Properties

Label 2-29e2-29.23-c1-0-14
Degree $2$
Conductor $841$
Sign $-0.698 - 0.716i$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.777 − 0.974i)2-s + (−0.400 + 1.75i)3-s + (0.0990 + 0.433i)4-s + (−2.52 + 3.16i)5-s + (1.40 + 1.75i)6-s + (−0.153 + 0.674i)7-s + (2.74 + 1.32i)8-s + (−0.222 − 0.107i)9-s + (1.12 + 4.92i)10-s + (2.56 − 1.23i)11-s − 0.801·12-s + (−1.32 + 0.636i)13-s + (0.538 + 0.674i)14-s + (−4.54 − 5.70i)15-s + (2.62 − 1.26i)16-s − 1.60·17-s + ⋯
L(s)  = 1  + (0.549 − 0.689i)2-s + (−0.231 + 1.01i)3-s + (0.0495 + 0.216i)4-s + (−1.12 + 1.41i)5-s + (0.571 + 0.717i)6-s + (−0.0582 + 0.255i)7-s + (0.971 + 0.467i)8-s + (−0.0741 − 0.0357i)9-s + (0.355 + 1.55i)10-s + (0.774 − 0.372i)11-s − 0.231·12-s + (−0.366 + 0.176i)13-s + (0.143 + 0.180i)14-s + (−1.17 − 1.47i)15-s + (0.655 − 0.315i)16-s − 0.388·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.698 - 0.716i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.698 - 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $-0.698 - 0.716i$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{841} (574, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ -0.698 - 0.716i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.582719 + 1.38178i\)
\(L(\frac12)\) \(\approx\) \(0.582719 + 1.38178i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 + (-0.777 + 0.974i)T + (-0.445 - 1.94i)T^{2} \)
3 \( 1 + (0.400 - 1.75i)T + (-2.70 - 1.30i)T^{2} \)
5 \( 1 + (2.52 - 3.16i)T + (-1.11 - 4.87i)T^{2} \)
7 \( 1 + (0.153 - 0.674i)T + (-6.30 - 3.03i)T^{2} \)
11 \( 1 + (-2.56 + 1.23i)T + (6.85 - 8.60i)T^{2} \)
13 \( 1 + (1.32 - 0.636i)T + (8.10 - 10.1i)T^{2} \)
17 \( 1 + 1.60T + 17T^{2} \)
19 \( 1 + (-0.599 - 2.62i)T + (-17.1 + 8.24i)T^{2} \)
23 \( 1 + (3.21 + 4.03i)T + (-5.11 + 22.4i)T^{2} \)
31 \( 1 + (1.21 - 1.52i)T + (-6.89 - 30.2i)T^{2} \)
37 \( 1 + (2.56 + 1.23i)T + (23.0 + 28.9i)T^{2} \)
41 \( 1 - 6.49T + 41T^{2} \)
43 \( 1 + (-0.414 - 0.519i)T + (-9.56 + 41.9i)T^{2} \)
47 \( 1 + (-4.28 + 2.06i)T + (29.3 - 36.7i)T^{2} \)
53 \( 1 + (-0.0304 + 0.0382i)T + (-11.7 - 51.6i)T^{2} \)
59 \( 1 + 6.39T + 59T^{2} \)
61 \( 1 + (-0.291 + 1.27i)T + (-54.9 - 26.4i)T^{2} \)
67 \( 1 + (13.4 + 6.48i)T + (41.7 + 52.3i)T^{2} \)
71 \( 1 + (-2.03 + 0.980i)T + (44.2 - 55.5i)T^{2} \)
73 \( 1 + (-5.18 - 6.50i)T + (-16.2 + 71.1i)T^{2} \)
79 \( 1 + (-8.77 - 4.22i)T + (49.2 + 61.7i)T^{2} \)
83 \( 1 + (-0.894 - 3.92i)T + (-74.7 + 36.0i)T^{2} \)
89 \( 1 + (-7.01 + 8.80i)T + (-19.8 - 86.7i)T^{2} \)
97 \( 1 + (-1.01 - 4.45i)T + (-87.3 + 42.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75359196167398919307611712142, −10.12358129975346041243891537306, −8.953365339915681118802228352814, −7.84845934005321704733367870601, −7.15223384038819501131325027713, −6.10829765229242089533203040997, −4.67168248931584209886817068307, −3.95548297088217136936813125236, −3.41852363726865986963706726986, −2.33147120941706979598773117718, 0.65853639827291472893327479550, 1.66601057855431853573615821576, 3.94225662003663631465216063512, 4.53893630404780810196028137952, 5.50774216974532955717635481300, 6.46422764393537556626774180580, 7.43918212881990194100819658898, 7.64262628479349549049685963439, 8.884842438049120715366716371947, 9.685660489913688807410455399971

Graph of the $Z$-function along the critical line