Properties

Label 841.2.b.c.840.1
Level $841$
Weight $2$
Character 841.840
Analytic conductor $6.715$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(840,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.840"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 840.1
Root \(-1.80194i\) of defining polynomial
Character \(\chi\) \(=\) 841.840
Dual form 841.2.b.c.840.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80194i q^{2} +0.445042i q^{3} -1.24698 q^{4} -0.356896 q^{5} +0.801938 q^{6} -4.04892 q^{7} -1.35690i q^{8} +2.80194 q^{9} +0.643104i q^{10} +2.91185i q^{11} -0.554958i q^{12} -5.18598 q^{13} +7.29590i q^{14} -0.158834i q^{15} -4.93900 q^{16} +1.10992i q^{17} -5.04892i q^{18} +2.04892i q^{19} +0.445042 q^{20} -1.80194i q^{21} +5.24698 q^{22} -4.13706 q^{23} +0.603875 q^{24} -4.87263 q^{25} +9.34481i q^{26} +2.58211i q^{27} +5.04892 q^{28} -0.286208 q^{30} -6.35690i q^{31} +6.18598i q^{32} -1.29590 q^{33} +2.00000 q^{34} +1.44504 q^{35} -3.49396 q^{36} +2.91185i q^{37} +3.69202 q^{38} -2.30798i q^{39} +0.484271i q^{40} -0.396125i q^{41} -3.24698 q^{42} +5.74094i q^{43} -3.63102i q^{44} -1.00000 q^{45} +7.45473i q^{46} +7.80194i q^{47} -2.19806i q^{48} +9.39373 q^{49} +8.78017i q^{50} -0.493959 q^{51} +6.46681 q^{52} -4.35690 q^{53} +4.65279 q^{54} -1.03923i q^{55} +5.49396i q^{56} -0.911854 q^{57} -9.10992 q^{59} +0.198062i q^{60} -6.04892i q^{61} -11.4547 q^{62} -11.3448 q^{63} +1.26875 q^{64} +1.85086 q^{65} +2.33513i q^{66} -0.374354 q^{67} -1.38404i q^{68} -1.84117i q^{69} -2.60388i q^{70} +11.4058 q^{71} -3.80194i q^{72} +8.94869i q^{73} +5.24698 q^{74} -2.16852i q^{75} -2.55496i q^{76} -11.7899i q^{77} -4.15883 q^{78} -0.594187i q^{79} +1.76271 q^{80} +7.25667 q^{81} -0.713792 q^{82} -9.43296 q^{83} +2.24698i q^{84} -0.396125i q^{85} +10.3448 q^{86} +3.95108 q^{88} +1.42327i q^{89} +1.80194i q^{90} +20.9976 q^{91} +5.15883 q^{92} +2.82908 q^{93} +14.0586 q^{94} -0.731250i q^{95} -2.75302 q^{96} -15.7506i q^{97} -16.9269i q^{98} +8.15883i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{4} + 6 q^{5} - 4 q^{6} - 6 q^{7} + 8 q^{9} - 2 q^{13} - 10 q^{16} + 2 q^{20} + 22 q^{22} - 14 q^{23} - 14 q^{24} + 4 q^{25} + 12 q^{28} - 18 q^{30} + 20 q^{33} + 12 q^{34} + 8 q^{35} - 2 q^{36}+ \cdots - 26 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.80194i − 1.27416i −0.770797 0.637081i \(-0.780142\pi\)
0.770797 0.637081i \(-0.219858\pi\)
\(3\) 0.445042i 0.256945i 0.991713 + 0.128473i \(0.0410074\pi\)
−0.991713 + 0.128473i \(0.958993\pi\)
\(4\) −1.24698 −0.623490
\(5\) −0.356896 −0.159609 −0.0798043 0.996811i \(-0.525430\pi\)
−0.0798043 + 0.996811i \(0.525430\pi\)
\(6\) 0.801938 0.327390
\(7\) −4.04892 −1.53035 −0.765173 0.643824i \(-0.777347\pi\)
−0.765173 + 0.643824i \(0.777347\pi\)
\(8\) − 1.35690i − 0.479735i
\(9\) 2.80194 0.933979
\(10\) 0.643104i 0.203367i
\(11\) 2.91185i 0.877957i 0.898498 + 0.438979i \(0.144660\pi\)
−0.898498 + 0.438979i \(0.855340\pi\)
\(12\) − 0.554958i − 0.160203i
\(13\) −5.18598 −1.43833 −0.719166 0.694838i \(-0.755476\pi\)
−0.719166 + 0.694838i \(0.755476\pi\)
\(14\) 7.29590i 1.94991i
\(15\) − 0.158834i − 0.0410107i
\(16\) −4.93900 −1.23475
\(17\) 1.10992i 0.269194i 0.990900 + 0.134597i \(0.0429740\pi\)
−0.990900 + 0.134597i \(0.957026\pi\)
\(18\) − 5.04892i − 1.19004i
\(19\) 2.04892i 0.470054i 0.971989 + 0.235027i \(0.0755178\pi\)
−0.971989 + 0.235027i \(0.924482\pi\)
\(20\) 0.445042 0.0995144
\(21\) − 1.80194i − 0.393215i
\(22\) 5.24698 1.11866
\(23\) −4.13706 −0.862637 −0.431319 0.902200i \(-0.641952\pi\)
−0.431319 + 0.902200i \(0.641952\pi\)
\(24\) 0.603875 0.123266
\(25\) −4.87263 −0.974525
\(26\) 9.34481i 1.83267i
\(27\) 2.58211i 0.496926i
\(28\) 5.04892 0.954156
\(29\) 0 0
\(30\) −0.286208 −0.0522542
\(31\) − 6.35690i − 1.14173i −0.821043 0.570866i \(-0.806608\pi\)
0.821043 0.570866i \(-0.193392\pi\)
\(32\) 6.18598i 1.09354i
\(33\) −1.29590 −0.225587
\(34\) 2.00000 0.342997
\(35\) 1.44504 0.244257
\(36\) −3.49396 −0.582327
\(37\) 2.91185i 0.478706i 0.970933 + 0.239353i \(0.0769353\pi\)
−0.970933 + 0.239353i \(0.923065\pi\)
\(38\) 3.69202 0.598925
\(39\) − 2.30798i − 0.369572i
\(40\) 0.484271i 0.0765699i
\(41\) − 0.396125i − 0.0618643i −0.999521 0.0309321i \(-0.990152\pi\)
0.999521 0.0309321i \(-0.00984757\pi\)
\(42\) −3.24698 −0.501020
\(43\) 5.74094i 0.875485i 0.899100 + 0.437742i \(0.144222\pi\)
−0.899100 + 0.437742i \(0.855778\pi\)
\(44\) − 3.63102i − 0.547397i
\(45\) −1.00000 −0.149071
\(46\) 7.45473i 1.09914i
\(47\) 7.80194i 1.13803i 0.822327 + 0.569015i \(0.192675\pi\)
−0.822327 + 0.569015i \(0.807325\pi\)
\(48\) − 2.19806i − 0.317263i
\(49\) 9.39373 1.34196
\(50\) 8.78017i 1.24170i
\(51\) −0.493959 −0.0691681
\(52\) 6.46681 0.896785
\(53\) −4.35690 −0.598466 −0.299233 0.954180i \(-0.596731\pi\)
−0.299233 + 0.954180i \(0.596731\pi\)
\(54\) 4.65279 0.633165
\(55\) − 1.03923i − 0.140130i
\(56\) 5.49396i 0.734161i
\(57\) −0.911854 −0.120778
\(58\) 0 0
\(59\) −9.10992 −1.18601 −0.593005 0.805199i \(-0.702059\pi\)
−0.593005 + 0.805199i \(0.702059\pi\)
\(60\) 0.198062i 0.0255697i
\(61\) − 6.04892i − 0.774485i −0.921978 0.387242i \(-0.873428\pi\)
0.921978 0.387242i \(-0.126572\pi\)
\(62\) −11.4547 −1.45475
\(63\) −11.3448 −1.42931
\(64\) 1.26875 0.158594
\(65\) 1.85086 0.229570
\(66\) 2.33513i 0.287434i
\(67\) −0.374354 −0.0457347 −0.0228673 0.999739i \(-0.507280\pi\)
−0.0228673 + 0.999739i \(0.507280\pi\)
\(68\) − 1.38404i − 0.167840i
\(69\) − 1.84117i − 0.221650i
\(70\) − 2.60388i − 0.311223i
\(71\) 11.4058 1.35362 0.676810 0.736157i \(-0.263362\pi\)
0.676810 + 0.736157i \(0.263362\pi\)
\(72\) − 3.80194i − 0.448063i
\(73\) 8.94869i 1.04736i 0.851914 + 0.523682i \(0.175442\pi\)
−0.851914 + 0.523682i \(0.824558\pi\)
\(74\) 5.24698 0.609949
\(75\) − 2.16852i − 0.250399i
\(76\) − 2.55496i − 0.293074i
\(77\) − 11.7899i − 1.34358i
\(78\) −4.15883 −0.470895
\(79\) − 0.594187i − 0.0668512i −0.999441 0.0334256i \(-0.989358\pi\)
0.999441 0.0334256i \(-0.0106417\pi\)
\(80\) 1.76271 0.197077
\(81\) 7.25667 0.806296
\(82\) −0.713792 −0.0788251
\(83\) −9.43296 −1.03540 −0.517701 0.855562i \(-0.673212\pi\)
−0.517701 + 0.855562i \(0.673212\pi\)
\(84\) 2.24698i 0.245166i
\(85\) − 0.396125i − 0.0429657i
\(86\) 10.3448 1.11551
\(87\) 0 0
\(88\) 3.95108 0.421187
\(89\) 1.42327i 0.150866i 0.997151 + 0.0754332i \(0.0240340\pi\)
−0.997151 + 0.0754332i \(0.975966\pi\)
\(90\) 1.80194i 0.189941i
\(91\) 20.9976 2.20115
\(92\) 5.15883 0.537846
\(93\) 2.82908 0.293362
\(94\) 14.0586 1.45003
\(95\) − 0.731250i − 0.0750247i
\(96\) −2.75302 −0.280979
\(97\) − 15.7506i − 1.59923i −0.600510 0.799617i \(-0.705036\pi\)
0.600510 0.799617i \(-0.294964\pi\)
\(98\) − 16.9269i − 1.70988i
\(99\) 8.15883i 0.819994i
\(100\) 6.07606 0.607606
\(101\) − 17.4426i − 1.73561i −0.496906 0.867804i \(-0.665531\pi\)
0.496906 0.867804i \(-0.334469\pi\)
\(102\) 0.890084i 0.0881314i
\(103\) −2.81402 −0.277274 −0.138637 0.990343i \(-0.544272\pi\)
−0.138637 + 0.990343i \(0.544272\pi\)
\(104\) 7.03684i 0.690019i
\(105\) 0.643104i 0.0627605i
\(106\) 7.85086i 0.762542i
\(107\) −7.46011 −0.721196 −0.360598 0.932721i \(-0.617427\pi\)
−0.360598 + 0.932721i \(0.617427\pi\)
\(108\) − 3.21983i − 0.309829i
\(109\) 1.65279 0.158309 0.0791544 0.996862i \(-0.474778\pi\)
0.0791544 + 0.996862i \(0.474778\pi\)
\(110\) −1.87263 −0.178548
\(111\) −1.29590 −0.123001
\(112\) 19.9976 1.88960
\(113\) − 8.64071i − 0.812850i −0.913684 0.406425i \(-0.866775\pi\)
0.913684 0.406425i \(-0.133225\pi\)
\(114\) 1.64310i 0.153891i
\(115\) 1.47650 0.137684
\(116\) 0 0
\(117\) −14.5308 −1.34337
\(118\) 16.4155i 1.51117i
\(119\) − 4.49396i − 0.411961i
\(120\) −0.215521 −0.0196743
\(121\) 2.52111 0.229191
\(122\) −10.8998 −0.986819
\(123\) 0.176292 0.0158957
\(124\) 7.92692i 0.711858i
\(125\) 3.52350 0.315151
\(126\) 20.4426i 1.82118i
\(127\) 10.4722i 0.929257i 0.885506 + 0.464628i \(0.153812\pi\)
−0.885506 + 0.464628i \(0.846188\pi\)
\(128\) 10.0858i 0.891463i
\(129\) −2.55496 −0.224952
\(130\) − 3.33513i − 0.292510i
\(131\) 0.454731i 0.0397300i 0.999803 + 0.0198650i \(0.00632364\pi\)
−0.999803 + 0.0198650i \(0.993676\pi\)
\(132\) 1.61596 0.140651
\(133\) − 8.29590i − 0.719345i
\(134\) 0.674563i 0.0582734i
\(135\) − 0.921543i − 0.0793138i
\(136\) 1.50604 0.129142
\(137\) − 13.2403i − 1.13119i −0.824682 0.565597i \(-0.808646\pi\)
0.824682 0.565597i \(-0.191354\pi\)
\(138\) −3.31767 −0.282419
\(139\) −2.79656 −0.237201 −0.118601 0.992942i \(-0.537841\pi\)
−0.118601 + 0.992942i \(0.537841\pi\)
\(140\) −1.80194 −0.152292
\(141\) −3.47219 −0.292411
\(142\) − 20.5526i − 1.72473i
\(143\) − 15.1008i − 1.26279i
\(144\) −13.8388 −1.15323
\(145\) 0 0
\(146\) 16.1250 1.33451
\(147\) 4.18060i 0.344810i
\(148\) − 3.63102i − 0.298468i
\(149\) −2.70841 −0.221882 −0.110941 0.993827i \(-0.535386\pi\)
−0.110941 + 0.993827i \(0.535386\pi\)
\(150\) −3.90754 −0.319049
\(151\) 2.43535 0.198186 0.0990931 0.995078i \(-0.468406\pi\)
0.0990931 + 0.995078i \(0.468406\pi\)
\(152\) 2.78017 0.225501
\(153\) 3.10992i 0.251422i
\(154\) −21.2446 −1.71194
\(155\) 2.26875i 0.182230i
\(156\) 2.87800i 0.230425i
\(157\) − 17.6775i − 1.41082i −0.708799 0.705411i \(-0.750762\pi\)
0.708799 0.705411i \(-0.249238\pi\)
\(158\) −1.07069 −0.0851793
\(159\) − 1.93900i − 0.153773i
\(160\) − 2.20775i − 0.174538i
\(161\) 16.7506 1.32013
\(162\) − 13.0761i − 1.02735i
\(163\) 4.96615i 0.388979i 0.980905 + 0.194489i \(0.0623050\pi\)
−0.980905 + 0.194489i \(0.937695\pi\)
\(164\) 0.493959i 0.0385717i
\(165\) 0.462500 0.0360056
\(166\) 16.9976i 1.31927i
\(167\) −14.4644 −1.11929 −0.559645 0.828732i \(-0.689063\pi\)
−0.559645 + 0.828732i \(0.689063\pi\)
\(168\) −2.44504 −0.188639
\(169\) 13.8944 1.06880
\(170\) −0.713792 −0.0547453
\(171\) 5.74094i 0.439021i
\(172\) − 7.15883i − 0.545856i
\(173\) −10.5133 −0.799314 −0.399657 0.916665i \(-0.630871\pi\)
−0.399657 + 0.916665i \(0.630871\pi\)
\(174\) 0 0
\(175\) 19.7289 1.49136
\(176\) − 14.3817i − 1.08406i
\(177\) − 4.05429i − 0.304739i
\(178\) 2.56465 0.192228
\(179\) 5.74094 0.429098 0.214549 0.976713i \(-0.431172\pi\)
0.214549 + 0.976713i \(0.431172\pi\)
\(180\) 1.24698 0.0929444
\(181\) −6.64071 −0.493600 −0.246800 0.969066i \(-0.579379\pi\)
−0.246800 + 0.969066i \(0.579379\pi\)
\(182\) − 37.8364i − 2.80462i
\(183\) 2.69202 0.199000
\(184\) 5.61356i 0.413837i
\(185\) − 1.03923i − 0.0764056i
\(186\) − 5.09783i − 0.373791i
\(187\) −3.23191 −0.236341
\(188\) − 9.72886i − 0.709550i
\(189\) − 10.4547i − 0.760470i
\(190\) −1.31767 −0.0955936
\(191\) − 18.8116i − 1.36116i −0.732673 0.680581i \(-0.761728\pi\)
0.732673 0.680581i \(-0.238272\pi\)
\(192\) 0.564647i 0.0407499i
\(193\) 10.8847i 0.783498i 0.920072 + 0.391749i \(0.128130\pi\)
−0.920072 + 0.391749i \(0.871870\pi\)
\(194\) −28.3817 −2.03768
\(195\) 0.823708i 0.0589870i
\(196\) −11.7138 −0.836699
\(197\) −8.40044 −0.598506 −0.299253 0.954174i \(-0.596738\pi\)
−0.299253 + 0.954174i \(0.596738\pi\)
\(198\) 14.7017 1.04481
\(199\) −6.62133 −0.469374 −0.234687 0.972071i \(-0.575407\pi\)
−0.234687 + 0.972071i \(0.575407\pi\)
\(200\) 6.61165i 0.467514i
\(201\) − 0.166603i − 0.0117513i
\(202\) −31.4306 −2.21145
\(203\) 0 0
\(204\) 0.615957 0.0431256
\(205\) 0.141375i 0.00987407i
\(206\) 5.07069i 0.353292i
\(207\) −11.5918 −0.805685
\(208\) 25.6136 1.77598
\(209\) −5.96615 −0.412687
\(210\) 1.15883 0.0799671
\(211\) 8.10023i 0.557643i 0.960343 + 0.278821i \(0.0899437\pi\)
−0.960343 + 0.278821i \(0.910056\pi\)
\(212\) 5.43296 0.373137
\(213\) 5.07606i 0.347806i
\(214\) 13.4426i 0.918921i
\(215\) − 2.04892i − 0.139735i
\(216\) 3.50365 0.238393
\(217\) 25.7385i 1.74725i
\(218\) − 2.97823i − 0.201711i
\(219\) −3.98254 −0.269115
\(220\) 1.29590i 0.0873694i
\(221\) − 5.75600i − 0.387191i
\(222\) 2.33513i 0.156723i
\(223\) 21.9191 1.46781 0.733907 0.679250i \(-0.237695\pi\)
0.733907 + 0.679250i \(0.237695\pi\)
\(224\) − 25.0465i − 1.67349i
\(225\) −13.6528 −0.910186
\(226\) −15.5700 −1.03570
\(227\) −18.2784 −1.21318 −0.606591 0.795014i \(-0.707464\pi\)
−0.606591 + 0.795014i \(0.707464\pi\)
\(228\) 1.13706 0.0753039
\(229\) − 16.0248i − 1.05895i −0.848327 0.529473i \(-0.822390\pi\)
0.848327 0.529473i \(-0.177610\pi\)
\(230\) − 2.66056i − 0.175432i
\(231\) 5.24698 0.345226
\(232\) 0 0
\(233\) 1.95646 0.128172 0.0640860 0.997944i \(-0.479587\pi\)
0.0640860 + 0.997944i \(0.479587\pi\)
\(234\) 26.1836i 1.71167i
\(235\) − 2.78448i − 0.181639i
\(236\) 11.3599 0.739465
\(237\) 0.264438 0.0171771
\(238\) −8.09783 −0.524905
\(239\) −8.96316 −0.579779 −0.289889 0.957060i \(-0.593619\pi\)
−0.289889 + 0.957060i \(0.593619\pi\)
\(240\) 0.784479i 0.0506379i
\(241\) −19.8998 −1.28186 −0.640929 0.767601i \(-0.721451\pi\)
−0.640929 + 0.767601i \(0.721451\pi\)
\(242\) − 4.54288i − 0.292027i
\(243\) 10.9758i 0.704100i
\(244\) 7.54288i 0.482883i
\(245\) −3.35258 −0.214189
\(246\) − 0.317667i − 0.0202537i
\(247\) − 10.6256i − 0.676094i
\(248\) −8.62565 −0.547729
\(249\) − 4.19806i − 0.266041i
\(250\) − 6.34913i − 0.401554i
\(251\) 25.8049i 1.62879i 0.580309 + 0.814396i \(0.302932\pi\)
−0.580309 + 0.814396i \(0.697068\pi\)
\(252\) 14.1468 0.891162
\(253\) − 12.0465i − 0.757359i
\(254\) 18.8702 1.18402
\(255\) 0.176292 0.0110398
\(256\) 20.7114 1.29446
\(257\) 11.9511 0.745488 0.372744 0.927934i \(-0.378417\pi\)
0.372744 + 0.927934i \(0.378417\pi\)
\(258\) 4.60388i 0.286625i
\(259\) − 11.7899i − 0.732586i
\(260\) −2.30798 −0.143135
\(261\) 0 0
\(262\) 0.819396 0.0506225
\(263\) − 0.332733i − 0.0205172i −0.999947 0.0102586i \(-0.996735\pi\)
0.999947 0.0102586i \(-0.00326547\pi\)
\(264\) 1.75840i 0.108222i
\(265\) 1.55496 0.0955203
\(266\) −14.9487 −0.916563
\(267\) −0.633415 −0.0387644
\(268\) 0.466812 0.0285151
\(269\) 1.06398i 0.0648722i 0.999474 + 0.0324361i \(0.0103265\pi\)
−0.999474 + 0.0324361i \(0.989673\pi\)
\(270\) −1.66056 −0.101059
\(271\) 16.4644i 1.00014i 0.865984 + 0.500071i \(0.166693\pi\)
−0.865984 + 0.500071i \(0.833307\pi\)
\(272\) − 5.48188i − 0.332388i
\(273\) 9.34481i 0.565574i
\(274\) −23.8582 −1.44132
\(275\) − 14.1884i − 0.855591i
\(276\) 2.29590i 0.138197i
\(277\) 6.59419 0.396206 0.198103 0.980181i \(-0.436522\pi\)
0.198103 + 0.980181i \(0.436522\pi\)
\(278\) 5.03923i 0.302233i
\(279\) − 17.8116i − 1.06635i
\(280\) − 1.96077i − 0.117179i
\(281\) −30.5351 −1.82157 −0.910786 0.412879i \(-0.864523\pi\)
−0.910786 + 0.412879i \(0.864523\pi\)
\(282\) 6.25667i 0.372579i
\(283\) 3.55496 0.211320 0.105660 0.994402i \(-0.466304\pi\)
0.105660 + 0.994402i \(0.466304\pi\)
\(284\) −14.2228 −0.843969
\(285\) 0.325437 0.0192772
\(286\) −27.2107 −1.60900
\(287\) 1.60388i 0.0946738i
\(288\) 17.3327i 1.02134i
\(289\) 15.7681 0.927534
\(290\) 0 0
\(291\) 7.00969 0.410915
\(292\) − 11.1588i − 0.653021i
\(293\) 32.8799i 1.92087i 0.278512 + 0.960433i \(0.410159\pi\)
−0.278512 + 0.960433i \(0.589841\pi\)
\(294\) 7.53319 0.439344
\(295\) 3.25129 0.189298
\(296\) 3.95108 0.229652
\(297\) −7.51871 −0.436280
\(298\) 4.88040i 0.282714i
\(299\) 21.4547 1.24076
\(300\) 2.70410i 0.156121i
\(301\) − 23.2446i − 1.33980i
\(302\) − 4.38835i − 0.252521i
\(303\) 7.76271 0.445956
\(304\) − 10.1196i − 0.580399i
\(305\) 2.15883i 0.123614i
\(306\) 5.60388 0.320352
\(307\) 14.6703i 0.837275i 0.908153 + 0.418638i \(0.137492\pi\)
−0.908153 + 0.418638i \(0.862508\pi\)
\(308\) 14.7017i 0.837708i
\(309\) − 1.25236i − 0.0712441i
\(310\) 4.08815 0.232191
\(311\) 18.5265i 1.05054i 0.850935 + 0.525270i \(0.176036\pi\)
−0.850935 + 0.525270i \(0.823964\pi\)
\(312\) −3.13169 −0.177297
\(313\) 22.9922 1.29960 0.649799 0.760106i \(-0.274853\pi\)
0.649799 + 0.760106i \(0.274853\pi\)
\(314\) −31.8538 −1.79762
\(315\) 4.04892 0.228131
\(316\) 0.740939i 0.0416811i
\(317\) − 14.0586i − 0.789610i −0.918765 0.394805i \(-0.870812\pi\)
0.918765 0.394805i \(-0.129188\pi\)
\(318\) −3.49396 −0.195932
\(319\) 0 0
\(320\) −0.452812 −0.0253129
\(321\) − 3.32006i − 0.185308i
\(322\) − 30.1836i − 1.68207i
\(323\) −2.27413 −0.126536
\(324\) −9.04892 −0.502718
\(325\) 25.2693 1.40169
\(326\) 8.94869 0.495622
\(327\) 0.735562i 0.0406767i
\(328\) −0.537500 −0.0296785
\(329\) − 31.5894i − 1.74158i
\(330\) − 0.833397i − 0.0458770i
\(331\) − 13.9565i − 0.767116i −0.923517 0.383558i \(-0.874699\pi\)
0.923517 0.383558i \(-0.125301\pi\)
\(332\) 11.7627 0.645563
\(333\) 8.15883i 0.447101i
\(334\) 26.0640i 1.42616i
\(335\) 0.133605 0.00729965
\(336\) 8.89977i 0.485522i
\(337\) 13.9976i 0.762498i 0.924472 + 0.381249i \(0.124506\pi\)
−0.924472 + 0.381249i \(0.875494\pi\)
\(338\) − 25.0368i − 1.36182i
\(339\) 3.84548 0.208858
\(340\) 0.493959i 0.0267887i
\(341\) 18.5104 1.00239
\(342\) 10.3448 0.559383
\(343\) −9.69202 −0.523320
\(344\) 7.78986 0.420001
\(345\) 0.657105i 0.0353773i
\(346\) 18.9444i 1.01846i
\(347\) 19.8538 1.06581 0.532905 0.846175i \(-0.321100\pi\)
0.532905 + 0.846175i \(0.321100\pi\)
\(348\) 0 0
\(349\) −26.9202 −1.44101 −0.720503 0.693452i \(-0.756089\pi\)
−0.720503 + 0.693452i \(0.756089\pi\)
\(350\) − 35.5502i − 1.90024i
\(351\) − 13.3907i − 0.714745i
\(352\) −18.0127 −0.960079
\(353\) 4.01507 0.213700 0.106850 0.994275i \(-0.465923\pi\)
0.106850 + 0.994275i \(0.465923\pi\)
\(354\) −7.30559 −0.388287
\(355\) −4.07069 −0.216050
\(356\) − 1.77479i − 0.0940637i
\(357\) 2.00000 0.105851
\(358\) − 10.3448i − 0.546740i
\(359\) − 0.746316i − 0.0393890i −0.999806 0.0196945i \(-0.993731\pi\)
0.999806 0.0196945i \(-0.00626936\pi\)
\(360\) 1.35690i 0.0715147i
\(361\) 14.8019 0.779049
\(362\) 11.9661i 0.628927i
\(363\) 1.12200i 0.0588896i
\(364\) −26.1836 −1.37239
\(365\) − 3.19375i − 0.167169i
\(366\) − 4.85086i − 0.253558i
\(367\) − 34.0489i − 1.77734i −0.458548 0.888670i \(-0.651630\pi\)
0.458548 0.888670i \(-0.348370\pi\)
\(368\) 20.4330 1.06514
\(369\) − 1.10992i − 0.0577799i
\(370\) −1.87263 −0.0973532
\(371\) 17.6407 0.915860
\(372\) −3.52781 −0.182908
\(373\) 28.0006 1.44982 0.724908 0.688846i \(-0.241882\pi\)
0.724908 + 0.688846i \(0.241882\pi\)
\(374\) 5.82371i 0.301137i
\(375\) 1.56810i 0.0809766i
\(376\) 10.5864 0.545953
\(377\) 0 0
\(378\) −18.8388 −0.968962
\(379\) 22.8810i 1.17532i 0.809109 + 0.587659i \(0.199950\pi\)
−0.809109 + 0.587659i \(0.800050\pi\)
\(380\) 0.911854i 0.0467771i
\(381\) −4.66056 −0.238768
\(382\) −33.8974 −1.73434
\(383\) −11.8582 −0.605923 −0.302962 0.953003i \(-0.597975\pi\)
−0.302962 + 0.953003i \(0.597975\pi\)
\(384\) −4.48858 −0.229057
\(385\) 4.20775i 0.214447i
\(386\) 19.6136 0.998304
\(387\) 16.0858i 0.817685i
\(388\) 19.6407i 0.997106i
\(389\) 10.3913i 0.526862i 0.964678 + 0.263431i \(0.0848541\pi\)
−0.964678 + 0.263431i \(0.915146\pi\)
\(390\) 1.48427 0.0751590
\(391\) − 4.59179i − 0.232217i
\(392\) − 12.7463i − 0.643786i
\(393\) −0.202374 −0.0102084
\(394\) 15.1371i 0.762594i
\(395\) 0.212063i 0.0106700i
\(396\) − 10.1739i − 0.511258i
\(397\) 8.21744 0.412421 0.206211 0.978508i \(-0.433887\pi\)
0.206211 + 0.978508i \(0.433887\pi\)
\(398\) 11.9312i 0.598059i
\(399\) 3.69202 0.184832
\(400\) 24.0659 1.20330
\(401\) 24.8810 1.24250 0.621249 0.783614i \(-0.286626\pi\)
0.621249 + 0.783614i \(0.286626\pi\)
\(402\) −0.300209 −0.0149731
\(403\) 32.9667i 1.64219i
\(404\) 21.7506i 1.08213i
\(405\) −2.58987 −0.128692
\(406\) 0 0
\(407\) −8.47889 −0.420283
\(408\) 0.670251i 0.0331824i
\(409\) 18.8955i 0.934320i 0.884173 + 0.467160i \(0.154723\pi\)
−0.884173 + 0.467160i \(0.845277\pi\)
\(410\) 0.254749 0.0125812
\(411\) 5.89248 0.290654
\(412\) 3.50902 0.172877
\(413\) 36.8853 1.81501
\(414\) 20.8877i 1.02657i
\(415\) 3.36658 0.165259
\(416\) − 32.0804i − 1.57287i
\(417\) − 1.24459i − 0.0609477i
\(418\) 10.7506i 0.525830i
\(419\) 10.8925 0.532132 0.266066 0.963955i \(-0.414276\pi\)
0.266066 + 0.963955i \(0.414276\pi\)
\(420\) − 0.801938i − 0.0391306i
\(421\) 19.9608i 0.972828i 0.873728 + 0.486414i \(0.161695\pi\)
−0.873728 + 0.486414i \(0.838305\pi\)
\(422\) 14.5961 0.710527
\(423\) 21.8605i 1.06290i
\(424\) 5.91185i 0.287105i
\(425\) − 5.40821i − 0.262337i
\(426\) 9.14675 0.443162
\(427\) 24.4916i 1.18523i
\(428\) 9.30260 0.449658
\(429\) 6.72050 0.324469
\(430\) −3.69202 −0.178045
\(431\) −30.1903 −1.45422 −0.727108 0.686524i \(-0.759136\pi\)
−0.727108 + 0.686524i \(0.759136\pi\)
\(432\) − 12.7530i − 0.613580i
\(433\) 20.1914i 0.970335i 0.874421 + 0.485167i \(0.161241\pi\)
−0.874421 + 0.485167i \(0.838759\pi\)
\(434\) 46.3793 2.22628
\(435\) 0 0
\(436\) −2.06100 −0.0987039
\(437\) − 8.47650i − 0.405486i
\(438\) 7.17629i 0.342896i
\(439\) 10.6649 0.509007 0.254503 0.967072i \(-0.418088\pi\)
0.254503 + 0.967072i \(0.418088\pi\)
\(440\) −1.41013 −0.0672251
\(441\) 26.3207 1.25336
\(442\) −10.3720 −0.493344
\(443\) 20.3502i 0.966867i 0.875381 + 0.483433i \(0.160610\pi\)
−0.875381 + 0.483433i \(0.839390\pi\)
\(444\) 1.61596 0.0766899
\(445\) − 0.507960i − 0.0240796i
\(446\) − 39.4969i − 1.87023i
\(447\) − 1.20536i − 0.0570115i
\(448\) −5.13706 −0.242703
\(449\) 19.4233i 0.916641i 0.888787 + 0.458320i \(0.151549\pi\)
−0.888787 + 0.458320i \(0.848451\pi\)
\(450\) 24.6015i 1.15973i
\(451\) 1.15346 0.0543142
\(452\) 10.7748i 0.506804i
\(453\) 1.08383i 0.0509230i
\(454\) 32.9366i 1.54579i
\(455\) −7.49396 −0.351322
\(456\) 1.23729i 0.0579415i
\(457\) 12.4209 0.581024 0.290512 0.956871i \(-0.406174\pi\)
0.290512 + 0.956871i \(0.406174\pi\)
\(458\) −28.8756 −1.34927
\(459\) −2.86592 −0.133770
\(460\) −1.84117 −0.0858448
\(461\) 21.9463i 1.02214i 0.859539 + 0.511070i \(0.170751\pi\)
−0.859539 + 0.511070i \(0.829249\pi\)
\(462\) − 9.45473i − 0.439874i
\(463\) 33.0073 1.53398 0.766990 0.641660i \(-0.221754\pi\)
0.766990 + 0.641660i \(0.221754\pi\)
\(464\) 0 0
\(465\) −1.00969 −0.0468232
\(466\) − 3.52542i − 0.163312i
\(467\) − 26.1032i − 1.20791i −0.797017 0.603956i \(-0.793590\pi\)
0.797017 0.603956i \(-0.206410\pi\)
\(468\) 18.1196 0.837579
\(469\) 1.51573 0.0699899
\(470\) −5.01746 −0.231438
\(471\) 7.86725 0.362504
\(472\) 12.3612i 0.568971i
\(473\) −16.7168 −0.768638
\(474\) − 0.476501i − 0.0218864i
\(475\) − 9.98361i − 0.458079i
\(476\) 5.60388i 0.256853i
\(477\) −12.2078 −0.558955
\(478\) 16.1511i 0.738732i
\(479\) − 33.0659i − 1.51082i −0.655253 0.755410i \(-0.727438\pi\)
0.655253 0.755410i \(-0.272562\pi\)
\(480\) 0.982542 0.0448467
\(481\) − 15.1008i − 0.688538i
\(482\) 35.8582i 1.63329i
\(483\) 7.45473i 0.339202i
\(484\) −3.14377 −0.142899
\(485\) 5.62133i 0.255252i
\(486\) 19.7778 0.897138
\(487\) −10.1564 −0.460232 −0.230116 0.973163i \(-0.573911\pi\)
−0.230116 + 0.973163i \(0.573911\pi\)
\(488\) −8.20775 −0.371547
\(489\) −2.21014 −0.0999462
\(490\) 6.04115i 0.272911i
\(491\) 19.6819i 0.888230i 0.895970 + 0.444115i \(0.146482\pi\)
−0.895970 + 0.444115i \(0.853518\pi\)
\(492\) −0.219833 −0.00991082
\(493\) 0 0
\(494\) −19.1468 −0.861453
\(495\) − 2.91185i − 0.130878i
\(496\) 31.3967i 1.40975i
\(497\) −46.1812 −2.07151
\(498\) −7.56465 −0.338980
\(499\) −27.8495 −1.24672 −0.623358 0.781937i \(-0.714232\pi\)
−0.623358 + 0.781937i \(0.714232\pi\)
\(500\) −4.39373 −0.196494
\(501\) − 6.43727i − 0.287596i
\(502\) 46.4989 2.07535
\(503\) 0.225209i 0.0100416i 0.999987 + 0.00502079i \(0.00159818\pi\)
−0.999987 + 0.00502079i \(0.998402\pi\)
\(504\) 15.3937i 0.685691i
\(505\) 6.22521i 0.277018i
\(506\) −21.7071 −0.964998
\(507\) 6.18359i 0.274623i
\(508\) − 13.0586i − 0.579382i
\(509\) −25.3032 −1.12154 −0.560772 0.827970i \(-0.689496\pi\)
−0.560772 + 0.827970i \(0.689496\pi\)
\(510\) − 0.317667i − 0.0140665i
\(511\) − 36.2325i − 1.60283i
\(512\) − 17.1491i − 0.757892i
\(513\) −5.29052 −0.233582
\(514\) − 21.5351i − 0.949873i
\(515\) 1.00431 0.0442553
\(516\) 3.18598 0.140255
\(517\) −22.7181 −0.999141
\(518\) −21.2446 −0.933434
\(519\) − 4.67887i − 0.205380i
\(520\) − 2.51142i − 0.110133i
\(521\) −23.5797 −1.03305 −0.516523 0.856273i \(-0.672774\pi\)
−0.516523 + 0.856273i \(0.672774\pi\)
\(522\) 0 0
\(523\) 3.96508 0.173381 0.0866905 0.996235i \(-0.472371\pi\)
0.0866905 + 0.996235i \(0.472371\pi\)
\(524\) − 0.567040i − 0.0247712i
\(525\) 8.78017i 0.383198i
\(526\) −0.599564 −0.0261422
\(527\) 7.05562 0.307348
\(528\) 6.40044 0.278543
\(529\) −5.88471 −0.255857
\(530\) − 2.80194i − 0.121708i
\(531\) −25.5254 −1.10771
\(532\) 10.3448i 0.448505i
\(533\) 2.05429i 0.0889814i
\(534\) 1.14138i 0.0493921i
\(535\) 2.66248 0.115109
\(536\) 0.507960i 0.0219405i
\(537\) 2.55496i 0.110255i
\(538\) 1.91723 0.0826577
\(539\) 27.3532i 1.17818i
\(540\) 1.14914i 0.0494513i
\(541\) − 24.6601i − 1.06022i −0.847929 0.530110i \(-0.822151\pi\)
0.847929 0.530110i \(-0.177849\pi\)
\(542\) 29.6679 1.27434
\(543\) − 2.95539i − 0.126828i
\(544\) −6.86592 −0.294374
\(545\) −0.589875 −0.0252675
\(546\) 16.8388 0.720633
\(547\) 24.8412 1.06213 0.531066 0.847331i \(-0.321792\pi\)
0.531066 + 0.847331i \(0.321792\pi\)
\(548\) 16.5104i 0.705287i
\(549\) − 16.9487i − 0.723352i
\(550\) −25.5666 −1.09016
\(551\) 0 0
\(552\) −2.49827 −0.106333
\(553\) 2.40581i 0.102306i
\(554\) − 11.8823i − 0.504831i
\(555\) 0.462500 0.0196320
\(556\) 3.48725 0.147893
\(557\) −7.76510 −0.329018 −0.164509 0.986376i \(-0.552604\pi\)
−0.164509 + 0.986376i \(0.552604\pi\)
\(558\) −32.0954 −1.35871
\(559\) − 29.7724i − 1.25924i
\(560\) −7.13706 −0.301596
\(561\) − 1.43834i − 0.0607266i
\(562\) 55.0224i 2.32098i
\(563\) − 20.8009i − 0.876652i −0.898816 0.438326i \(-0.855571\pi\)
0.898816 0.438326i \(-0.144429\pi\)
\(564\) 4.32975 0.182315
\(565\) 3.08383i 0.129738i
\(566\) − 6.40581i − 0.269256i
\(567\) −29.3817 −1.23391
\(568\) − 15.4765i − 0.649380i
\(569\) − 2.80923i − 0.117769i −0.998265 0.0588846i \(-0.981246\pi\)
0.998265 0.0588846i \(-0.0187544\pi\)
\(570\) − 0.586417i − 0.0245623i
\(571\) 2.89248 0.121046 0.0605232 0.998167i \(-0.480723\pi\)
0.0605232 + 0.998167i \(0.480723\pi\)
\(572\) 18.8304i 0.787339i
\(573\) 8.37196 0.349744
\(574\) 2.89008 0.120630
\(575\) 20.1584 0.840662
\(576\) 3.55496 0.148123
\(577\) − 7.18896i − 0.299281i −0.988741 0.149640i \(-0.952188\pi\)
0.988741 0.149640i \(-0.0478116\pi\)
\(578\) − 28.4131i − 1.18183i
\(579\) −4.84415 −0.201316
\(580\) 0 0
\(581\) 38.1933 1.58452
\(582\) − 12.6310i − 0.523573i
\(583\) − 12.6866i − 0.525427i
\(584\) 12.1424 0.502458
\(585\) 5.18598 0.214414
\(586\) 59.2476 2.44749
\(587\) −31.0368 −1.28103 −0.640514 0.767947i \(-0.721279\pi\)
−0.640514 + 0.767947i \(0.721279\pi\)
\(588\) − 5.21313i − 0.214986i
\(589\) 13.0248 0.536676
\(590\) − 5.85862i − 0.241196i
\(591\) − 3.73855i − 0.153783i
\(592\) − 14.3817i − 0.591082i
\(593\) −36.4674 −1.49754 −0.748768 0.662832i \(-0.769354\pi\)
−0.748768 + 0.662832i \(0.769354\pi\)
\(594\) 13.5483i 0.555892i
\(595\) 1.60388i 0.0657525i
\(596\) 3.37734 0.138341
\(597\) − 2.94677i − 0.120603i
\(598\) − 38.6601i − 1.58093i
\(599\) 30.0683i 1.22856i 0.789089 + 0.614279i \(0.210553\pi\)
−0.789089 + 0.614279i \(0.789447\pi\)
\(600\) −2.94246 −0.120125
\(601\) − 33.1860i − 1.35368i −0.736128 0.676842i \(-0.763348\pi\)
0.736128 0.676842i \(-0.236652\pi\)
\(602\) −41.8853 −1.70712
\(603\) −1.04892 −0.0427152
\(604\) −3.03684 −0.123567
\(605\) −0.899772 −0.0365810
\(606\) − 13.9879i − 0.568220i
\(607\) 15.1202i 0.613710i 0.951756 + 0.306855i \(0.0992766\pi\)
−0.951756 + 0.306855i \(0.900723\pi\)
\(608\) −12.6746 −0.514021
\(609\) 0 0
\(610\) 3.89008 0.157505
\(611\) − 40.4607i − 1.63686i
\(612\) − 3.87800i − 0.156759i
\(613\) −3.75541 −0.151680 −0.0758399 0.997120i \(-0.524164\pi\)
−0.0758399 + 0.997120i \(0.524164\pi\)
\(614\) 26.4349 1.06682
\(615\) −0.0629179 −0.00253709
\(616\) −15.9976 −0.644562
\(617\) − 29.8562i − 1.20197i −0.799262 0.600983i \(-0.794776\pi\)
0.799262 0.600983i \(-0.205224\pi\)
\(618\) −2.25667 −0.0907765
\(619\) 46.1178i 1.85363i 0.375517 + 0.926816i \(0.377465\pi\)
−0.375517 + 0.926816i \(0.622535\pi\)
\(620\) − 2.82908i − 0.113619i
\(621\) − 10.6823i − 0.428667i
\(622\) 33.3836 1.33856
\(623\) − 5.76271i − 0.230878i
\(624\) 11.3991i 0.456330i
\(625\) 23.1056 0.924224
\(626\) − 41.4306i − 1.65590i
\(627\) − 2.65519i − 0.106038i
\(628\) 22.0435i 0.879633i
\(629\) −3.23191 −0.128865
\(630\) − 7.29590i − 0.290675i
\(631\) −12.6300 −0.502791 −0.251395 0.967884i \(-0.580889\pi\)
−0.251395 + 0.967884i \(0.580889\pi\)
\(632\) −0.806250 −0.0320709
\(633\) −3.60494 −0.143284
\(634\) −25.3327 −1.00609
\(635\) − 3.73748i − 0.148317i
\(636\) 2.41789i 0.0958758i
\(637\) −48.7157 −1.93019
\(638\) 0 0
\(639\) 31.9584 1.26425
\(640\) − 3.59956i − 0.142285i
\(641\) 39.0019i 1.54048i 0.637752 + 0.770242i \(0.279864\pi\)
−0.637752 + 0.770242i \(0.720136\pi\)
\(642\) −5.98254 −0.236112
\(643\) −41.2965 −1.62857 −0.814287 0.580462i \(-0.802872\pi\)
−0.814287 + 0.580462i \(0.802872\pi\)
\(644\) −20.8877 −0.823090
\(645\) 0.911854 0.0359042
\(646\) 4.09783i 0.161227i
\(647\) 17.9105 0.704135 0.352068 0.935975i \(-0.385479\pi\)
0.352068 + 0.935975i \(0.385479\pi\)
\(648\) − 9.84654i − 0.386809i
\(649\) − 26.5267i − 1.04127i
\(650\) − 45.5338i − 1.78598i
\(651\) −11.4547 −0.448946
\(652\) − 6.19269i − 0.242524i
\(653\) 13.3207i 0.521277i 0.965436 + 0.260639i \(0.0839331\pi\)
−0.965436 + 0.260639i \(0.916067\pi\)
\(654\) 1.32544 0.0518287
\(655\) − 0.162291i − 0.00634125i
\(656\) 1.95646i 0.0763869i
\(657\) 25.0737i 0.978217i
\(658\) −56.9221 −2.21906
\(659\) 18.7657i 0.731008i 0.930810 + 0.365504i \(0.119103\pi\)
−0.930810 + 0.365504i \(0.880897\pi\)
\(660\) −0.576728 −0.0224491
\(661\) −24.7289 −0.961841 −0.480921 0.876764i \(-0.659697\pi\)
−0.480921 + 0.876764i \(0.659697\pi\)
\(662\) −25.1487 −0.977431
\(663\) 2.56166 0.0994867
\(664\) 12.7995i 0.496719i
\(665\) 2.96077i 0.114814i
\(666\) 14.7017 0.569680
\(667\) 0 0
\(668\) 18.0368 0.697866
\(669\) 9.75494i 0.377148i
\(670\) − 0.240749i − 0.00930094i
\(671\) 17.6136 0.679964
\(672\) 11.1468 0.429995
\(673\) −25.4426 −0.980742 −0.490371 0.871514i \(-0.663139\pi\)
−0.490371 + 0.871514i \(0.663139\pi\)
\(674\) 25.2228 0.971547
\(675\) − 12.5816i − 0.484267i
\(676\) −17.3260 −0.666386
\(677\) − 0.616548i − 0.0236959i −0.999930 0.0118479i \(-0.996229\pi\)
0.999930 0.0118479i \(-0.00377140\pi\)
\(678\) − 6.92931i − 0.266119i
\(679\) 63.7730i 2.44738i
\(680\) −0.537500 −0.0206122
\(681\) − 8.13467i − 0.311721i
\(682\) − 33.3545i − 1.27721i
\(683\) 18.0218 0.689584 0.344792 0.938679i \(-0.387949\pi\)
0.344792 + 0.938679i \(0.387949\pi\)
\(684\) − 7.15883i − 0.273725i
\(685\) 4.72540i 0.180548i
\(686\) 17.4644i 0.666795i
\(687\) 7.13169 0.272091
\(688\) − 28.3545i − 1.08101i
\(689\) 22.5948 0.860792
\(690\) 1.18406 0.0450765
\(691\) 12.3461 0.469669 0.234835 0.972035i \(-0.424545\pi\)
0.234835 + 0.972035i \(0.424545\pi\)
\(692\) 13.1099 0.498364
\(693\) − 33.0344i − 1.25487i
\(694\) − 35.7754i − 1.35801i
\(695\) 0.998081 0.0378594
\(696\) 0 0
\(697\) 0.439665 0.0166535
\(698\) 48.5086i 1.83608i
\(699\) 0.870706i 0.0329331i
\(700\) −24.6015 −0.929849
\(701\) 34.0974 1.28784 0.643920 0.765093i \(-0.277307\pi\)
0.643920 + 0.765093i \(0.277307\pi\)
\(702\) −24.1293 −0.910702
\(703\) −5.96615 −0.225018
\(704\) 3.69441i 0.139238i
\(705\) 1.23921 0.0466713
\(706\) − 7.23490i − 0.272289i
\(707\) 70.6238i 2.65608i
\(708\) 5.05562i 0.190002i
\(709\) −42.0954 −1.58093 −0.790464 0.612509i \(-0.790160\pi\)
−0.790464 + 0.612509i \(0.790160\pi\)
\(710\) 7.33513i 0.275282i
\(711\) − 1.66487i − 0.0624377i
\(712\) 1.93123 0.0723760
\(713\) 26.2989i 0.984901i
\(714\) − 3.60388i − 0.134872i
\(715\) 5.38942i 0.201553i
\(716\) −7.15883 −0.267538
\(717\) − 3.98898i − 0.148971i
\(718\) −1.34481 −0.0501880
\(719\) −52.2543 −1.94876 −0.974378 0.224917i \(-0.927789\pi\)
−0.974378 + 0.224917i \(0.927789\pi\)
\(720\) 4.93900 0.184066
\(721\) 11.3937 0.424325
\(722\) − 26.6722i − 0.992635i
\(723\) − 8.85623i − 0.329367i
\(724\) 8.28083 0.307755
\(725\) 0 0
\(726\) 2.02177 0.0750349
\(727\) 29.9849i 1.11208i 0.831156 + 0.556040i \(0.187680\pi\)
−0.831156 + 0.556040i \(0.812320\pi\)
\(728\) − 28.4916i − 1.05597i
\(729\) 16.8853 0.625381
\(730\) −5.75494 −0.213000
\(731\) −6.37196 −0.235676
\(732\) −3.35690 −0.124074
\(733\) − 3.01447i − 0.111342i −0.998449 0.0556711i \(-0.982270\pi\)
0.998449 0.0556711i \(-0.0177298\pi\)
\(734\) −61.3540 −2.26462
\(735\) − 1.49204i − 0.0550347i
\(736\) − 25.5918i − 0.943326i
\(737\) − 1.09006i − 0.0401531i
\(738\) −2.00000 −0.0736210
\(739\) − 20.8374i − 0.766518i −0.923641 0.383259i \(-0.874802\pi\)
0.923641 0.383259i \(-0.125198\pi\)
\(740\) 1.29590i 0.0476381i
\(741\) 4.72886 0.173719
\(742\) − 31.7875i − 1.16695i
\(743\) 30.7657i 1.12868i 0.825541 + 0.564342i \(0.190870\pi\)
−0.825541 + 0.564342i \(0.809130\pi\)
\(744\) − 3.83877i − 0.140736i
\(745\) 0.966622 0.0354143
\(746\) − 50.4553i − 1.84730i
\(747\) −26.4306 −0.967044
\(748\) 4.03013 0.147356
\(749\) 30.2054 1.10368
\(750\) 2.82563 0.103177
\(751\) 4.46921i 0.163084i 0.996670 + 0.0815418i \(0.0259844\pi\)
−0.996670 + 0.0815418i \(0.974016\pi\)
\(752\) − 38.5338i − 1.40518i
\(753\) −11.4843 −0.418510
\(754\) 0 0
\(755\) −0.869167 −0.0316322
\(756\) 13.0368i 0.474145i
\(757\) − 8.45580i − 0.307331i −0.988123 0.153666i \(-0.950892\pi\)
0.988123 0.153666i \(-0.0491078\pi\)
\(758\) 41.2301 1.49755
\(759\) 5.36121 0.194600
\(760\) −0.992230 −0.0359920
\(761\) 24.6950 0.895193 0.447597 0.894236i \(-0.352280\pi\)
0.447597 + 0.894236i \(0.352280\pi\)
\(762\) 8.39804i 0.304229i
\(763\) −6.69202 −0.242267
\(764\) 23.4577i 0.848670i
\(765\) − 1.10992i − 0.0401291i
\(766\) 21.3676i 0.772045i
\(767\) 47.2438 1.70588
\(768\) 9.21744i 0.332606i
\(769\) − 30.1430i − 1.08699i −0.839414 0.543493i \(-0.817102\pi\)
0.839414 0.543493i \(-0.182898\pi\)
\(770\) 7.58211 0.273240
\(771\) 5.31873i 0.191549i
\(772\) − 13.5730i − 0.488503i
\(773\) 5.67696i 0.204186i 0.994775 + 0.102093i \(0.0325539\pi\)
−0.994775 + 0.102093i \(0.967446\pi\)
\(774\) 28.9855 1.04186
\(775\) 30.9748i 1.11265i
\(776\) −21.3720 −0.767209
\(777\) 5.24698 0.188234
\(778\) 18.7245 0.671307
\(779\) 0.811626 0.0290795
\(780\) − 1.02715i − 0.0367778i
\(781\) 33.2121i 1.18842i
\(782\) −8.27413 −0.295882
\(783\) 0 0
\(784\) −46.3957 −1.65699
\(785\) 6.30904i 0.225179i
\(786\) 0.364666i 0.0130072i
\(787\) 3.60925 0.128656 0.0643280 0.997929i \(-0.479510\pi\)
0.0643280 + 0.997929i \(0.479510\pi\)
\(788\) 10.4752 0.373163
\(789\) 0.148080 0.00527179
\(790\) 0.382124 0.0135954
\(791\) 34.9855i 1.24394i
\(792\) 11.0707 0.393380
\(793\) 31.3696i 1.11397i
\(794\) − 14.8073i − 0.525492i
\(795\) 0.692021i 0.0245435i
\(796\) 8.25667 0.292650
\(797\) − 30.7832i − 1.09040i −0.838308 0.545198i \(-0.816455\pi\)
0.838308 0.545198i \(-0.183545\pi\)
\(798\) − 6.65279i − 0.235506i
\(799\) −8.65950 −0.306351
\(800\) − 30.1420i − 1.06568i
\(801\) 3.98792i 0.140906i
\(802\) − 44.8340i − 1.58314i
\(803\) −26.0573 −0.919541
\(804\) 0.207751i 0.00732681i
\(805\) −5.97823 −0.210705
\(806\) 59.4040 2.09242
\(807\) −0.473517 −0.0166686
\(808\) −23.6679 −0.832632
\(809\) − 5.23729i − 0.184133i −0.995753 0.0920667i \(-0.970653\pi\)
0.995753 0.0920667i \(-0.0293473\pi\)
\(810\) 4.66679i 0.163974i
\(811\) −41.8646 −1.47006 −0.735032 0.678032i \(-0.762833\pi\)
−0.735032 + 0.678032i \(0.762833\pi\)
\(812\) 0 0
\(813\) −7.32736 −0.256982
\(814\) 15.2784i 0.535509i
\(815\) − 1.77240i − 0.0620844i
\(816\) 2.43967 0.0854054
\(817\) −11.7627 −0.411525
\(818\) 34.0484 1.19048
\(819\) 58.8340 2.05583
\(820\) − 0.176292i − 0.00615638i
\(821\) −15.4058 −0.537667 −0.268833 0.963187i \(-0.586638\pi\)
−0.268833 + 0.963187i \(0.586638\pi\)
\(822\) − 10.6179i − 0.370341i
\(823\) − 35.6558i − 1.24288i −0.783461 0.621441i \(-0.786548\pi\)
0.783461 0.621441i \(-0.213452\pi\)
\(824\) 3.81833i 0.133018i
\(825\) 6.31442 0.219840
\(826\) − 66.4650i − 2.31261i
\(827\) 52.0538i 1.81009i 0.425317 + 0.905044i \(0.360163\pi\)
−0.425317 + 0.905044i \(0.639837\pi\)
\(828\) 14.4547 0.502337
\(829\) − 13.4168i − 0.465986i −0.972478 0.232993i \(-0.925148\pi\)
0.972478 0.232993i \(-0.0748519\pi\)
\(830\) − 6.06638i − 0.210567i
\(831\) 2.93469i 0.101803i
\(832\) −6.57971 −0.228110
\(833\) 10.4263i 0.361248i
\(834\) −2.24267 −0.0776572
\(835\) 5.16229 0.178648
\(836\) 7.43967 0.257306
\(837\) 16.4142 0.567357
\(838\) − 19.6276i − 0.678023i
\(839\) 31.0513i 1.07201i 0.844215 + 0.536005i \(0.180067\pi\)
−0.844215 + 0.536005i \(0.819933\pi\)
\(840\) 0.872625 0.0301084
\(841\) 0 0
\(842\) 35.9681 1.23954
\(843\) − 13.5894i − 0.468044i
\(844\) − 10.1008i − 0.347685i
\(845\) −4.95885 −0.170590
\(846\) 39.3913 1.35430
\(847\) −10.2078 −0.350742
\(848\) 21.5187 0.738956
\(849\) 1.58211i 0.0542977i
\(850\) −9.74525 −0.334259
\(851\) − 12.0465i − 0.412950i
\(852\) − 6.32975i − 0.216854i
\(853\) − 21.3357i − 0.730521i −0.930905 0.365261i \(-0.880980\pi\)
0.930905 0.365261i \(-0.119020\pi\)
\(854\) 44.1323 1.51018
\(855\) − 2.04892i − 0.0700715i
\(856\) 10.1226i 0.345983i
\(857\) −9.83207 −0.335857 −0.167929 0.985799i \(-0.553708\pi\)
−0.167929 + 0.985799i \(0.553708\pi\)
\(858\) − 12.1099i − 0.413426i
\(859\) 51.7837i 1.76684i 0.468583 + 0.883419i \(0.344765\pi\)
−0.468583 + 0.883419i \(0.655235\pi\)
\(860\) 2.55496i 0.0871233i
\(861\) −0.713792 −0.0243260
\(862\) 54.4010i 1.85291i
\(863\) 16.2747 0.553998 0.276999 0.960870i \(-0.410660\pi\)
0.276999 + 0.960870i \(0.410660\pi\)
\(864\) −15.9729 −0.543407
\(865\) 3.75217 0.127577
\(866\) 36.3836 1.23636
\(867\) 7.01746i 0.238325i
\(868\) − 32.0954i − 1.08939i
\(869\) 1.73019 0.0586925
\(870\) 0 0
\(871\) 1.94139 0.0657816
\(872\) − 2.24267i − 0.0759463i
\(873\) − 44.1323i − 1.49365i
\(874\) −15.2741 −0.516655
\(875\) −14.2664 −0.482291
\(876\) 4.96615 0.167791
\(877\) 14.8062 0.499972 0.249986 0.968250i \(-0.419574\pi\)
0.249986 + 0.968250i \(0.419574\pi\)
\(878\) − 19.2174i − 0.648557i
\(879\) −14.6329 −0.493557
\(880\) 5.13275i 0.173025i
\(881\) − 18.6377i − 0.627921i −0.949436 0.313960i \(-0.898344\pi\)
0.949436 0.313960i \(-0.101656\pi\)
\(882\) − 47.4282i − 1.59699i
\(883\) 32.3937 1.09014 0.545068 0.838392i \(-0.316504\pi\)
0.545068 + 0.838392i \(0.316504\pi\)
\(884\) 7.17762i 0.241409i
\(885\) 1.44696i 0.0486391i
\(886\) 36.6698 1.23195
\(887\) − 6.16288i − 0.206929i −0.994633 0.103465i \(-0.967007\pi\)
0.994633 0.103465i \(-0.0329929\pi\)
\(888\) 1.75840i 0.0590079i
\(889\) − 42.4010i − 1.42208i
\(890\) −0.915312 −0.0306813
\(891\) 21.1304i 0.707894i
\(892\) −27.3327 −0.915168
\(893\) −15.9855 −0.534935
\(894\) −2.17198 −0.0726419
\(895\) −2.04892 −0.0684878
\(896\) − 40.8364i − 1.36425i
\(897\) 9.54825i 0.318807i
\(898\) 34.9995 1.16795
\(899\) 0 0
\(900\) 17.0248 0.567492
\(901\) − 4.83579i − 0.161104i
\(902\) − 2.07846i − 0.0692051i
\(903\) 10.3448 0.344254
\(904\) −11.7245 −0.389953
\(905\) 2.37004 0.0787829
\(906\) 1.95300 0.0648841
\(907\) − 43.9842i − 1.46047i −0.683195 0.730236i \(-0.739410\pi\)
0.683195 0.730236i \(-0.260590\pi\)
\(908\) 22.7928 0.756407
\(909\) − 48.8732i − 1.62102i
\(910\) 13.5036i 0.447642i
\(911\) 25.6233i 0.848936i 0.905443 + 0.424468i \(0.139539\pi\)
−0.905443 + 0.424468i \(0.860461\pi\)
\(912\) 4.50365 0.149131
\(913\) − 27.4674i − 0.909038i
\(914\) − 22.3817i − 0.740319i
\(915\) −0.960771 −0.0317621
\(916\) 19.9825i 0.660242i
\(917\) − 1.84117i − 0.0608007i
\(918\) 5.16421i 0.170444i
\(919\) −6.24160 −0.205891 −0.102946 0.994687i \(-0.532827\pi\)
−0.102946 + 0.994687i \(0.532827\pi\)
\(920\) − 2.00346i − 0.0660520i
\(921\) −6.52888 −0.215134
\(922\) 39.5459 1.30237
\(923\) −59.1503 −1.94696
\(924\) −6.54288 −0.215245
\(925\) − 14.1884i − 0.466511i
\(926\) − 59.4771i − 1.95454i
\(927\) −7.88471 −0.258968
\(928\) 0 0
\(929\) −24.5133 −0.804256 −0.402128 0.915583i \(-0.631729\pi\)
−0.402128 + 0.915583i \(0.631729\pi\)
\(930\) 1.81940i 0.0596603i
\(931\) 19.2470i 0.630794i
\(932\) −2.43967 −0.0799139
\(933\) −8.24506 −0.269931
\(934\) −47.0364 −1.53908
\(935\) 1.15346 0.0377221
\(936\) 19.7168i 0.644463i
\(937\) 4.08947 0.133597 0.0667986 0.997766i \(-0.478721\pi\)
0.0667986 + 0.997766i \(0.478721\pi\)
\(938\) − 2.73125i − 0.0891785i
\(939\) 10.2325i 0.333925i
\(940\) 3.47219i 0.113250i
\(941\) −6.16315 −0.200913 −0.100456 0.994941i \(-0.532030\pi\)
−0.100456 + 0.994941i \(0.532030\pi\)
\(942\) − 14.1763i − 0.461889i
\(943\) 1.63879i 0.0533664i
\(944\) 44.9939 1.46443
\(945\) 3.73125i 0.121378i
\(946\) 30.1226i 0.979370i
\(947\) − 49.7023i − 1.61511i −0.589794 0.807554i \(-0.700791\pi\)
0.589794 0.807554i \(-0.299209\pi\)
\(948\) −0.329749 −0.0107097
\(949\) − 46.4077i − 1.50646i
\(950\) −17.9898 −0.583667
\(951\) 6.25667 0.202886
\(952\) −6.09783 −0.197632
\(953\) 17.6856 0.572892 0.286446 0.958096i \(-0.407526\pi\)
0.286446 + 0.958096i \(0.407526\pi\)
\(954\) 21.9976i 0.712199i
\(955\) 6.71379i 0.217253i
\(956\) 11.1769 0.361486
\(957\) 0 0
\(958\) −59.5827 −1.92503
\(959\) 53.6088i 1.73112i
\(960\) − 0.201520i − 0.00650403i
\(961\) −9.41013 −0.303552
\(962\) −27.2107 −0.877309
\(963\) −20.9028 −0.673582
\(964\) 24.8146 0.799225
\(965\) − 3.88471i − 0.125053i
\(966\) 13.4330 0.432198
\(967\) 12.8933i 0.414622i 0.978275 + 0.207311i \(0.0664711\pi\)
−0.978275 + 0.207311i \(0.933529\pi\)
\(968\) − 3.42088i − 0.109951i
\(969\) − 1.01208i − 0.0325127i
\(970\) 10.1293 0.325232
\(971\) 4.83745i 0.155241i 0.996983 + 0.0776205i \(0.0247323\pi\)
−0.996983 + 0.0776205i \(0.975268\pi\)
\(972\) − 13.6866i − 0.438999i
\(973\) 11.3230 0.363000
\(974\) 18.3013i 0.586411i
\(975\) 11.2459i 0.360158i
\(976\) 29.8756i 0.956295i
\(977\) 16.4421 0.526028 0.263014 0.964792i \(-0.415283\pi\)
0.263014 + 0.964792i \(0.415283\pi\)
\(978\) 3.98254i 0.127348i
\(979\) −4.14436 −0.132454
\(980\) 4.18060 0.133544
\(981\) 4.63102 0.147857
\(982\) 35.4655 1.13175
\(983\) − 26.4993i − 0.845198i −0.906317 0.422599i \(-0.861118\pi\)
0.906317 0.422599i \(-0.138882\pi\)
\(984\) − 0.239210i − 0.00762573i
\(985\) 2.99808 0.0955268
\(986\) 0 0
\(987\) 14.0586 0.447490
\(988\) 13.2500i 0.421537i
\(989\) − 23.7506i − 0.755226i
\(990\) −5.24698 −0.166760
\(991\) −40.4064 −1.28355 −0.641776 0.766892i \(-0.721802\pi\)
−0.641776 + 0.766892i \(0.721802\pi\)
\(992\) 39.3236 1.24853
\(993\) 6.21121 0.197107
\(994\) 83.2156i 2.63944i
\(995\) 2.36313 0.0749162
\(996\) 5.23490i 0.165874i
\(997\) − 23.4553i − 0.742837i −0.928465 0.371419i \(-0.878871\pi\)
0.928465 0.371419i \(-0.121129\pi\)
\(998\) 50.1831i 1.58852i
\(999\) −7.51871 −0.237882
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.b.c.840.1 6
29.2 odd 28 841.2.d.b.605.1 6
29.3 odd 28 841.2.d.e.571.1 6
29.4 even 14 841.2.e.b.651.2 12
29.5 even 14 841.2.e.c.236.1 12
29.6 even 14 841.2.e.c.196.2 12
29.7 even 7 841.2.e.b.270.2 12
29.8 odd 28 841.2.d.d.574.1 6
29.9 even 14 841.2.e.d.267.2 12
29.10 odd 28 841.2.d.a.190.1 6
29.11 odd 28 29.2.d.a.24.1 yes 6
29.12 odd 4 841.2.a.f.1.3 3
29.13 even 14 841.2.e.d.63.1 12
29.14 odd 28 841.2.d.b.645.1 6
29.15 odd 28 841.2.d.c.645.1 6
29.16 even 7 841.2.e.d.63.2 12
29.17 odd 4 841.2.a.e.1.1 3
29.18 odd 28 841.2.d.d.778.1 6
29.19 odd 28 841.2.d.e.190.1 6
29.20 even 7 841.2.e.d.267.1 12
29.21 odd 28 29.2.d.a.23.1 6
29.22 even 14 841.2.e.b.270.1 12
29.23 even 7 841.2.e.c.196.1 12
29.24 even 7 841.2.e.c.236.2 12
29.25 even 7 841.2.e.b.651.1 12
29.26 odd 28 841.2.d.a.571.1 6
29.27 odd 28 841.2.d.c.605.1 6
29.28 even 2 inner 841.2.b.c.840.6 6
87.11 even 28 261.2.k.a.82.1 6
87.17 even 4 7569.2.a.r.1.3 3
87.41 even 4 7569.2.a.p.1.1 3
87.50 even 28 261.2.k.a.226.1 6
116.11 even 28 464.2.u.f.401.1 6
116.79 even 28 464.2.u.f.81.1 6
145.69 odd 28 725.2.l.b.401.1 6
145.79 odd 28 725.2.l.b.226.1 6
145.98 even 28 725.2.r.b.24.1 12
145.108 even 28 725.2.r.b.574.2 12
145.127 even 28 725.2.r.b.24.2 12
145.137 even 28 725.2.r.b.574.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.23.1 6 29.21 odd 28
29.2.d.a.24.1 yes 6 29.11 odd 28
261.2.k.a.82.1 6 87.11 even 28
261.2.k.a.226.1 6 87.50 even 28
464.2.u.f.81.1 6 116.79 even 28
464.2.u.f.401.1 6 116.11 even 28
725.2.l.b.226.1 6 145.79 odd 28
725.2.l.b.401.1 6 145.69 odd 28
725.2.r.b.24.1 12 145.98 even 28
725.2.r.b.24.2 12 145.127 even 28
725.2.r.b.574.1 12 145.137 even 28
725.2.r.b.574.2 12 145.108 even 28
841.2.a.e.1.1 3 29.17 odd 4
841.2.a.f.1.3 3 29.12 odd 4
841.2.b.c.840.1 6 1.1 even 1 trivial
841.2.b.c.840.6 6 29.28 even 2 inner
841.2.d.a.190.1 6 29.10 odd 28
841.2.d.a.571.1 6 29.26 odd 28
841.2.d.b.605.1 6 29.2 odd 28
841.2.d.b.645.1 6 29.14 odd 28
841.2.d.c.605.1 6 29.27 odd 28
841.2.d.c.645.1 6 29.15 odd 28
841.2.d.d.574.1 6 29.8 odd 28
841.2.d.d.778.1 6 29.18 odd 28
841.2.d.e.190.1 6 29.19 odd 28
841.2.d.e.571.1 6 29.3 odd 28
841.2.e.b.270.1 12 29.22 even 14
841.2.e.b.270.2 12 29.7 even 7
841.2.e.b.651.1 12 29.25 even 7
841.2.e.b.651.2 12 29.4 even 14
841.2.e.c.196.1 12 29.23 even 7
841.2.e.c.196.2 12 29.6 even 14
841.2.e.c.236.1 12 29.5 even 14
841.2.e.c.236.2 12 29.24 even 7
841.2.e.d.63.1 12 29.13 even 14
841.2.e.d.63.2 12 29.16 even 7
841.2.e.d.267.1 12 29.20 even 7
841.2.e.d.267.2 12 29.9 even 14
7569.2.a.p.1.1 3 87.41 even 4
7569.2.a.r.1.3 3 87.17 even 4