i 0.271383 0.130691i
\(342\) 0 0
\(343\) 2.08211 9.12230i 0.112423 0.492558i
\(344\) −1.82640 0.879546i −0.0984727 0.0474220i
\(345\) 0 0
\(346\) 6.48188 28.3990i 0.348468 1.52674i
\(347\) 2.26337 0.121504 0.0607521 0.998153i \(-0.480650\pi\)
0.0607521 + 0.998153i \(0.480650\pi\)
\(348\) 0 0
\(349\) −23.5690 −1.26162 −0.630809 0.775938i \(-0.717277\pi\)
−0.630809 + 0.775938i \(0.717277\pi\)
\(350\) 2.18784 9.58556i 0.116945 0.512370i
\(351\) 0 0
\(352\) 6.33609 + 3.05130i 0.337714 + 0.162635i
\(353\) −0.218636 + 0.957907i −0.0116368 + 0.0509843i −0.980413 0.196953i \(-0.936895\pi\)
0.968776 + 0.247937i \(0.0797526\pi\)
\(354\) 0 0
\(355\) −8.24094 + 3.96863i −0.437384 + 0.210633i
\(356\) 3.12349 3.91673i 0.165545 0.207586i
\(357\) 0 0
\(358\) 0.746980 + 0.359726i 0.0394791 + 0.0190121i
\(359\) 4.91454 + 6.16264i 0.259380 + 0.325252i 0.894421 0.447227i \(-0.147588\pi\)
−0.635041 + 0.772478i \(0.719017\pi\)
\(360\) 0 0
\(361\) −7.32789 9.18888i −0.385678 0.483625i
\(362\) 3.04288 + 13.3317i 0.159930 + 0.700699i
\(363\) 0 0
\(364\) −0.281659 0.353190i −0.0147630 0.0185122i
\(365\) 33.6993 1.76390
\(366\) 0 0
\(367\) 26.4056 + 12.7163i 1.37836 + 0.663783i 0.968649 0.248432i \(-0.0799154\pi\)
0.409711 + 0.912216i \(0.365630\pi\)
\(368\) −9.36592 + 11.7445i −0.488232 + 0.612224i
\(369\) 0 0
\(370\) 12.9683 6.24521i 0.674190 0.324673i
\(371\) 0.00753275 + 0.0330031i 0.000391081 + 0.00171344i
\(372\) 0 0
\(373\) 3.43512 + 1.65426i 0.177864 + 0.0856546i 0.520697 0.853742i \(-0.325672\pi\)
−0.342833 + 0.939396i \(0.611387\pi\)
\(374\) 5.13706 2.47388i 0.265631 0.127921i
\(375\) 0 0
\(376\) 14.4916 0.747345
\(377\) 1.07577 7.82543i 0.0554049 0.403030i
\(378\) 0 0
\(379\) −2.00849 + 8.79978i −0.103169 + 0.452014i 0.896785 + 0.442466i \(0.145896\pi\)
−0.999954 + 0.00954794i \(0.996961\pi\)
\(380\) −4.37047 + 2.10471i −0.224200 + 0.107969i
\(381\) 0 0
\(382\) 0.143768 0.629889i 0.00735582 0.0322279i
\(383\) −7.38524 32.3568i −0.377368 1.65336i −0.705488 0.708722i \(-0.749272\pi\)
0.328120 0.944636i \(-0.393585\pi\)
\(384\) 0 0
\(385\) 4.98039 6.24521i 0.253824 0.318285i
\(386\) −1.07792 + 1.35168i −0.0548649 + 0.0687984i
\(387\) 0 0
\(388\) 1.26809 + 1.59013i 0.0643773 + 0.0807266i
\(389\) −27.5362 −1.39614 −0.698070 0.716030i \(-0.745957\pi\)
−0.698070 + 0.716030i \(0.745957\pi\)
\(390\) 0 0
\(391\) −1.84117 8.06668i −0.0931118 0.407949i
\(392\) 4.42423 + 19.3838i 0.223457 + 0.979031i
\(393\) 0 0
\(394\) 16.1588 0.814070
\(395\) −24.5906 30.8356i −1.23729 1.55151i
\(396\) 0 0
\(397\) −11.9852 + 15.0290i −0.601521 + 0.754284i −0.985614 0.169010i \(-0.945943\pi\)
0.384093 + 0.923294i \(0.374514\pi\)
\(398\) 15.1637 19.0147i 0.760086 0.953118i
\(399\) 0 0
\(400\) 7.38255 + 32.3451i 0.369128 + 1.61725i
\(401\) 2.45353 10.7496i 0.122524 0.536811i −0.875991 0.482327i \(-0.839792\pi\)
0.998515 0.0544837i \(-0.0173513\pi\)
\(402\) 0 0
\(403\) 2.57846 1.24172i 0.128442 0.0618545i
\(404\) −0.318200 + 1.39412i −0.0158310 + 0.0693603i
\(405\) 0 0
\(406\) 2.56770 3.87325i 0.127433 0.192226i
\(407\) 8.12737 0.402859
\(408\) 0 0
\(409\) −30.4720 + 14.6745i −1.50674 + 0.725608i −0.991337 0.131339i \(-0.958072\pi\)
−0.515404 + 0.856948i \(0.672358\pi\)
\(410\) −29.5405 14.2259i −1.45890 0.702569i
\(411\) 0 0
\(412\) −0.646989 2.83464i −0.0318749 0.139653i
\(413\) −3.98792 + 1.92048i −0.196233 + 0.0945007i
\(414\) 0 0
\(415\) 10.1528 12.7312i 0.498381 0.624950i
\(416\) 3.26002 + 1.56994i 0.159836 + 0.0769728i
\(417\) 0 0
\(418\) 9.57002 0.468085
\(419\) 22.2080 + 27.8480i 1.08493 + 1.36046i 0.927882 + 0.372874i \(0.121628\pi\)
0.157052 + 0.987590i \(0.449801\pi\)
\(420\) 0 0
\(421\) 2.10441 + 9.22001i 0.102563 + 0.449356i 0.999967 + 0.00814670i \(0.00259320\pi\)
−0.897404 + 0.441209i \(0.854550\pi\)
\(422\) 16.0402 + 20.1138i 0.780824 + 0.979123i
\(423\) 0 0
\(424\) −0.0929903 0.116606i −0.00451601 0.00566290i
\(425\) −16.4644 7.92885i −0.798642 0.384606i
\(426\) 0 0
\(427\) −0.564351 + 0.707674i −0.0273109 + 0.0342468i
\(428\) 2.31940 1.11696i 0.112112 0.0539904i
\(429\) 0 0
\(430\) 0.746980 3.27273i 0.0360226 0.157825i
\(431\) 0.887928 + 0.427603i 0.0427700 + 0.0205969i 0.455146 0.890417i \(-0.349587\pi\)
−0.412377 + 0.911014i \(0.635301\pi\)
\(432\) 0 0
\(433\) 6.38285 27.9651i 0.306740 1.34392i −0.552999 0.833182i \(-0.686517\pi\)
0.859739 0.510734i \(-0.170626\pi\)
\(434\) 1.68366 0.0808183
\(435\) 0 0
\(436\) −4.08815 −0.195787
\(437\) 3.09030 13.5395i 0.147829 0.647682i
\(438\) 0 0
\(439\) 5.94116 + 2.86111i 0.283556 + 0.136553i 0.570256 0.821467i \(-0.306844\pi\)
−0.286700 + 0.958020i \(0.592558\pi\)
\(440\) −7.83124 + 34.3109i −0.373340 + 1.63571i
\(441\) 0 0
\(442\) 2.64310 1.27285i 0.125720 0.0605434i
\(443\) 13.3354 16.7221i 0.633585 0.794490i −0.356599 0.934257i \(-0.616064\pi\)
0.990184 + 0.139767i \(0.0446353\pi\)
\(444\) 0 0
\(445\) 41.0637 + 19.7753i 1.94661 + 0.937437i
\(446\) 16.4054 + 20.5718i 0.776820 + 0.974102i
\(447\) 0 0
\(448\) 3.83997 + 4.81517i 0.181422 + 0.227495i
\(449\) 6.51022 + 28.5231i 0.307236 + 1.34609i 0.858951 + 0.512058i \(0.171117\pi\)
−0.551715 + 0.834033i \(0.686026\pi\)
\(450\) 0 0
\(451\) −11.5429 14.4743i −0.543533 0.681569i
\(452\) −3.99031 −0.187688
\(453\) 0 0
\(454\) −8.01573 3.86017i −0.376197 0.181167i
\(455\) 2.56249 3.21326i 0.120131 0.150640i
\(456\) 0 0
\(457\) 0.217677 0.104828i 0.0101825 0.00490362i −0.428786 0.903406i \(-0.641058\pi\)
0.438968 + 0.898503i \(0.355344\pi\)
\(458\) −0.624982 2.73822i −0.0292035 0.127949i
\(459\) 0 0
\(460\) 8.37531 + 4.03334i 0.390501 + 0.188055i
\(461\) 15.6211 7.52272i 0.727547 0.350368i −0.0331719 0.999450i \(-0.510561\pi\)
0.760719 + 0.649081i \(0.224847\pi\)
\(462\) 0 0
\(463\) 4.24996 0.197513 0.0987563 0.995112i \(-0.468514\pi\)
0.0987563 + 0.995112i \(0.468514\pi\)
\(464\) −2.13557 + 15.5347i −0.0991414 + 0.721181i
\(465\) 0 0
\(466\) −5.24698 + 22.9885i −0.243062 + 1.06492i
\(467\) −25.9780 + 12.5103i −1.20212 + 0.578910i −0.924279 0.381718i \(-0.875333\pi\)
−0.277839 + 0.960628i \(0.589618\pi\)
\(468\) 0 0
\(469\) −2.30194 + 10.0854i −0.106294 + 0.465703i
\(470\) 5.33997 + 23.3959i 0.246314 + 1.07917i
\(471\) 0 0
\(472\) 12.1588 15.2467i 0.559656 0.701786i
\(473\) 1.18180 1.48193i 0.0543392 0.0681392i
\(474\) 0 0
\(475\) −19.1238 23.9805i −0.877459 1.10030i
\(476\) −0.493959 −0.0226406
\(477\) 0 0
\(478\) 5.68060 + 24.8884i 0.259825 + 1.13837i
\(479\) −5.37986 23.5707i −0.245812 1.07697i −0.935628 0.352988i \(-0.885166\pi\)
0.689816 0.723985i \(-0.257692\pi\)
\(480\) 0 0
\(481\) 4.18167 0.190668
\(482\) −5.72923 7.18422i −0.260959 0.327232i
\(483\) 0 0
\(484\) 0.797093 0.999524i 0.0362315 0.0454329i
\(485\) −11.5368 + 14.4667i −0.523861 + 0.656901i
\(486\) 0 0
\(487\) −4.29709 18.8268i −0.194720 0.853124i −0.974018 0.226470i \(-0.927281\pi\)
0.779298 0.626653i \(-0.215576\pi\)
\(488\) 0.887395 3.88793i 0.0401705 0.175998i
\(489\) 0 0
\(490\) −29.6640 + 14.2854i −1.34008 + 0.645349i
\(491\) 8.20895 35.9657i 0.370465 1.62311i −0.355010 0.934863i \(-0.615523\pi\)
0.725475 0.688249i \(-0.241620\pi\)
\(492\) 0 0
\(493\) −5.95646 6.25465i −0.268265 0.281695i
\(494\) 4.92394 0.221538
\(495\) 0 0
\(496\) −5.11865 + 2.46501i −0.229834 + 0.110682i
\(497\) −1.40850 0.678299i −0.0631799 0.0304259i
\(498\) 0 0
\(499\) −8.39254 36.7701i −0.375701 1.64606i −0.710450 0.703748i \(-0.751508\pi\)
0.334748 0.942308i \(-0.391349\pi\)
\(500\) 10.3802 4.99882i 0.464215 0.223554i
\(501\) 0 0
\(502\) 10.0725 12.6306i 0.449560 0.563730i
\(503\) −6.31551 3.04139i −0.281595 0.135609i 0.287756 0.957704i \(-0.407091\pi\)
−0.569350 + 0.822095i \(0.692805\pi\)
\(504\) 0 0
\(505\) −13.0097 −0.578924
\(506\) −11.4345 14.3383i −0.508323 0.637417i
\(507\) 0 0
\(508\) 1.54138 + 6.75325i 0.0683879 + 0.299627i
\(509\) −11.4641 14.3756i −0.508138 0.637185i 0.459905 0.887968i \(-0.347883\pi\)
−0.968043 + 0.250783i \(0.919312\pi\)
\(510\) 0 0
\(511\) 3.59113 + 4.50313i 0.158862 + 0.199207i
\(512\) −22.4693 10.8206i −0.993011 0.478209i
\(513\) 0 0
\(514\) 12.9777 16.2735i 0.572422 0.717794i
\(515\) 23.8327 11.4772i 1.05020 0.505748i
\(516\) 0 0
\(517\) −3.01520 + 13.2104i −0.132608 + 0.580995i
\(518\) 2.21648 + 1.06740i 0.0973865 + 0.0468989i
\(519\) 0 0
\(520\) −4.02930 + 17.6535i −0.176697 + 0.774159i
\(521\) −3.94571 −0.172865 −0.0864323 0.996258i \(-0.527547\pi\)
−0.0864323 + 0.996258i \(0.527547\pi\)
\(522\) 0 0
\(523\) −33.9952 −1.48651 −0.743253 0.669010i \(-0.766718\pi\)
−0.743253 + 0.669010i \(0.766718\pi\)
\(524\) −1.33028 + 5.82834i −0.0581136 + 0.254612i
\(525\) 0 0
\(526\) −19.7838 9.52738i −0.862615 0.415414i
\(527\) 0.696333 3.05084i 0.0303328 0.132896i
\(528\) 0 0
\(529\) −3.25571 + 1.56787i −0.141553 + 0.0681681i
\(530\) 0.153989 0.193096i 0.00668887 0.00838757i
\(531\) 0 0
\(532\) −0.746980 0.359726i −0.0323857 0.0155961i
\(533\) −5.93900 7.44727i −0.257247 0.322577i
\(534\) 0 0
\(535\) 14.6027 + 18.3112i 0.631329 + 0.791661i
\(536\) −10.1419 44.4346i −0.438064 1.91928i
\(537\) 0 0
\(538\) 5.21648 + 6.54126i 0.224898 + 0.282014i
\(539\) −18.5907 −0.800759
\(540\) 0 0
\(541\) −21.1151 10.1685i −0.907807 0.437177i −0.0791047 0.996866i \(-0.525206\pi\)
−0.828702 + 0.559689i \(0.810920\pi\)
\(542\) −9.84899 + 12.3502i −0.423051 + 0.530489i
\(543\) 0 0
\(544\) 3.56465 1.71664i 0.152833 0.0736005i
\(545\) −8.27628 36.2608i −0.354517 1.55324i
\(546\) 0 0
\(547\) −29.0976 14.0127i −1.24412 0.599138i −0.308193 0.951324i \(-0.599724\pi\)
−0.935930 + 0.352186i \(0.885439\pi\)
\(548\) 6.81336 3.28114i 0.291052 0.140163i
\(549\) 0 0
\(550\) −40.5042 −1.72711
\(551\) −4.45257 13.7963i −0.189686 0.587741i
\(552\) 0 0
\(553\) 1.50000 6.57193i 0.0637865 0.279467i
\(554\) 17.6848 8.51654i 0.751354 0.361833i
\(555\) 0 0
\(556\) 1.23437 5.40811i 0.0523488 0.229355i
\(557\) 3.61045 + 15.8184i 0.152980 + 0.670248i 0.992010 + 0.126162i \(0.0402660\pi\)
−0.839030 + 0.544085i \(0.816877\pi\)
\(558\) 0 0
\(559\) 0.608056 0.762478i 0.0257180 0.0322494i
\(560\) −5.08695 + 6.37883i −0.214963 + 0.269555i
\(561\) 0 0
\(562\) 9.18561 + 11.5184i 0.387472 + 0.485874i
\(563\) 21.9168 0.923681 0.461841 0.886963i \(-0.347189\pi\)
0.461841 + 0.886963i \(0.347189\pi\)
\(564\) 0 0
\(565\) −8.07822 35.3930i −0.339853 1.48899i
\(566\) −0.609916 2.67222i −0.0256367 0.112322i
\(567\) 0 0
\(568\) 6.88769 0.289001
\(569\) 23.3790 + 29.3163i 0.980097 + 1.22900i 0.973421 + 0.229025i \(0.0735538\pi\)
0.00667655 + 0.999978i \(0.497875\pi\)
\(570\) 0 0
\(571\) 17.2201 21.5934i 0.720640 0.903654i −0.277734 0.960658i \(-0.589583\pi\)
0.998374 + 0.0570041i \(0.0181548\pi\)
\(572\) −1.16033 + 1.45500i −0.0485156 + 0.0608367i
\(573\) 0 0
\(574\) −1.24698 5.46337i −0.0520479 0.228037i
\(575\) −13.0794 + 57.3047i −0.545449 + 2.38977i
\(576\) 0 0
\(577\) 5.70387 2.74684i 0.237455 0.114352i −0.311372 0.950288i \(-0.600789\pi\)
0.548827 + 0.835936i \(0.315074\pi\)
\(578\) −4.00335 + 17.5398i −0.166518 + 0.729561i
\(579\) 0 0
\(580\) 9.66637 0.850747i 0.401374 0.0353253i
\(581\) 2.78315 0.115465
\(582\) 0 0
\(583\) 0.125646 0.0605078i 0.00520371 0.00250598i
\(584\) −22.8632 11.0104i −0.946087 0.455612i
\(585\) 0 0
\(586\) 5.72819 + 25.0969i 0.236629 + 1.03674i
\(587\) −17.5939 + 8.47280i −0.726180 + 0.349710i −0.760180 0.649712i \(-0.774890\pi\)
0.0340005 + 0.999422i \(0.489175\pi\)
\(588\) 0 0
\(589\) 3.27479 4.10646i 0.134935 0.169204i
\(590\) 29.0954 + 14.0116i 1.19784 + 0.576850i
\(591\) 0 0
\(592\) −8.30127 −0.341180
\(593\) 1.53720 + 1.92759i 0.0631254 + 0.0791568i 0.812392 0.583112i \(-0.198165\pi\)
−0.749266 + 0.662269i \(0.769594\pi\)
\(594\) 0 0
\(595\) −1.00000 4.38129i −0.0409960 0.179615i
\(596\) −5.08211 6.37276i −0.208171 0.261038i
\(597\) 0 0
\(598\) −5.88321 7.37732i −0.240583 0.301681i
\(599\) −4.65064 2.23963i −0.190020 0.0915087i 0.336455 0.941700i \(-0.390772\pi\)
−0.526474 + 0.850191i \(0.676486\pi\)
\(600\) 0 0
\(601\) −18.3723 + 23.0381i −0.749420 + 0.939743i −0.999595 0.0284577i \(-0.990940\pi\)
0.250175 + 0.968201i \(0.419512\pi\)
\(602\) 0.516926 0.248938i 0.0210683 0.0101460i
\(603\) 0 0
\(604\) −1.88524 + 8.25977i −0.0767093 + 0.336085i
\(605\) 10.4792 + 5.04651i 0.426040 + 0.205170i
\(606\) 0 0
\(607\) −7.71068 + 33.7827i −0.312967 + 1.37120i 0.536654 + 0.843802i \(0.319688\pi\)
−0.849621 + 0.527394i \(0.823169\pi\)
\(608\) 6.64071 0.269316
\(609\) 0 0
\(610\) 6.60388 0.267383
\(611\) −1.55137 + 6.79699i −0.0627617 + 0.274977i
\(612\) 0 0
\(613\) −24.7407 11.9145i −0.999268 0.481222i −0.138578 0.990352i \(-0.544253\pi\)
−0.860690 + 0.509130i \(0.829967\pi\)
\(614\) 6.32975 27.7324i 0.255448 1.11919i
\(615\) 0 0
\(616\) −5.41939 + 2.60984i −0.218353 + 0.105153i
\(617\) −21.3723 + 26.8000i −0.860415 + 1.07893i 0.135690 + 0.990751i \(0.456675\pi\)
−0.996105 + 0.0881746i \(0.971897\pi\)
\(618\) 0 0
\(619\) −23.1247 11.1363i −0.929462 0.447605i −0.0930221 0.995664i \(-0.529653\pi\)
−0.836440 + 0.548059i \(0.815367\pi\)
\(620\) 2.19202 + 2.74871i 0.0880337 + 0.110391i
\(621\) 0 0
\(622\) 24.1719 + 30.3106i 0.969204 + 1.21534i
\(623\) 1.73341 + 7.59455i 0.0694474 + 0.304269i
\(624\) 0 0
\(625\) 29.8330 + 37.4094i 1.19332 + 1.49638i
\(626\) 14.0067 0.559821
\(627\) 0 0
\(628\) −4.58642 2.20870i −0.183018 0.0881368i
\(629\) 2.85086 3.57486i 0.113671 0.142539i
\(630\) 0 0
\(631\) 26.4894 12.7566i 1.05453 0.507833i 0.175438 0.984491i \(-0.443866\pi\)
0.879089 + 0.476657i \(0.158152\pi\)
\(632\) 6.60872 + 28.9547i 0.262881 + 1.15176i
\(633\) 0 0
\(634\) 6.65883 + 3.20673i 0.264456 + 0.127355i
\(635\) −56.7790 + 27.3433i −2.25321 + 1.08509i
\(636\) 0 0
\(637\) −9.56524 −0.378989
\(638\) −17.9100 6.76212i −0.709063 0.267715i
\(639\) 0 0
\(640\) 5.55376 24.3326i 0.219532 0.961831i
\(641\) −9.43080 + 4.54164i −0.372494 + 0.179384i −0.610759 0.791816i \(-0.709136\pi\)
0.238265 + 0.971200i \(0.423421\pi\)
\(642\) 0 0
\(643\) −0.678743 + 2.97377i −0.0267670 + 0.117274i −0.986546 0.163481i \(-0.947728\pi\)
0.959779 + 0.280755i \(0.0905849\pi\)
\(644\) 0.353543 + 1.54898i 0.0139316 + 0.0610382i
\(645\) 0 0
\(646\) 3.35690 4.20941i 0.132075 0.165617i
\(647\) 18.5824 23.3016i 0.730550 0.916080i −0.268334 0.963326i \(-0.586473\pi\)
0.998883 + 0.0472458i \(0.0150444\pi\)
\(648\) 0 0
\(649\) 11.3690 + 14.2562i 0.446271 + 0.559607i
\(650\) −20.8401 −0.817416
\(651\) 0 0
\(652\) −0.660990 2.89598i −0.0258863 0.113416i
\(653\) 2.53438 + 11.1039i 0.0991781 + 0.434528i 1.00000 0.000338791i \(0.000107841\pi\)
−0.900822 + 0.434189i \(0.857035\pi\)
\(654\) 0 0
\(655\) −54.3889 −2.12515
\(656\) 11.7899 + 14.7840i 0.460317 + 0.577219i
\(657\) 0 0
\(658\) −2.55728 + 3.20673i −0.0996931 + 0.125011i
\(659\) 2.86025 3.58664i 0.111419 0.139716i −0.722995 0.690854i \(-0.757235\pi\)
0.834414 + 0.551138i \(0.185806\pi\)
\(660\) 0 0
\(661\) 2.86712 + 12.5617i 0.111518 + 0.488592i 0.999583 + 0.0288743i \(0.00919225\pi\)
−0.888065 + 0.459718i \(0.847951\pi\)
\(662\) 8.57673 37.5771i 0.333344 1.46048i
\(663\) 0 0
\(664\) −11.0477 + 5.32030i −0.428735 + 0.206468i
\(665\) 1.67845 7.35376i 0.0650874 0.285167i
\(666\) 0 0
\(667\) −15.3503 + 23.1551i −0.594367 + 0.896571i
\(668\) −6.52781 −0.252569
\(669\) 0 0
\(670\) 68.0004 32.7472i 2.62708 1.26514i
\(671\) 3.35958 + 1.61789i 0.129695 + 0.0624580i
\(672\) 0 0
\(673\) −1.06518 4.66686i −0.0410596 0.179894i 0.950240 0.311519i \(-0.100838\pi\)
−0.991300 + 0.131625i \(0.957981\pi\)
\(674\) 9.00484 4.33650i 0.346854 0.167036i
\(675\) 0 0
\(676\) 3.01022 3.77470i 0.115778 0.145181i
\(677\) −27.5034 13.2449i −1.05704 0.509045i −0.177133 0.984187i \(-0.556682\pi\)
−0.879909 + 0.475142i \(0.842397\pi\)
\(678\) 0 0
\(679\) −3.16255 −0.121368
\(680\) 12.3448 + 15.4799i 0.473402 + 0.593627i
\(681\) 0 0
\(682\) −1.54341 6.76212i −0.0591002 0.258935i
\(683\) −5.95138 7.46279i −0.227723 0.285556i 0.654822 0.755783i \(-0.272743\pi\)
−0.882545 + 0.470227i \(0.844172\pi\)
\(684\) 0 0
\(685\) 42.8962 + 53.7901i 1.63898 + 2.05521i
\(686\) −10.5124 5.06249i −0.401364 0.193287i
\(687\) 0 0
\(688\) −1.20709 + 1.51364i −0.0460198 + 0.0577070i
\(689\) 0.0646468 0.0311323i 0.00246285 0.00118604i
\(690\) 0 0
\(691\) 3.66799 16.0705i 0.139537 0.611351i −0.856000 0.516976i \(-0.827058\pi\)
0.995537 0.0943750i \(-0.0300853\pi\)
\(692\) 9.36658 + 4.51071i 0.356064 + 0.171471i
\(693\) 0 0
\(694\) 0.628039 2.75162i 0.0238400 0.104450i
\(695\) 50.4674 1.91434
\(696\) 0 0
\(697\) −10.4155 −0.394515
\(698\) −6.53989 + 28.6531i −0.247539 + 1.08454i
\(699\) 0 0
\(700\) 3.16152 + 1.52251i 0.119494 + 0.0575454i
\(701\) 10.4288 45.6915i 0.393890 1.72574i −0.256858 0.966449i \(-0.582687\pi\)
0.650748 0.759294i \(-0.274456\pi\)
\(702\) 0 0
\(703\) 6.91454 3.32987i 0.260787 0.125588i
\(704\) 15.8192 19.8366i 0.596207 0.747620i
\(705\) 0 0
\(706\) 1.10388 + 0.531598i 0.0415449 + 0.0200070i
\(707\) −1.38636 1.73844i −0.0521395 0.0653809i
\(708\) 0 0
\(709\) 6.60955 + 8.28811i 0.248227 + 0.311267i 0.890298 0.455379i \(-0.150496\pi\)
−0.642071 + 0.766645i \(0.721925\pi\)
\(710\) 2.53803 + 11.1198i 0.0952507 + 0.417320i
\(711\) 0 0
\(712\) −21.3986 26.8330i −0.801946 1.00561i
\(713\) −10.0653 −0.376949
\(714\) 0 0
\(715\) −15.2545 7.34619i −0.570486 0.274732i
\(716\) −0.184489 + 0.231342i −0.00689467 + 0.00864564i
\(717\) 0 0
\(718\) 8.85570 4.26468i 0.330492 0.159156i
\(719\) −2.96064 12.9714i −0.110413 0.483752i −0.999654 0.0263121i \(-0.991624\pi\)
0.889241 0.457440i \(-0.151234\pi\)
\(720\) 0 0
\(721\) 4.07338 + 1.96163i 0.151700 + 0.0730551i
\(722\) −13.2044 + 6.35890i −0.491417 + 0.236654i
\(723\) 0 0
\(724\) −4.88040 −0.181378
\(725\) 18.8451 + 58.3914i 0.699890 + 2.16860i
\(726\) 0 0
\(727\) −7.34708 + 32.1896i −0.272488 + 1.19385i 0.634578 + 0.772859i \(0.281174\pi\)
−0.907066 + 0.420989i \(0.861683\pi\)
\(728\) −2.78836 + 1.34281i −0.103344 + 0.0497677i
\(729\) 0 0
\(730\) 9.35086 40.9688i 0.346091 1.51632i
\(731\) −0.237291 1.03964i −0.00877652 0.0384525i
\(732\) 0 0
\(733\) 19.8240 24.8585i 0.732216 0.918170i −0.266744 0.963768i \(-0.585948\pi\)
0.998960 + 0.0455974i \(0.0145191\pi\)
\(734\) 22.7863 28.5732i 0.841059 1.05465i
\(735\) 0 0
\(736\) −7.93445 9.94949i −0.292468 0.366743i
\(737\) 42.6165 1.56980
\(738\) 0 0
\(739\) 5.32616 + 23.3354i 0.195926 + 0.858408i 0.973331 + 0.229407i \(0.0736786\pi\)
−0.777405 + 0.629001i \(0.783464\pi\)
\(740\) 1.14310 + 5.00827i 0.0420213 + 0.184108i
\(741\) 0 0
\(742\) 0.0422126 0.00154967
\(743\) 4.62163 + 5.79534i 0.169551 + 0.212610i 0.859346 0.511394i \(-0.170871\pi\)
−0.689795 + 0.724005i \(0.742299\pi\)
\(744\) 0 0
\(745\) 46.2362 57.9783i 1.69396 2.12416i
\(746\) 2.96429 3.71710i 0.108530 0.136093i
\(747\) 0 0
\(748\) 0.452812 + 1.98390i 0.0165564 + 0.0725385i
\(749\) −0.890748 + 3.90262i −0.0325472 + 0.142599i
\(750\) 0 0
\(751\) 17.4448 8.40098i 0.636570 0.306556i −0.0876226 0.996154i \(-0.527927\pi\)
0.724193 + 0.689598i \(0.242213\pi\)
\(752\) 3.07971 13.4931i 0.112306 0.492043i
\(753\) 0 0
\(754\) −9.21499 3.47922i −0.335590 0.126706i
\(755\) −77.0786 −2.80518
\(756\) 0 0
\(757\) 30.8463 14.8548i 1.12113 0.539907i 0.220887 0.975299i \(-0.429105\pi\)
0.900241 + 0.435393i \(0.143390\pi\)
\(758\) 10.1407 + 4.88351i 0.368327 + 0.177377i
\(759\) 0 0
\(760\) 7.39493 + 32.3993i 0.268242 + 1.17525i
\(761\) 13.1174 6.31703i 0.475507 0.228992i −0.180751 0.983529i \(-0.557853\pi\)
0.656258 + 0.754537i \(0.272138\pi\)
\(762\) 0 0
\(763\) 3.96346 4.97002i 0.143487 0.179927i
\(764\) 0.207751 + 0.100048i 0.00751617 + 0.00361959i
\(765\) 0 0
\(766\) −41.3860 −1.49534
\(767\) 5.84953 + 7.33507i 0.211214 + 0.264854i
\(768\) 0 0
\(769\) −2.57314 11.2737i −0.0927898 0.406539i 0.907107 0.420900i \(-0.138286\pi\)
−0.999897 + 0.0143613i \(0.995428\pi\)
\(770\) −6.21044 7.78764i −0.223809 0.280647i
\(771\) 0 0
\(772\) −0.384707 0.482407i −0.0138459 0.0173622i
\(773\) 7.54503 + 3.63350i 0.271376 + 0.130688i 0.564623 0.825349i \(-0.309022\pi\)
−0.293247 + 0.956037i \(0.594736\pi\)
\(774\) 0 0
\(775\) −13.8602 + 17.3802i −0.497875 + 0.624315i
\(776\) 12.5538 6.04557i 0.450654 0.217023i
\(777\) 0 0
\(778\) −7.64071 + 33.4761i −0.273933 + 1.20018i
\(779\) −15.7506 7.58510i −0.564325 0.271764i
\(780\) 0 0
\(781\) −1.43309 + 6.27879i −0.0512801 + 0.224673i
\(782\) −10.3177 −0.368959
\(783\) 0 0
\(784\) 18.9885 0.678161
\(785\) 10.3056 45.1517i 0.367822 1.61153i
\(786\) 0 0
\(787\) 8.76055 + 4.21886i 0.312280 + 0.150386i 0.583458 0.812143i \(-0.301699\pi\)
−0.271179 + 0.962529i \(0.587413\pi\)
\(788\) −1.28328 + 5.62243i −0.0457151 + 0.200291i
\(789\) 0 0
\(790\) −44.3107 + 21.3389i −1.57650 + 0.759205i
\(791\) 3.86861 4.85108i 0.137552 0.172485i
\(792\) 0 0
\(793\) 1.72856 + 0.832431i 0.0613830 + 0.0295605i
\(794\) 14.9453 + 18.7409i 0.530390 + 0.665088i
\(795\) 0 0
\(796\) 5.41185 + 6.78625i 0.191818 + 0.240532i
\(797\) −5.87681 25.7480i −0.208167 0.912040i −0.965786 0.259342i \(-0.916494\pi\)
0.757618 0.652698i \(-0.226363\pi\)
\(798\) 0 0
\(799\) 4.75302 + 5.96010i 0.168150 + 0.210853i
\(800\) −28.1062 −0.993704
\(801\) 0 0
\(802\) −12.3877 5.96560i −0.437425 0.210653i
\(803\) 14.7940 18.5511i 0.522070 0.654655i
\(804\) 0 0
\(805\) −13.0233 + 6.27167i −0.459010 + 0.221047i
\(806\) −0.794109 3.47922i −0.0279713 0.122550i
\(807\) 0 0
\(808\) 8.82640 + 4.25057i 0.310512 + 0.149534i
\(809\) 16.9291 8.15261i 0.595195 0.286631i −0.111934 0.993716i \(-0.535704\pi\)
0.707129 + 0.707085i \(0.249990\pi\)
\(810\) 0 0
\(811\) 48.6983 1.71003 0.855013 0.518606i \(-0.173549\pi\)
0.855013 + 0.518606i \(0.173549\pi\)
\(812\) 1.14377 + 1.20103i 0.0401384 + 0.0421478i
\(813\) 0 0
\(814\) 2.25518 9.88057i 0.0790439 0.346314i
\(815\) 24.3485 11.7256i 0.852889 0.410730i
\(816\) 0 0
\(817\) 0.398280 1.74498i 0.0139341 0.0610491i
\(818\) 9.38471 + 41.1171i 0.328129 + 1.43763i
\(819\) 0 0
\(820\) 7.29590 9.14877i 0.254784 0.319489i
\(821\) −3.90246 + 4.89353i −0.136197 + 0.170785i −0.845253 0.534367i \(-0.820550\pi\)
0.709056 + 0.705152i \(0.249121\pi\)
\(822\) 0 0
\(823\) −9.36257 11.7403i −0.326359 0.409241i 0.591401 0.806378i \(-0.298575\pi\)
−0.917759 + 0.397137i \(0.870004\pi\)
\(824\) −19.9191 −0.693916
\(825\) 0 0
\(826\) 1.22819 + 5.38107i 0.0427343 + 0.187231i
\(827\) 2.66069 + 11.6573i 0.0925214 + 0.405363i 0.999888 0.0149778i \(-0.00476776\pi\)
−0.907366 + 0.420341i \(0.861911\pi\)
\(828\) 0 0
\(829\) 28.6305 0.994380 0.497190 0.867642i \(-0.334365\pi\)
0.497190 + 0.867642i \(0.334365\pi\)
\(830\) −12.6603 15.8755i −0.439446 0.551048i
\(831\) 0 0
\(832\) 8.13922 10.2063i 0.282177 0.353838i
\(833\) −6.52111 + 8.17721i −0.225943 + 0.283323i
\(834\) 0 0
\(835\) −13.2153 57.8999i −0.457334 2.00371i
\(836\) −0.760021 + 3.32987i −0.0262859 + 0.115166i
\(837\) 0 0
\(838\) 40.0175 19.2714i 1.38238 0.665720i
\(839\) −10.7529 + 47.1115i −0.371231 + 1.62647i 0.352096 + 0.935964i \(0.385469\pi\)
−0.723327 + 0.690505i \(0.757388\pi\)
\(840\) 0 0
\(841\) −1.41550 + 28.9654i −0.0488104 + 0.998808i
\(842\) 11.7928 0.406408
\(843\) 0 0
\(844\) −8.27240 + 3.98378i −0.284748 + 0.137127i
\(845\) 39.5746 + 19.0581i 1.36141 + 0.655620i
\(846\) 0 0
\(847\) 0.442353 + 1.93808i 0.0151994 + 0.0665931i
\(848\) −0.128334 + 0.0618025i −0.00440701 + 0.00212231i
\(849\) 0 0
\(850\) −14.2078 + 17.8160i −0.487322 + 0.611082i
\(851\) −13.2506 6.38117i −0.454226 0.218744i
\(852\) 0 0
\(853\) −6.40688 −0.219367 −0.109684 0.993967i \(-0.534984\pi\)
−0.109684 + 0.993967i \(0.534984\pi\)
\(854\) 0.703735 + 0.882455i 0.0240813 + 0.0301970i
\(855\) 0 0
\(856\) −3.92447 17.1942i −0.134136 0.587686i
\(857\) 0.447730 + 0.561436i 0.0152942 + 0.0191783i 0.789420 0.613854i \(-0.210382\pi\)
−0.774126 + 0.633032i \(0.781810\pi\)
\(858\) 0 0
\(859\) −9.72484 12.1946i −0.331807 0.416073i 0.587742 0.809049i \(-0.300017\pi\)
−0.919549 + 0.392975i \(0.871446\pi\)
\(860\) 1.07942 + 0.519820i 0.0368078 + 0.0177257i
\(861\) 0 0
\(862\) 0.766225 0.960816i 0.0260977 0.0327255i
\(863\) 12.1586 5.85527i 0.413883 0.199316i −0.215342 0.976539i \(-0.569087\pi\)
0.629225 + 0.777223i \(0.283372\pi\)
\(864\) 0 0
\(865\) −21.0465 + 92.2108i −0.715603 + 3.13526i
\(866\) −32.2265 15.5194i −1.09510 0.527372i
\(867\) 0 0
\(868\) −0.133711 + 0.585826i −0.00453845 + 0.0198842i
\(869\) −27.7700 −0.942033
\(870\) 0 0
\(871\) 21.9269 0.742965
\(872\) −6.23221 + 27.3051i −0.211049 + 0.924667i
\(873\) 0 0
\(874\) −15.6027 7.51385i −0.527768 0.254160i
\(875\) −3.98643 + 17.4657i −0.134766 + 0.590448i
\(876\) 0 0
\(877\) 14.1446 6.81168i 0.477629 0.230014i −0.179550 0.983749i \(-0.557464\pi\)
0.657179 + 0.753735i \(0.271750\pi\)
\(878\) 5.12684 6.42886i 0.173023 0.216963i
\(879\) 0 0
\(880\) 30.2826 + 14.5833i 1.02083 + 0.491604i
\(881\) 6.75332 + 8.46839i 0.227525 + 0.285307i 0.882469 0.470370i \(-0.155879\pi\)
−0.654944 + 0.755677i \(0.727308\pi\)
\(882\) 0 0
\(883\) −10.2744 12.8837i −0.345762 0.433572i 0.578294 0.815828i \(-0.303719\pi\)
−0.924056 + 0.382257i \(0.875147\pi\)
\(884\) 0.232979 + 1.02075i 0.00783593 + 0.0343315i
\(885\) 0 0
\(886\) −16.6290 20.8521i −0.558662 0.700540i
\(887\) 28.5763 0.959497 0.479748 0.877406i \(-0.340728\pi\)
0.479748 + 0.877406i \(0.340728\pi\)
\(888\) 0 0
\(889\) −9.70440 4.67339i −0.325475 0.156741i
\(890\) 35.4354 44.4346i 1.18780 1.48945i
\(891\) 0 0
\(892\) −8.46077 + 4.07449i −0.283288 + 0.136424i
\(893\) 2.84721 + 12.4744i 0.0952782 + 0.417441i
\(894\) 0 0
\(895\) −2.42543 1.16802i −0.0810731 0.0390427i
\(896\) 3.84332 1.85085i 0.128396 0.0618324i
\(897\) 0 0
\(898\) 36.4825 1.21744
\(899\) −9.03026 + 5.37116i −0.301176 + 0.179138i
\(900\) 0 0
\(901\) 0.0174584 0.0764902i 0.000581624 0.00254826i
\(902\) −20.7995 + 10.0165i −0.692549 + 0.333514i
\(903\) 0 0
\(904\) −6.08306 + 26.6516i −0.202320 + 0.886421i
\(905\) −9.88016 43.2878i −0.328428 1.43894i
\(906\) 0 0
\(907\) 20.4875 25.6906i 0.680278 0.853042i −0.315102 0.949058i \(-0.602039\pi\)
0.995380 + 0.0960163i \(0.0306101\pi\)
\(908\) 1.97972 2.48249i 0.0656994 0.0823844i
\(909\) 0 0
\(910\) −3.19537 4.00687i −0.105926 0.132827i
\(911\) −10.9638 −0.363245 −0.181623 0.983368i \(-0.558135\pi\)
−0.181623 + 0.983368i \(0.558135\pi\)
\(912\) 0 0
\(913\) −2.55131 11.1780i −0.0844360 0.369938i
\(914\) −0.0670397 0.293720i −0.00221748 0.00971540i
\(915\) 0 0
\(916\) 1.00239 0.0331200
\(917\) −5.79590 7.26782i −0.191397 0.240005i
\(918\) 0 0
\(919\) 4.77748 5.99077i 0.157594 0.197617i −0.696765 0.717299i \(-0.745378\pi\)
0.854360 + 0.519682i \(0.173950\pi\)
\(920\) 39.7068 49.7908i 1.30910 1.64155i
\(921\) 0 0
\(922\) −4.81096 21.0782i −0.158441 0.694174i
\(923\) −0.737349 + 3.23054i −0.0242702 + 0.106334i
\(924\) 0 0
\(925\) −29.2652 + 14.0934i −0.962233 + 0.463387i
\(926\) 1.17928 5.16675i 0.0387534 0.169790i
\(927\) 0 0
\(928\) −12.4279 4.69228i −0.407965 0.154032i
\(929\) −9.35988 −0.307088 −0.153544 0.988142i \(-0.549069\pi\)
−0.153544 + 0.988142i \(0.549069\pi\)
\(930\) 0 0
\(931\) −15.8165 + 7.61681i −0.518364 + 0.249631i
\(932\) −7.58211 3.65135i −0.248360 0.119604i
\(933\) 0 0
\(934\) 8.00066 + 35.0532i 0.261790 + 1.14698i
\(935\) −16.6799 + 8.03264i −0.545492 + 0.262695i
\(936\) 0 0
\(937\) 4.86563 6.10130i 0.158953 0.199321i −0.695977 0.718064i \(-0.745028\pi\)
0.854930 + 0.518743i \(0.173600\pi\)
\(938\) 11.6223 + 5.59700i 0.379481 + 0.182749i
\(939\) 0 0
\(940\) −8.56465 −0.279348
\(941\) 17.9242 + 22.4763i 0.584313 + 0.732706i 0.982842 0.184450i \(-0.0590505\pi\)
−0.398529 + 0.917156i \(0.630479\pi\)
\(942\) 0 0
\(943\) 7.45473 + 32.6613i 0.242759 + 1.06360i
\(944\) −11.6122 14.5613i −0.377946 0.473929i
\(945\) 0 0
\(946\) −1.47368 1.84794i −0.0479135 0.0600816i
\(947\) −2.08061 1.00197i −0.0676108 0.0325597i 0.399773 0.916614i \(-0.369089\pi\)
−0.467384 + 0.884055i \(0.654803\pi\)
\(948\) 0 0
\(949\) 7.61178 9.54487i 0.247089 0.309839i
\(950\) −34.4599 + 16.5950i −1.11803 + 0.538413i
\(951\) 0 0
\(952\) −0.753020 + 3.29920i −0.0244055 + 0.106928i
\(953\) −31.1107 14.9821i −1.00778 0.485319i −0.144206 0.989548i \(-0.546063\pi\)
−0.863570 + 0.504228i \(0.831777\pi\)
\(954\) 0 0
\(955\) −0.466812 + 2.04524i −0.0151057 + 0.0661823i
\(956\) −9.11098 −0.294670
\(957\) 0 0
\(958\) −30.1481 −0.974040
\(959\) −2.61662 + 11.4642i −0.0844951 + 0.370197i
\(960\) 0 0
\(961\) 24.5003 + 11.7987i 0.790332 + 0.380604i
\(962\) 1.16033 5.08372i 0.0374104 0.163906i
\(963\) 0 0
\(964\) 2.95473 1.42292i 0.0951655 0.0458293i
\(965\) 3.50000 4.38886i 0.112669 0.141282i
\(966\) 0 0
\(967\) −46.4163 22.3529i −1.49265 0.718822i −0.503263 0.864134i \(-0.667867\pi\)
−0.989386 + 0.145312i \(0.953581\pi\)
\(968\) −5.46077 6.84759i −0.175516 0.220090i
\(969\) 0 0
\(970\) 14.3862 + 18.0397i 0.461913 + 0.579221i
\(971\) 1.76582 + 7.73658i 0.0566680 + 0.248279i 0.995326 0.0965703i \(-0.0307873\pi\)
−0.938658 + 0.344849i \(0.887930\pi\)
\(972\) 0 0
\(973\) 5.37800 + 6.74380i 0.172411 + 0.216196i
\(974\) −24.0804 −0.771585
\(975\) 0 0
\(976\) −3.43147 1.65251i −0.109839 0.0528955i
\(977\) −17.2080 + 21.5782i −0.550534 + 0.690348i −0.976776 0.214261i \(-0.931266\pi\)
0.426242 + 0.904609i \(0.359837\pi\)
\(978\) 0 0
\(979\) 28.9131 13.9238i 0.924067 0.445007i
\(980\) −2.61476 11.4560i −0.0835255 0.365949i
\(981\) 0 0
\(982\) −41.4463 19.9595i −1.32260 0.636933i
\(983\) 31.8288 15.3280i 1.01518 0.488886i 0.149119 0.988819i \(-0.452356\pi\)
0.866064 + 0.499933i \(0.166642\pi\)
\(984\) 0 0
\(985\) −52.4674 −1.67175
\(986\) −9.25667 + 5.50582i −0.294792 + 0.175341i
\(987\) 0 0
\(988\) −0.391043 + 1.71327i −0.0124407 + 0.0545065i
\(989\) −3.09030 + 1.48821i −0.0982659 + 0.0473224i
\(990\) 0 0
\(991\) 0.123194 0.539750i 0.00391340 0.0171457i −0.972934 0.231085i \(-0.925772\pi\)
0.976847 + 0.213939i \(0.0686295\pi\)
\(992\) −1.07098 4.69228i −0.0340037 0.148980i
\(993\) 0 0
\(994\) −1.21545 + 1.52412i −0.0385517 + 0.0483423i
\(995\) −49.2362 + 61.7402i −1.56089 + 1.95730i
\(996\) 0 0
\(997\) 13.8699 + 17.3924i 0.439265 + 0.550821i 0.951349 0.308114i \(-0.0996978\pi\)
−0.512084 + 0.858935i \(0.671126\pi\)
\(998\) −47.0307 −1.48873
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.a.199.1 6
3.2 odd 2 29.2.d.a.25.1 yes 6
12.11 even 2 464.2.u.f.257.1 6
15.2 even 4 725.2.r.b.199.1 12
15.8 even 4 725.2.r.b.199.2 12
15.14 odd 2 725.2.l.b.576.1 6
29.6 even 14 7569.2.a.p.1.3 3
29.7 even 7 inner 261.2.k.a.181.1 6
29.23 even 7 7569.2.a.r.1.1 3
87.2 even 28 841.2.e.c.651.1 12
87.5 odd 14 841.2.d.c.190.1 6
87.8 even 28 841.2.e.b.63.1 12
87.11 even 28 841.2.e.c.270.2 12
87.14 even 28 841.2.b.c.840.2 6
87.17 even 4 841.2.e.d.236.2 12
87.20 odd 14 841.2.d.e.778.1 6
87.23 odd 14 841.2.a.e.1.3 3
87.26 even 28 841.2.e.d.196.2 12
87.32 even 28 841.2.e.d.196.1 12
87.35 odd 14 841.2.a.f.1.1 3
87.38 odd 14 841.2.d.a.778.1 6
87.41 even 4 841.2.e.d.236.1 12
87.44 even 28 841.2.b.c.840.5 6
87.47 even 28 841.2.e.c.270.1 12
87.50 even 28 841.2.e.b.63.2 12
87.53 odd 14 841.2.d.b.190.1 6
87.56 even 28 841.2.e.c.651.2 12
87.62 odd 14 841.2.d.a.574.1 6
87.65 odd 14 29.2.d.a.7.1 6
87.68 even 28 841.2.e.b.267.2 12
87.71 odd 14 841.2.d.c.571.1 6
87.74 odd 14 841.2.d.b.571.1 6
87.77 even 28 841.2.e.b.267.1 12
87.80 odd 14 841.2.d.d.645.1 6
87.83 odd 14 841.2.d.e.574.1 6
87.86 odd 2 841.2.d.d.605.1 6
348.239 even 14 464.2.u.f.65.1 6
435.152 even 28 725.2.r.b.674.2 12
435.239 odd 14 725.2.l.b.326.1 6
435.413 even 28 725.2.r.b.674.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.7.1 6 87.65 odd 14
29.2.d.a.25.1 yes 6 3.2 odd 2
261.2.k.a.181.1 6 29.7 even 7 inner
261.2.k.a.199.1 6 1.1 even 1 trivial
464.2.u.f.65.1 6 348.239 even 14
464.2.u.f.257.1 6 12.11 even 2
725.2.l.b.326.1 6 435.239 odd 14
725.2.l.b.576.1 6 15.14 odd 2
725.2.r.b.199.1 12 15.2 even 4
725.2.r.b.199.2 12 15.8 even 4
725.2.r.b.674.1 12 435.413 even 28
725.2.r.b.674.2 12 435.152 even 28
841.2.a.e.1.3 3 87.23 odd 14
841.2.a.f.1.1 3 87.35 odd 14
841.2.b.c.840.2 6 87.14 even 28
841.2.b.c.840.5 6 87.44 even 28
841.2.d.a.574.1 6 87.62 odd 14
841.2.d.a.778.1 6 87.38 odd 14
841.2.d.b.190.1 6 87.53 odd 14
841.2.d.b.571.1 6 87.74 odd 14
841.2.d.c.190.1 6 87.5 odd 14
841.2.d.c.571.1 6 87.71 odd 14
841.2.d.d.605.1 6 87.86 odd 2
841.2.d.d.645.1 6 87.80 odd 14
841.2.d.e.574.1 6 87.83 odd 14
841.2.d.e.778.1 6 87.20 odd 14
841.2.e.b.63.1 12 87.8 even 28
841.2.e.b.63.2 12 87.50 even 28
841.2.e.b.267.1 12 87.77 even 28
841.2.e.b.267.2 12 87.68 even 28
841.2.e.c.270.1 12 87.47 even 28
841.2.e.c.270.2 12 87.11 even 28
841.2.e.c.651.1 12 87.2 even 28
841.2.e.c.651.2 12 87.56 even 28
841.2.e.d.196.1 12 87.32 even 28
841.2.e.d.196.2 12 87.26 even 28
841.2.e.d.236.1 12 87.41 even 4
841.2.e.d.236.2 12 87.17 even 4
7569.2.a.p.1.3 3 29.6 even 14
7569.2.a.r.1.1 3 29.23 even 7