Properties

Label 841.2.e.d.267.1
Level $841$
Weight $2$
Character 841.267
Analytic conductor $6.715$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(63,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,4,-2,6,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 267.1
Root \(-0.781831 + 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 841.267
Dual form 841.2.e.d.63.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40881 - 1.12349i) q^{2} +(-0.433884 - 0.0990311i) q^{3} +(0.277479 + 1.21572i) q^{4} +(-0.222521 + 0.279032i) q^{5} +(0.500000 + 0.626980i) q^{6} +(0.900969 - 3.94740i) q^{7} +(-0.588735 + 1.22252i) q^{8} +(-2.52446 - 1.21572i) q^{9} +(0.626980 - 0.143104i) q^{10} +(-1.26341 - 2.62349i) q^{11} -0.554958i q^{12} +(4.67241 - 2.25011i) q^{13} +(-5.70416 + 4.54892i) q^{14} +(0.124181 - 0.0990311i) q^{15} +(4.44989 - 2.14295i) q^{16} +1.10992i q^{17} +(2.19064 + 4.54892i) q^{18} +(1.99755 - 0.455927i) q^{19} +(-0.400969 - 0.193096i) q^{20} +(-0.781831 + 1.62349i) q^{21} +(-1.16756 + 5.11543i) q^{22} +(-2.57942 - 3.23449i) q^{23} +(0.376510 - 0.472129i) q^{24} +(1.08426 + 4.75046i) q^{25} +(-9.11052 - 2.07942i) q^{26} +(2.01877 + 1.60992i) q^{27} +5.04892 q^{28} -0.286208 q^{30} +(-4.97002 - 3.96346i) q^{31} +(-6.03089 - 1.37651i) q^{32} +(0.288364 + 1.26341i) q^{33} +(1.24698 - 1.56366i) q^{34} +(0.900969 + 1.12978i) q^{35} +(0.777479 - 3.40636i) q^{36} +(1.26341 - 2.62349i) q^{37} +(-3.32640 - 1.60191i) q^{38} +(-2.25011 + 0.513574i) q^{39} +(-0.210117 - 0.436313i) q^{40} -0.396125i q^{41} +(2.92543 - 1.40881i) q^{42} +(-4.48845 + 3.57942i) q^{43} +(2.83885 - 2.26391i) q^{44} +(0.900969 - 0.433884i) q^{45} +7.45473i q^{46} +(-3.38513 - 7.02930i) q^{47} +(-2.14295 + 0.489115i) q^{48} +(-8.46346 - 4.07579i) q^{49} +(3.80957 - 7.91066i) q^{50} +(0.109916 - 0.481575i) q^{51} +(4.03199 + 5.05596i) q^{52} +(-2.71648 + 3.40636i) q^{53} +(-1.03534 - 4.53614i) q^{54} +(1.01317 + 0.231250i) q^{55} +(4.29535 + 3.42543i) q^{56} -0.911854 q^{57} -9.10992 q^{59} +(0.154851 + 0.123490i) q^{60} +(5.89726 + 1.34601i) q^{61} +(2.54892 + 11.1675i) q^{62} +(-7.07338 + 8.86973i) q^{63} +(0.791053 + 0.991949i) q^{64} +(-0.411854 + 1.80445i) q^{65} +(1.01317 - 2.10388i) q^{66} +(0.337282 + 0.162426i) q^{67} +(-1.34934 + 0.307979i) q^{68} +(0.798852 + 1.65883i) q^{69} -2.60388i q^{70} +(-10.2763 + 4.94880i) q^{71} +(2.97247 - 2.37047i) q^{72} +(-6.99637 + 5.57942i) q^{73} +(-4.72737 + 2.27658i) q^{74} -2.16852i q^{75} +(1.10855 + 2.30194i) q^{76} +(-11.4943 + 2.62349i) q^{77} +(3.74698 + 1.80445i) q^{78} +(-0.257808 + 0.535344i) q^{79} +(-0.392240 + 1.71851i) q^{80} +(4.52446 + 5.67349i) q^{81} +(-0.445042 + 0.558065i) q^{82} +(2.09903 + 9.19646i) q^{83} +(-2.19064 - 0.500000i) q^{84} +(-0.309703 - 0.246980i) q^{85} +10.3448 q^{86} +3.95108 q^{88} +(1.11276 + 0.887395i) q^{89} +(-1.75676 - 0.400969i) q^{90} +(-4.67241 - 20.4712i) q^{91} +(3.21648 - 4.03334i) q^{92} +(1.76391 + 2.21187i) q^{93} +(-3.12833 + 13.7061i) q^{94} +(-0.317278 + 0.658834i) q^{95} +(2.48039 + 1.19449i) q^{96} +(-15.3557 + 3.50484i) q^{97} +(7.34432 + 15.2506i) q^{98} +8.15883i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} - 2 q^{5} + 6 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{13} + 8 q^{16} + 4 q^{20} - 12 q^{22} - 14 q^{23} + 14 q^{24} - 48 q^{25} + 24 q^{28} - 36 q^{30} - 2 q^{33} - 4 q^{34} + 2 q^{35} + 10 q^{36}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40881 1.12349i −0.996180 0.794427i −0.0175063 0.999847i \(-0.505573\pi\)
−0.978674 + 0.205419i \(0.934144\pi\)
\(3\) −0.433884 0.0990311i −0.250503 0.0571757i 0.0954255 0.995437i \(-0.469579\pi\)
−0.345928 + 0.938261i \(0.612436\pi\)
\(4\) 0.277479 + 1.21572i 0.138740 + 0.607858i
\(5\) −0.222521 + 0.279032i −0.0995144 + 0.124787i −0.829095 0.559108i \(-0.811144\pi\)
0.729581 + 0.683895i \(0.239715\pi\)
\(6\) 0.500000 + 0.626980i 0.204124 + 0.255964i
\(7\) 0.900969 3.94740i 0.340534 1.49198i −0.457415 0.889253i \(-0.651225\pi\)
0.797949 0.602725i \(-0.205918\pi\)
\(8\) −0.588735 + 1.22252i −0.208149 + 0.432226i
\(9\) −2.52446 1.21572i −0.841486 0.405238i
\(10\) 0.626980 0.143104i 0.198269 0.0452535i
\(11\) −1.26341 2.62349i −0.380931 0.791012i −0.999984 0.00566249i \(-0.998198\pi\)
0.619053 0.785349i \(-0.287517\pi\)
\(12\) 0.554958i 0.160203i
\(13\) 4.67241 2.25011i 1.29589 0.624069i 0.346467 0.938062i \(-0.387381\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(14\) −5.70416 + 4.54892i −1.52450 + 1.21575i
\(15\) 0.124181 0.0990311i 0.0320634 0.0255697i
\(16\) 4.44989 2.14295i 1.11247 0.535738i
\(17\) 1.10992i 0.269194i 0.990900 + 0.134597i \(0.0429740\pi\)
−0.990900 + 0.134597i \(0.957026\pi\)
\(18\) 2.19064 + 4.54892i 0.516340 + 1.07219i
\(19\) 1.99755 0.455927i 0.458269 0.104597i 0.0128465 0.999917i \(-0.495911\pi\)
0.445422 + 0.895321i \(0.353054\pi\)
\(20\) −0.400969 0.193096i −0.0896594 0.0431777i
\(21\) −0.781831 + 1.62349i −0.170610 + 0.354275i
\(22\) −1.16756 + 5.11543i −0.248925 + 1.09061i
\(23\) −2.57942 3.23449i −0.537846 0.674437i 0.436445 0.899731i \(-0.356237\pi\)
−0.974291 + 0.225294i \(0.927666\pi\)
\(24\) 0.376510 0.472129i 0.0768548 0.0963729i
\(25\) 1.08426 + 4.75046i 0.216852 + 0.950092i
\(26\) −9.11052 2.07942i −1.78672 0.407807i
\(27\) 2.01877 + 1.60992i 0.388513 + 0.309829i
\(28\) 5.04892 0.954156
\(29\) 0 0
\(30\) −0.286208 −0.0522542
\(31\) −4.97002 3.96346i −0.892642 0.711858i 0.0655910 0.997847i \(-0.479107\pi\)
−0.958233 + 0.285988i \(0.907678\pi\)
\(32\) −6.03089 1.37651i −1.06612 0.243335i
\(33\) 0.288364 + 1.26341i 0.0501978 + 0.219931i
\(34\) 1.24698 1.56366i 0.213855 0.268166i
\(35\) 0.900969 + 1.12978i 0.152292 + 0.190968i
\(36\) 0.777479 3.40636i 0.129580 0.567726i
\(37\) 1.26341 2.62349i 0.207703 0.431299i −0.770929 0.636921i \(-0.780208\pi\)
0.978631 + 0.205622i \(0.0659219\pi\)
\(38\) −3.32640 1.60191i −0.539613 0.259864i
\(39\) −2.25011 + 0.513574i −0.360306 + 0.0822376i
\(40\) −0.210117 0.436313i −0.0332224 0.0689871i
\(41\) 0.396125i 0.0618643i −0.999521 0.0309321i \(-0.990152\pi\)
0.999521 0.0309321i \(-0.00984757\pi\)
\(42\) 2.92543 1.40881i 0.451403 0.217384i
\(43\) −4.48845 + 3.57942i −0.684482 + 0.545856i −0.902821 0.430017i \(-0.858508\pi\)
0.218339 + 0.975873i \(0.429936\pi\)
\(44\) 2.83885 2.26391i 0.427972 0.341297i
\(45\) 0.900969 0.433884i 0.134309 0.0646796i
\(46\) 7.45473i 1.09914i
\(47\) −3.38513 7.02930i −0.493773 1.02533i −0.987778 0.155870i \(-0.950182\pi\)
0.494005 0.869459i \(-0.335532\pi\)
\(48\) −2.14295 + 0.489115i −0.309309 + 0.0705977i
\(49\) −8.46346 4.07579i −1.20907 0.582255i
\(50\) 3.80957 7.91066i 0.538755 1.11874i
\(51\) 0.109916 0.481575i 0.0153914 0.0674339i
\(52\) 4.03199 + 5.05596i 0.559137 + 0.701135i
\(53\) −2.71648 + 3.40636i −0.373137 + 0.467899i −0.932577 0.360972i \(-0.882445\pi\)
0.559439 + 0.828871i \(0.311016\pi\)
\(54\) −1.03534 4.53614i −0.140892 0.617290i
\(55\) 1.01317 + 0.231250i 0.136616 + 0.0311818i
\(56\) 4.29535 + 3.42543i 0.573990 + 0.457742i
\(57\) −0.911854 −0.120778
\(58\) 0 0
\(59\) −9.10992 −1.18601 −0.593005 0.805199i \(-0.702059\pi\)
−0.593005 + 0.805199i \(0.702059\pi\)
\(60\) 0.154851 + 0.123490i 0.0199912 + 0.0159425i
\(61\) 5.89726 + 1.34601i 0.755067 + 0.172339i 0.582693 0.812693i \(-0.301999\pi\)
0.172374 + 0.985032i \(0.444856\pi\)
\(62\) 2.54892 + 11.1675i 0.323713 + 1.41828i
\(63\) −7.07338 + 8.86973i −0.891162 + 1.11748i
\(64\) 0.791053 + 0.991949i 0.0988816 + 0.123994i
\(65\) −0.411854 + 1.80445i −0.0510842 + 0.223815i
\(66\) 1.01317 2.10388i 0.124713 0.258969i
\(67\) 0.337282 + 0.162426i 0.0412055 + 0.0198435i 0.454373 0.890812i \(-0.349863\pi\)
−0.413168 + 0.910655i \(0.635578\pi\)
\(68\) −1.34934 + 0.307979i −0.163632 + 0.0373479i
\(69\) 0.798852 + 1.65883i 0.0961705 + 0.199700i
\(70\) 2.60388i 0.311223i
\(71\) −10.2763 + 4.94880i −1.21957 + 0.587314i −0.929192 0.369598i \(-0.879495\pi\)
−0.290379 + 0.956912i \(0.593781\pi\)
\(72\) 2.97247 2.37047i 0.350309 0.279362i
\(73\) −6.99637 + 5.57942i −0.818863 + 0.653021i −0.940591 0.339542i \(-0.889728\pi\)
0.121728 + 0.992563i \(0.461156\pi\)
\(74\) −4.72737 + 2.27658i −0.549545 + 0.264647i
\(75\) 2.16852i 0.250399i
\(76\) 1.10855 + 2.30194i 0.127160 + 0.264050i
\(77\) −11.4943 + 2.62349i −1.30989 + 0.298974i
\(78\) 3.74698 + 1.80445i 0.424262 + 0.204314i
\(79\) −0.257808 + 0.535344i −0.0290057 + 0.0602309i −0.914968 0.403526i \(-0.867785\pi\)
0.885963 + 0.463757i \(0.153499\pi\)
\(80\) −0.392240 + 1.71851i −0.0438537 + 0.192136i
\(81\) 4.52446 + 5.67349i 0.502718 + 0.630388i
\(82\) −0.445042 + 0.558065i −0.0491467 + 0.0616280i
\(83\) 2.09903 + 9.19646i 0.230399 + 1.00944i 0.949310 + 0.314341i \(0.101783\pi\)
−0.718912 + 0.695101i \(0.755359\pi\)
\(84\) −2.19064 0.500000i −0.239019 0.0545545i
\(85\) −0.309703 0.246980i −0.0335920 0.0267887i
\(86\) 10.3448 1.11551
\(87\) 0 0
\(88\) 3.95108 0.421187
\(89\) 1.11276 + 0.887395i 0.117952 + 0.0940637i 0.680689 0.732572i \(-0.261680\pi\)
−0.562737 + 0.826636i \(0.690252\pi\)
\(90\) −1.75676 0.400969i −0.185179 0.0422658i
\(91\) −4.67241 20.4712i −0.489801 2.14596i
\(92\) 3.21648 4.03334i 0.335341 0.420505i
\(93\) 1.76391 + 2.21187i 0.182908 + 0.229360i
\(94\) −3.12833 + 13.7061i −0.322663 + 1.41368i
\(95\) −0.317278 + 0.658834i −0.0325520 + 0.0675949i
\(96\) 2.48039 + 1.19449i 0.253153 + 0.121912i
\(97\) −15.3557 + 3.50484i −1.55914 + 0.355863i −0.913195 0.407523i \(-0.866393\pi\)
−0.645943 + 0.763386i \(0.723536\pi\)
\(98\) 7.34432 + 15.2506i 0.741888 + 1.54055i
\(99\) 8.15883i 0.819994i
\(100\) −5.47434 + 2.63631i −0.547434 + 0.263631i
\(101\) 13.6372 10.8753i 1.35695 1.08213i 0.368661 0.929564i \(-0.379816\pi\)
0.988293 0.152570i \(-0.0487550\pi\)
\(102\) −0.695895 + 0.554958i −0.0689039 + 0.0549490i
\(103\) 2.53534 1.22096i 0.249815 0.120304i −0.304786 0.952421i \(-0.598585\pi\)
0.554601 + 0.832116i \(0.312871\pi\)
\(104\) 7.03684i 0.690019i
\(105\) −0.279032 0.579417i −0.0272308 0.0565453i
\(106\) 7.65402 1.74698i 0.743424 0.169682i
\(107\) 6.72132 + 3.23682i 0.649775 + 0.312915i 0.729580 0.683895i \(-0.239716\pi\)
−0.0798052 + 0.996810i \(0.525430\pi\)
\(108\) −1.39703 + 2.90097i −0.134430 + 0.279146i
\(109\) −0.367781 + 1.61135i −0.0352270 + 0.154340i −0.989482 0.144653i \(-0.953793\pi\)
0.954255 + 0.298993i \(0.0966506\pi\)
\(110\) −1.16756 1.46408i −0.111323 0.139594i
\(111\) −0.807979 + 1.01317i −0.0766899 + 0.0961661i
\(112\) −4.44989 19.4962i −0.420475 1.84222i
\(113\) 8.42407 + 1.92274i 0.792470 + 0.180876i 0.599549 0.800338i \(-0.295347\pi\)
0.192921 + 0.981214i \(0.438204\pi\)
\(114\) 1.28463 + 1.02446i 0.120317 + 0.0959493i
\(115\) 1.47650 0.137684
\(116\) 0 0
\(117\) −14.5308 −1.34337
\(118\) 12.8342 + 10.2349i 1.18148 + 0.942199i
\(119\) 4.38129 + 1.00000i 0.401632 + 0.0916698i
\(120\) 0.0479579 + 0.210117i 0.00437793 + 0.0191810i
\(121\) 1.57188 1.97108i 0.142899 0.179189i
\(122\) −6.79590 8.52179i −0.615272 0.771526i
\(123\) −0.0392287 + 0.171872i −0.00353713 + 0.0154972i
\(124\) 3.43936 7.14191i 0.308864 0.641362i
\(125\) −3.17456 1.52879i −0.283942 0.136739i
\(126\) 19.9301 4.54892i 1.77552 0.405250i
\(127\) −4.54371 9.43512i −0.403189 0.837231i −0.999408 0.0344090i \(-0.989045\pi\)
0.596219 0.802822i \(-0.296669\pi\)
\(128\) 10.0858i 0.891463i
\(129\) 2.30194 1.10855i 0.202674 0.0976028i
\(130\) 2.60751 2.07942i 0.228693 0.182377i
\(131\) −0.355523 + 0.283520i −0.0310622 + 0.0247712i −0.638898 0.769292i \(-0.720609\pi\)
0.607836 + 0.794063i \(0.292038\pi\)
\(132\) −1.45593 + 0.701137i −0.126722 + 0.0610262i
\(133\) 8.29590i 0.719345i
\(134\) −0.292682 0.607760i −0.0252839 0.0525025i
\(135\) −0.898438 + 0.205063i −0.0773252 + 0.0176490i
\(136\) −1.35690 0.653447i −0.116353 0.0560326i
\(137\) −5.74474 + 11.9291i −0.490806 + 1.01917i 0.497610 + 0.867401i \(0.334211\pi\)
−0.988416 + 0.151769i \(0.951503\pi\)
\(138\) 0.738250 3.23449i 0.0628440 0.275338i
\(139\) −1.74363 2.18644i −0.147893 0.185451i 0.702367 0.711815i \(-0.252127\pi\)
−0.850260 + 0.526364i \(0.823555\pi\)
\(140\) −1.12349 + 1.40881i −0.0949522 + 0.119066i
\(141\) 0.772635 + 3.38513i 0.0650676 + 0.285080i
\(142\) 20.0373 + 4.57338i 1.68149 + 0.383789i
\(143\) −11.8063 9.41521i −0.987292 0.787339i
\(144\) −13.8388 −1.15323
\(145\) 0 0
\(146\) 16.1250 1.33451
\(147\) 3.26853 + 2.60656i 0.269584 + 0.214986i
\(148\) 3.53999 + 0.807979i 0.290985 + 0.0664154i
\(149\) 0.602679 + 2.64051i 0.0493734 + 0.216319i 0.993596 0.112988i \(-0.0360421\pi\)
−0.944223 + 0.329307i \(0.893185\pi\)
\(150\) −2.43631 + 3.05504i −0.198924 + 0.249443i
\(151\) 1.51842 + 1.90404i 0.123567 + 0.154948i 0.839767 0.542947i \(-0.182692\pi\)
−0.716200 + 0.697895i \(0.754120\pi\)
\(152\) −0.618645 + 2.71046i −0.0501788 + 0.219848i
\(153\) 1.34934 2.80194i 0.109088 0.226523i
\(154\) 19.1407 + 9.21768i 1.54240 + 0.742782i
\(155\) 2.21187 0.504844i 0.177661 0.0405501i
\(156\) −1.24872 2.59299i −0.0999775 0.207605i
\(157\) 17.6775i 1.41082i −0.708799 0.705411i \(-0.750762\pi\)
0.708799 0.705411i \(-0.249238\pi\)
\(158\) 0.964656 0.464554i 0.0767439 0.0369579i
\(159\) 1.51597 1.20895i 0.120224 0.0958758i
\(160\) 1.72609 1.37651i 0.136459 0.108823i
\(161\) −15.0918 + 7.26782i −1.18940 + 0.572785i
\(162\) 13.0761i 1.02735i
\(163\) −2.15473 4.47434i −0.168772 0.350458i 0.799379 0.600827i \(-0.205162\pi\)
−0.968150 + 0.250370i \(0.919448\pi\)
\(164\) 0.481575 0.109916i 0.0376047 0.00858302i
\(165\) −0.416698 0.200671i −0.0324399 0.0156222i
\(166\) 7.37499 15.3143i 0.572410 1.18862i
\(167\) 3.21864 14.1018i 0.249066 1.09123i −0.683422 0.730024i \(-0.739509\pi\)
0.932487 0.361203i \(-0.117634\pi\)
\(168\) −1.52446 1.91161i −0.117615 0.147484i
\(169\) 8.66301 10.8631i 0.666386 0.835621i
\(170\) 0.158834 + 0.695895i 0.0121820 + 0.0533727i
\(171\) −5.59700 1.27748i −0.428013 0.0976913i
\(172\) −5.59700 4.46346i −0.426767 0.340336i
\(173\) −10.5133 −0.799314 −0.399657 0.916665i \(-0.630871\pi\)
−0.399657 + 0.916665i \(0.630871\pi\)
\(174\) 0 0
\(175\) 19.7289 1.49136
\(176\) −11.2440 8.96681i −0.847550 0.675899i
\(177\) 3.95264 + 0.902165i 0.297099 + 0.0678109i
\(178\) −0.570688 2.50035i −0.0427748 0.187409i
\(179\) 3.57942 4.48845i 0.267538 0.335482i −0.629856 0.776712i \(-0.716886\pi\)
0.897394 + 0.441230i \(0.145458\pi\)
\(180\) 0.777479 + 0.974928i 0.0579499 + 0.0726668i
\(181\) 1.47770 6.47421i 0.109836 0.481225i −0.889852 0.456250i \(-0.849192\pi\)
0.999688 0.0249747i \(-0.00795053\pi\)
\(182\) −16.4166 + 34.0894i −1.21688 + 2.52687i
\(183\) −2.42543 1.16802i −0.179293 0.0863428i
\(184\) 5.47282 1.24914i 0.403462 0.0920875i
\(185\) 0.450904 + 0.936313i 0.0331512 + 0.0688391i
\(186\) 5.09783i 0.373791i
\(187\) 2.91185 1.40227i 0.212936 0.102545i
\(188\) 7.60633 6.06584i 0.554748 0.442397i
\(189\) 8.17384 6.51842i 0.594559 0.474145i
\(190\) 1.18718 0.571714i 0.0861269 0.0414765i
\(191\) 18.8116i 1.36116i −0.732673 0.680581i \(-0.761728\pi\)
0.732673 0.680581i \(-0.238272\pi\)
\(192\) −0.244991 0.508729i −0.0176807 0.0367144i
\(193\) 10.6118 2.42208i 0.763854 0.174345i 0.177192 0.984176i \(-0.443299\pi\)
0.586662 + 0.809832i \(0.300442\pi\)
\(194\) 25.5710 + 12.3143i 1.83589 + 0.884118i
\(195\) 0.357394 0.742135i 0.0255935 0.0531454i
\(196\) 2.60656 11.4201i 0.186183 0.815722i
\(197\) −5.23759 6.56773i −0.373163 0.467931i 0.559422 0.828883i \(-0.311023\pi\)
−0.932584 + 0.360952i \(0.882452\pi\)
\(198\) 9.16637 11.4943i 0.651425 0.816861i
\(199\) 1.47339 + 6.45532i 0.104446 + 0.457606i 0.999922 + 0.0124967i \(0.00397793\pi\)
−0.895476 + 0.445109i \(0.853165\pi\)
\(200\) −6.44588 1.47123i −0.455792 0.104032i
\(201\) −0.130256 0.103875i −0.00918753 0.00732681i
\(202\) −31.4306 −2.21145
\(203\) 0 0
\(204\) 0.615957 0.0431256
\(205\) 0.110532 + 0.0881460i 0.00771986 + 0.00615638i
\(206\) −4.94355 1.12833i −0.344434 0.0786148i
\(207\) 2.57942 + 11.3012i 0.179282 + 0.785485i
\(208\) 15.9698 20.0255i 1.10731 1.38852i
\(209\) −3.71983 4.66452i −0.257306 0.322652i
\(210\) −0.257865 + 1.12978i −0.0177944 + 0.0779622i
\(211\) 3.51456 7.29805i 0.241952 0.502419i −0.744263 0.667887i \(-0.767199\pi\)
0.986215 + 0.165468i \(0.0529134\pi\)
\(212\) −4.89493 2.35727i −0.336185 0.161898i
\(213\) 4.94880 1.12953i 0.339086 0.0773942i
\(214\) −5.83255 12.1114i −0.398705 0.827919i
\(215\) 2.04892i 0.139735i
\(216\) −3.15668 + 1.52018i −0.214785 + 0.103435i
\(217\) −20.1232 + 16.0477i −1.36605 + 1.08939i
\(218\) 2.32847 1.85690i 0.157704 0.125765i
\(219\) 3.58815 1.72796i 0.242464 0.116765i
\(220\) 1.29590i 0.0873694i
\(221\) 2.49744 + 5.18598i 0.167996 + 0.348847i
\(222\) 2.27658 0.519614i 0.152794 0.0348742i
\(223\) −19.7485 9.51036i −1.32246 0.636861i −0.366512 0.930413i \(-0.619448\pi\)
−0.955943 + 0.293552i \(0.905163\pi\)
\(224\) −10.8673 + 22.5661i −0.726101 + 1.50776i
\(225\) 3.03803 13.3105i 0.202535 0.887366i
\(226\) −9.70775 12.1731i −0.645750 0.809745i
\(227\) −11.3964 + 14.2907i −0.756407 + 0.948504i −0.999770 0.0214309i \(-0.993178\pi\)
0.243363 + 0.969935i \(0.421749\pi\)
\(228\) −0.253020 1.10855i −0.0167567 0.0734158i
\(229\) 15.6230 + 3.56584i 1.03240 + 0.235638i 0.704968 0.709239i \(-0.250961\pi\)
0.327427 + 0.944876i \(0.393818\pi\)
\(230\) −2.08011 1.65883i −0.137158 0.109380i
\(231\) 5.24698 0.345226
\(232\) 0 0
\(233\) 1.95646 0.128172 0.0640860 0.997944i \(-0.479587\pi\)
0.0640860 + 0.997944i \(0.479587\pi\)
\(234\) 20.4712 + 16.3252i 1.33824 + 1.06721i
\(235\) 2.71467 + 0.619605i 0.177085 + 0.0404186i
\(236\) −2.52781 11.0751i −0.164546 0.720925i
\(237\) 0.164874 0.206746i 0.0107097 0.0134296i
\(238\) −5.04892 6.33114i −0.327273 0.410387i
\(239\) 1.99449 8.73844i 0.129013 0.565243i −0.868558 0.495587i \(-0.834953\pi\)
0.997571 0.0696554i \(-0.0221900\pi\)
\(240\) 0.340373 0.706791i 0.0219710 0.0456232i
\(241\) 17.9291 + 8.63419i 1.15491 + 0.556177i 0.910506 0.413496i \(-0.135692\pi\)
0.244407 + 0.969673i \(0.421407\pi\)
\(242\) −4.42898 + 1.01089i −0.284705 + 0.0649822i
\(243\) −4.76224 9.88889i −0.305498 0.634372i
\(244\) 7.54288i 0.482883i
\(245\) 3.02057 1.45463i 0.192977 0.0929330i
\(246\) 0.248362 0.198062i 0.0158350 0.0126280i
\(247\) 8.30746 6.62498i 0.528591 0.421537i
\(248\) 7.77144 3.74253i 0.493487 0.237651i
\(249\) 4.19806i 0.266041i
\(250\) 2.75478 + 5.72037i 0.174228 + 0.361788i
\(251\) 25.1579 5.74214i 1.58795 0.362440i 0.664847 0.746980i \(-0.268497\pi\)
0.923108 + 0.384540i \(0.125640\pi\)
\(252\) −12.7458 6.13805i −0.802909 0.386661i
\(253\) −5.22679 + 10.8535i −0.328606 + 0.682356i
\(254\) −4.19902 + 18.3971i −0.263470 + 1.15434i
\(255\) 0.109916 + 0.137831i 0.00688322 + 0.00863129i
\(256\) 12.9133 16.1928i 0.807084 1.01205i
\(257\) −2.65937 11.6514i −0.165887 0.726797i −0.987612 0.156914i \(-0.949846\pi\)
0.821726 0.569883i \(-0.193012\pi\)
\(258\) −4.48845 1.02446i −0.279438 0.0637800i
\(259\) −9.21768 7.35086i −0.572759 0.456760i
\(260\) −2.30798 −0.143135
\(261\) 0 0
\(262\) 0.819396 0.0506225
\(263\) −0.260141 0.207455i −0.0160410 0.0127923i 0.615437 0.788186i \(-0.288980\pi\)
−0.631477 + 0.775394i \(0.717551\pi\)
\(264\) −1.71431 0.391280i −0.105509 0.0240816i
\(265\) −0.346011 1.51597i −0.0212553 0.0931254i
\(266\) −9.32036 + 11.6874i −0.571468 + 0.716598i
\(267\) −0.394928 0.495224i −0.0241692 0.0303072i
\(268\) −0.103875 + 0.455108i −0.00634520 + 0.0278002i
\(269\) 0.461645 0.958615i 0.0281470 0.0584478i −0.886421 0.462879i \(-0.846816\pi\)
0.914568 + 0.404432i \(0.132531\pi\)
\(270\) 1.49612 + 0.720491i 0.0910507 + 0.0438477i
\(271\) 16.0516 3.66368i 0.975067 0.222553i 0.294834 0.955549i \(-0.404736\pi\)
0.680233 + 0.732996i \(0.261879\pi\)
\(272\) 2.37850 + 4.93900i 0.144218 + 0.299471i
\(273\) 9.34481i 0.565574i
\(274\) 21.4955 10.3517i 1.29859 0.625367i
\(275\) 11.0929 8.84631i 0.668928 0.533452i
\(276\) −1.79500 + 1.43147i −0.108047 + 0.0861643i
\(277\) −5.94116 + 2.86111i −0.356970 + 0.171907i −0.603769 0.797159i \(-0.706335\pi\)
0.246800 + 0.969066i \(0.420621\pi\)
\(278\) 5.03923i 0.302233i
\(279\) 7.72818 + 16.0477i 0.462674 + 0.960752i
\(280\) −1.91161 + 0.436313i −0.114241 + 0.0260747i
\(281\) 27.5112 + 13.2487i 1.64118 + 0.790350i 0.999731 + 0.0231840i \(0.00738037\pi\)
0.641448 + 0.767166i \(0.278334\pi\)
\(282\) 2.71467 5.63706i 0.161656 0.335682i
\(283\) −0.791053 + 3.46583i −0.0470232 + 0.206022i −0.992982 0.118264i \(-0.962267\pi\)
0.945959 + 0.324286i \(0.105124\pi\)
\(284\) −8.86778 11.1198i −0.526206 0.659841i
\(285\) 0.202907 0.254437i 0.0120191 0.0150715i
\(286\) 6.05496 + 26.5285i 0.358037 + 1.56866i
\(287\) −1.56366 0.356896i −0.0923001 0.0210669i
\(288\) 13.5513 + 10.8068i 0.798517 + 0.636796i
\(289\) 15.7681 0.927534
\(290\) 0 0
\(291\) 7.00969 0.410915
\(292\) −8.72433 6.95742i −0.510553 0.407152i
\(293\) −32.0556 7.31647i −1.87271 0.427433i −0.874378 0.485246i \(-0.838730\pi\)
−0.998327 + 0.0578127i \(0.981587\pi\)
\(294\) −1.67629 7.34432i −0.0977633 0.428329i
\(295\) 2.02715 2.54196i 0.118025 0.147999i
\(296\) 2.46346 + 3.08908i 0.143186 + 0.179549i
\(297\) 1.67307 7.33020i 0.0970814 0.425342i
\(298\) 2.11752 4.39708i 0.122665 0.254716i
\(299\) −19.3300 9.30886i −1.11789 0.538345i
\(300\) 2.63631 0.601720i 0.152207 0.0347403i
\(301\) 10.0854 + 20.9426i 0.581316 + 1.20711i
\(302\) 4.38835i 0.252521i
\(303\) −6.99396 + 3.36811i −0.401792 + 0.193493i
\(304\) 7.91183 6.30947i 0.453774 0.361873i
\(305\) −1.68784 + 1.34601i −0.0966457 + 0.0770724i
\(306\) −5.04892 + 2.43143i −0.288627 + 0.138996i
\(307\) 14.6703i 0.837275i 0.908153 + 0.418638i \(0.137492\pi\)
−0.908153 + 0.418638i \(0.862508\pi\)
\(308\) −6.37883 13.2458i −0.363468 0.754749i
\(309\) −1.22096 + 0.278676i −0.0694578 + 0.0158533i
\(310\) −3.68329 1.77378i −0.209197 0.100744i
\(311\) 8.03834 16.6918i 0.455812 0.946504i −0.538760 0.842459i \(-0.681107\pi\)
0.994573 0.104045i \(-0.0331786\pi\)
\(312\) 0.696866 3.05317i 0.0394523 0.172852i
\(313\) 14.3354 + 17.9760i 0.810286 + 1.01607i 0.999418 + 0.0341147i \(0.0108612\pi\)
−0.189132 + 0.981952i \(0.560567\pi\)
\(314\) −19.8605 + 24.9043i −1.12080 + 1.40543i
\(315\) −0.900969 3.94740i −0.0507638 0.222411i
\(316\) −0.722362 0.164874i −0.0406360 0.00927491i
\(317\) −10.9915 8.76540i −0.617342 0.492314i 0.264170 0.964476i \(-0.414902\pi\)
−0.881512 + 0.472162i \(0.843474\pi\)
\(318\) −3.49396 −0.195932
\(319\) 0 0
\(320\) −0.452812 −0.0253129
\(321\) −2.59573 2.07002i −0.144879 0.115537i
\(322\) 29.4268 + 6.71648i 1.63989 + 0.374295i
\(323\) 0.506041 + 2.21711i 0.0281569 + 0.123363i
\(324\) −5.64191 + 7.07473i −0.313439 + 0.393040i
\(325\) 15.7552 + 19.7564i 0.873940 + 1.09589i
\(326\) −1.99127 + 8.72433i −0.110286 + 0.483196i
\(327\) 0.319148 0.662718i 0.0176489 0.0366484i
\(328\) 0.484271 + 0.233212i 0.0267394 + 0.0128770i
\(329\) −30.7974 + 7.02930i −1.69792 + 0.387538i
\(330\) 0.361597 + 0.750864i 0.0199053 + 0.0413337i
\(331\) 13.9565i 0.767116i −0.923517 0.383558i \(-0.874699\pi\)
0.923517 0.383558i \(-0.125301\pi\)
\(332\) −10.5978 + 5.10365i −0.581632 + 0.280099i
\(333\) −6.37883 + 5.08695i −0.349558 + 0.278763i
\(334\) −20.3776 + 16.2506i −1.11501 + 0.889195i
\(335\) −0.120374 + 0.0579692i −0.00657676 + 0.00316720i
\(336\) 8.89977i 0.485522i
\(337\) −6.07333 12.6114i −0.330836 0.686987i 0.667503 0.744607i \(-0.267363\pi\)
−0.998339 + 0.0576199i \(0.981649\pi\)
\(338\) −24.4091 + 5.57122i −1.32768 + 0.303034i
\(339\) −3.46466 1.66849i −0.188174 0.0906200i
\(340\) 0.214321 0.445042i 0.0116232 0.0241358i
\(341\) −4.11894 + 18.0463i −0.223053 + 0.977260i
\(342\) 6.44989 + 8.08790i 0.348770 + 0.437344i
\(343\) −6.04288 + 7.57753i −0.326285 + 0.409148i
\(344\) −1.73341 7.59455i −0.0934590 0.409471i
\(345\) −0.640630 0.146220i −0.0344903 0.00787220i
\(346\) 14.8113 + 11.8116i 0.796261 + 0.634997i
\(347\) 19.8538 1.06581 0.532905 0.846175i \(-0.321100\pi\)
0.532905 + 0.846175i \(0.321100\pi\)
\(348\) 0 0
\(349\) −26.9202 −1.44101 −0.720503 0.693452i \(-0.756089\pi\)
−0.720503 + 0.693452i \(0.756089\pi\)
\(350\) −27.7942 22.1652i −1.48566 1.18478i
\(351\) 13.0550 + 2.97972i 0.696825 + 0.159046i
\(352\) 4.00820 + 17.5611i 0.213638 + 0.936007i
\(353\) 2.50335 3.13910i 0.133240 0.167078i −0.710736 0.703459i \(-0.751638\pi\)
0.843976 + 0.536382i \(0.180209\pi\)
\(354\) −4.55496 5.71174i −0.242093 0.303575i
\(355\) 0.905813 3.96863i 0.0480756 0.210633i
\(356\) −0.770053 + 1.59903i −0.0408127 + 0.0847485i
\(357\) −1.80194 0.867767i −0.0953687 0.0459271i
\(358\) −10.0854 + 2.30194i −0.533032 + 0.121661i
\(359\) 0.323814 + 0.672407i 0.0170903 + 0.0354883i 0.909339 0.416055i \(-0.136588\pi\)
−0.892249 + 0.451544i \(0.850873\pi\)
\(360\) 1.35690i 0.0715147i
\(361\) −13.3361 + 6.42232i −0.701899 + 0.338017i
\(362\) −9.35551 + 7.46077i −0.491715 + 0.392129i
\(363\) −0.877213 + 0.699554i −0.0460418 + 0.0367171i
\(364\) 23.5906 11.3606i 1.23648 0.595459i
\(365\) 3.19375i 0.167169i
\(366\) 2.10471 + 4.37047i 0.110015 + 0.228448i
\(367\) −33.1952 + 7.57660i −1.73278 + 0.395495i −0.968425 0.249304i \(-0.919798\pi\)
−0.764352 + 0.644799i \(0.776941\pi\)
\(368\) −18.4095 8.86553i −0.959659 0.462148i
\(369\) −0.481575 + 1.00000i −0.0250698 + 0.0520579i
\(370\) 0.416698 1.82567i 0.0216631 0.0949123i
\(371\) 10.9988 + 13.7921i 0.571029 + 0.716048i
\(372\) −2.19955 + 2.75815i −0.114042 + 0.143004i
\(373\) −6.23072 27.2986i −0.322614 1.41347i −0.832882 0.553450i \(-0.813311\pi\)
0.510268 0.860015i \(-0.329546\pi\)
\(374\) −5.67770 1.29590i −0.293587 0.0670092i
\(375\) 1.22599 + 0.977697i 0.0633100 + 0.0504881i
\(376\) 10.5864 0.545953
\(377\) 0 0
\(378\) −18.8388 −0.968962
\(379\) 17.8891 + 14.2661i 0.918900 + 0.732798i 0.963921 0.266188i \(-0.0857641\pi\)
−0.0450211 + 0.998986i \(0.514336\pi\)
\(380\) −0.888992 0.202907i −0.0456043 0.0104089i
\(381\) 1.03707 + 4.54371i 0.0531308 + 0.232781i
\(382\) −21.1347 + 26.5020i −1.08134 + 1.35596i
\(383\) −7.39344 9.27108i −0.377787 0.473730i 0.556194 0.831052i \(-0.312261\pi\)
−0.933981 + 0.357323i \(0.883690\pi\)
\(384\) 0.998804 4.37604i 0.0509700 0.223314i
\(385\) 1.82567 3.79105i 0.0930450 0.193210i
\(386\) −17.6712 8.51001i −0.899441 0.433148i
\(387\) 15.6824 3.57942i 0.797184 0.181952i
\(388\) −8.52179 17.6957i −0.432628 0.898362i
\(389\) 10.3913i 0.526862i 0.964678 + 0.263431i \(0.0848541\pi\)
−0.964678 + 0.263431i \(0.915146\pi\)
\(390\) −1.33728 + 0.644001i −0.0677159 + 0.0326103i
\(391\) 3.59001 2.86294i 0.181555 0.144785i
\(392\) 9.96547 7.94720i 0.503332 0.401394i
\(393\) 0.182333 0.0878068i 0.00919747 0.00442927i
\(394\) 15.1371i 0.762594i
\(395\) −0.0920106 0.191062i −0.00462956 0.00961337i
\(396\) −9.91882 + 2.26391i −0.498439 + 0.113766i
\(397\) −7.40366 3.56541i −0.371579 0.178943i 0.238769 0.971076i \(-0.423256\pi\)
−0.610348 + 0.792133i \(0.708970\pi\)
\(398\) 5.17677 10.7497i 0.259488 0.538832i
\(399\) −0.821552 + 3.59945i −0.0411290 + 0.180198i
\(400\) 15.0048 + 18.8155i 0.750242 + 0.940774i
\(401\) 15.5130 19.4527i 0.774684 0.971423i −0.225312 0.974287i \(-0.572340\pi\)
0.999996 + 0.00286337i \(0.000911439\pi\)
\(402\) 0.0668027 + 0.292682i 0.00333182 + 0.0145976i
\(403\) −32.1402 7.33579i −1.60102 0.365422i
\(404\) 17.0053 + 13.5613i 0.846047 + 0.674700i
\(405\) −2.58987 −0.128692
\(406\) 0 0
\(407\) −8.47889 −0.420283
\(408\) 0.524023 + 0.417895i 0.0259430 + 0.0206889i
\(409\) −18.4217 4.20464i −0.910895 0.207906i −0.258701 0.965958i \(-0.583294\pi\)
−0.652194 + 0.758052i \(0.726151\pi\)
\(410\) −0.0566871 0.248362i −0.00279957 0.0122657i
\(411\) 3.67390 4.60692i 0.181220 0.227243i
\(412\) 2.18784 + 2.74347i 0.107787 + 0.135161i
\(413\) −8.20775 + 35.9605i −0.403877 + 1.76950i
\(414\) 9.06283 18.8192i 0.445414 0.924911i
\(415\) −3.03319 1.46071i −0.148893 0.0717033i
\(416\) −31.2761 + 7.13856i −1.53343 + 0.349996i
\(417\) 0.540006 + 1.12133i 0.0264442 + 0.0549120i
\(418\) 10.7506i 0.525830i
\(419\) −9.81378 + 4.72607i −0.479435 + 0.230884i −0.657962 0.753051i \(-0.728581\pi\)
0.178527 + 0.983935i \(0.442867\pi\)
\(420\) 0.626980 0.500000i 0.0305935 0.0243975i
\(421\) −15.6060 + 12.4453i −0.760588 + 0.606549i −0.925055 0.379834i \(-0.875981\pi\)
0.164467 + 0.986383i \(0.447410\pi\)
\(422\) −13.1506 + 6.33301i −0.640163 + 0.308286i
\(423\) 21.8605i 1.06290i
\(424\) −2.56506 5.32640i −0.124570 0.258673i
\(425\) −5.27261 + 1.20344i −0.255759 + 0.0583754i
\(426\) −8.24094 3.96863i −0.399275 0.192281i
\(427\) 10.6265 22.0661i 0.514252 1.06786i
\(428\) −2.07002 + 9.06937i −0.100058 + 0.438384i
\(429\) 4.19016 + 5.25430i 0.202303 + 0.253680i
\(430\) −2.30194 + 2.88654i −0.111009 + 0.139201i
\(431\) 6.71797 + 29.4334i 0.323593 + 1.41776i 0.831108 + 0.556112i \(0.187707\pi\)
−0.507514 + 0.861643i \(0.669436\pi\)
\(432\) 12.4333 + 2.83781i 0.598196 + 0.136534i
\(433\) 15.7862 + 12.5891i 0.758638 + 0.604994i 0.924512 0.381153i \(-0.124473\pi\)
−0.165874 + 0.986147i \(0.553044\pi\)
\(434\) 46.3793 2.22628
\(435\) 0 0
\(436\) −2.06100 −0.0987039
\(437\) −6.62720 5.28501i −0.317022 0.252816i
\(438\) −6.99637 1.59688i −0.334299 0.0763016i
\(439\) −2.37316 10.3975i −0.113265 0.496245i −0.999458 0.0329287i \(-0.989517\pi\)
0.886193 0.463316i \(-0.153341\pi\)
\(440\) −0.879199 + 1.10248i −0.0419141 + 0.0525587i
\(441\) 16.4107 + 20.5783i 0.781460 + 0.979920i
\(442\) 2.30798 10.1119i 0.109779 0.480975i
\(443\) 8.82962 18.3349i 0.419508 0.871117i −0.578937 0.815372i \(-0.696532\pi\)
0.998445 0.0557448i \(-0.0177533\pi\)
\(444\) −1.45593 0.701137i −0.0690952 0.0332745i
\(445\) −0.495224 + 0.113032i −0.0234759 + 0.00535822i
\(446\) 17.1371 + 35.5855i 0.811464 + 1.68502i
\(447\) 1.20536i 0.0570115i
\(448\) 4.62833 2.22889i 0.218668 0.105305i
\(449\) −15.1857 + 12.1102i −0.716659 + 0.571516i −0.912479 0.409124i \(-0.865834\pi\)
0.195820 + 0.980640i \(0.437263\pi\)
\(450\) −19.2342 + 15.3388i −0.906710 + 0.723077i
\(451\) −1.03923 + 0.500466i −0.0489354 + 0.0235660i
\(452\) 10.7748i 0.506804i
\(453\) −0.470258 0.976501i −0.0220946 0.0458800i
\(454\) 32.1108 7.32908i 1.50704 0.343971i
\(455\) 6.75182 + 3.25151i 0.316530 + 0.152433i
\(456\) 0.536840 1.11476i 0.0251399 0.0522034i
\(457\) −2.76391 + 12.1095i −0.129290 + 0.566457i 0.868236 + 0.496152i \(0.165254\pi\)
−0.997526 + 0.0703045i \(0.977603\pi\)
\(458\) −18.0036 22.5759i −0.841255 1.05490i
\(459\) −1.78687 + 2.24067i −0.0834041 + 0.104585i
\(460\) 0.409698 + 1.79500i 0.0191023 + 0.0836925i
\(461\) −21.3961 4.88351i −0.996514 0.227448i −0.306991 0.951712i \(-0.599322\pi\)
−0.689522 + 0.724265i \(0.742179\pi\)
\(462\) −7.39201 5.89493i −0.343907 0.274257i
\(463\) 33.0073 1.53398 0.766990 0.641660i \(-0.221754\pi\)
0.766990 + 0.641660i \(0.221754\pi\)
\(464\) 0 0
\(465\) −1.00969 −0.0468232
\(466\) −2.75628 2.19806i −0.127682 0.101823i
\(467\) 25.4487 + 5.80851i 1.17763 + 0.268786i 0.766167 0.642642i \(-0.222162\pi\)
0.411461 + 0.911427i \(0.365019\pi\)
\(468\) −4.03199 17.6653i −0.186379 0.816579i
\(469\) 0.945042 1.18505i 0.0436380 0.0547203i
\(470\) −3.12833 3.92281i −0.144299 0.180946i
\(471\) −1.75063 + 7.67000i −0.0806647 + 0.353415i
\(472\) 5.36333 11.1371i 0.246867 0.512625i
\(473\) 15.0613 + 7.25314i 0.692519 + 0.333500i
\(474\) −0.464554 + 0.106031i −0.0213377 + 0.00487018i
\(475\) 4.33172 + 8.99492i 0.198753 + 0.412715i
\(476\) 5.60388i 0.256853i
\(477\) 10.9988 5.29674i 0.503601 0.242521i
\(478\) −12.6274 + 10.0700i −0.577564 + 0.460592i
\(479\) 25.8520 20.6163i 1.18121 0.941981i 0.182060 0.983287i \(-0.441724\pi\)
0.999147 + 0.0413068i \(0.0131521\pi\)
\(480\) −0.885239 + 0.426309i −0.0404055 + 0.0194582i
\(481\) 15.1008i 0.688538i
\(482\) −15.5583 32.3071i −0.708660 1.47155i
\(483\) 7.26782 1.65883i 0.330697 0.0754795i
\(484\) 2.83244 + 1.36403i 0.128747 + 0.0620014i
\(485\) 2.43901 5.06465i 0.110750 0.229974i
\(486\) −4.40097 + 19.2819i −0.199632 + 0.874645i
\(487\) −6.33244 7.94063i −0.286950 0.359824i 0.617375 0.786669i \(-0.288196\pi\)
−0.904325 + 0.426845i \(0.859625\pi\)
\(488\) −5.11745 + 6.41708i −0.231656 + 0.290487i
\(489\) 0.491803 + 2.15473i 0.0222401 + 0.0974403i
\(490\) −5.88968 1.34428i −0.266069 0.0607285i
\(491\) 15.3879 + 12.2714i 0.694446 + 0.553802i 0.905851 0.423596i \(-0.139232\pi\)
−0.211405 + 0.977399i \(0.567804\pi\)
\(492\) −0.219833 −0.00991082
\(493\) 0 0
\(494\) −19.1468 −0.861453
\(495\) −2.27658 1.81551i −0.102325 0.0816012i
\(496\) −30.6095 6.98643i −1.37441 0.313700i
\(497\) 10.2763 + 45.0233i 0.460954 + 2.01957i
\(498\) −4.71648 + 5.91428i −0.211351 + 0.265025i
\(499\) −17.3639 21.7736i −0.777315 0.974722i 0.222685 0.974890i \(-0.428518\pi\)
−1.00000 0.000168534i \(0.999946\pi\)
\(500\) 0.977697 4.28357i 0.0437240 0.191567i
\(501\) −2.79303 + 5.79978i −0.124783 + 0.259115i
\(502\) −41.8940 20.1751i −1.86982 0.900459i
\(503\) 0.219563 0.0501138i 0.00978982 0.00223446i −0.217623 0.976033i \(-0.569830\pi\)
0.227413 + 0.973798i \(0.426973\pi\)
\(504\) −6.67909 13.8693i −0.297510 0.617787i
\(505\) 6.22521i 0.277018i
\(506\) 19.5574 9.41835i 0.869433 0.418697i
\(507\) −4.83452 + 3.85540i −0.214709 + 0.171224i
\(508\) 10.2096 8.14191i 0.452979 0.361239i
\(509\) 22.7974 10.9786i 1.01048 0.486620i 0.145995 0.989285i \(-0.453362\pi\)
0.864481 + 0.502665i \(0.167647\pi\)
\(510\) 0.317667i 0.0140665i
\(511\) 15.7207 + 32.6444i 0.695443 + 1.44410i
\(512\) −16.7192 + 3.81604i −0.738890 + 0.168647i
\(513\) 4.76659 + 2.29547i 0.210450 + 0.101348i
\(514\) −9.34373 + 19.4025i −0.412134 + 0.855806i
\(515\) −0.223480 + 0.979132i −0.00984772 + 0.0431457i
\(516\) 1.98643 + 2.49090i 0.0874475 + 0.109656i
\(517\) −14.1645 + 17.7617i −0.622954 + 0.781160i
\(518\) 4.72737 + 20.7119i 0.207709 + 0.910030i
\(519\) 4.56157 + 1.04115i 0.200231 + 0.0457013i
\(520\) −1.96351 1.56584i −0.0861054 0.0686668i
\(521\) −23.5797 −1.03305 −0.516523 0.856273i \(-0.672774\pi\)
−0.516523 + 0.856273i \(0.672774\pi\)
\(522\) 0 0
\(523\) 3.96508 0.173381 0.0866905 0.996235i \(-0.472371\pi\)
0.0866905 + 0.996235i \(0.472371\pi\)
\(524\) −0.443330 0.353543i −0.0193669 0.0154446i
\(525\) −8.56003 1.95377i −0.373590 0.0852696i
\(526\) 0.133415 + 0.584531i 0.00581719 + 0.0254868i
\(527\) 4.39911 5.51631i 0.191628 0.240294i
\(528\) 3.99061 + 5.00406i 0.173669 + 0.217774i
\(529\) 1.30947 5.73717i 0.0569335 0.249442i
\(530\) −1.21572 + 2.52446i −0.0528073 + 0.109655i
\(531\) 22.9976 + 11.0751i 0.998011 + 0.480617i
\(532\) 10.0854 2.30194i 0.437260 0.0998017i
\(533\) −0.891325 1.85086i −0.0386076 0.0801694i
\(534\) 1.14138i 0.0493921i
\(535\) −2.39881 + 1.15521i −0.103710 + 0.0499440i
\(536\) −0.397139 + 0.316708i −0.0171538 + 0.0136797i
\(537\) −1.99755 + 1.59299i −0.0862005 + 0.0687426i
\(538\) −1.72737 + 0.831855i −0.0744720 + 0.0358638i
\(539\) 27.3532i 1.17818i
\(540\) −0.498595 1.03534i −0.0214561 0.0445541i
\(541\) −24.0418 + 5.48739i −1.03364 + 0.235921i −0.705501 0.708709i \(-0.749278\pi\)
−0.328137 + 0.944630i \(0.606421\pi\)
\(542\) −26.7298 12.8724i −1.14814 0.552917i
\(543\) −1.28230 + 2.66272i −0.0550287 + 0.114268i
\(544\) 1.52781 6.69378i 0.0655044 0.286993i
\(545\) −0.367781 0.461183i −0.0157540 0.0197549i
\(546\) 10.4988 13.1651i 0.449307 0.563414i
\(547\) −5.52768 24.2183i −0.236347 1.03550i −0.944259 0.329202i \(-0.893220\pi\)
0.707913 0.706300i \(-0.249637\pi\)
\(548\) −16.0964 3.67390i −0.687604 0.156941i
\(549\) −13.2510 10.5673i −0.565540 0.451003i
\(550\) −25.5666 −1.09016
\(551\) 0 0
\(552\) −2.49827 −0.106333
\(553\) 1.88094 + 1.50000i 0.0799857 + 0.0637865i
\(554\) 11.5844 + 2.64406i 0.492174 + 0.112335i
\(555\) −0.102916 0.450904i −0.00436854 0.0191398i
\(556\) 2.17427 2.72645i 0.0922095 0.115627i
\(557\) −4.84146 6.07100i −0.205139 0.257237i 0.668610 0.743613i \(-0.266890\pi\)
−0.873749 + 0.486377i \(0.838318\pi\)
\(558\) 7.14191 31.2907i 0.302341 1.32464i
\(559\) −12.9178 + 26.8240i −0.546363 + 1.13453i
\(560\) 6.43027 + 3.09666i 0.271729 + 0.130858i
\(561\) −1.40227 + 0.320060i −0.0592041 + 0.0135129i
\(562\) −23.8733 49.5734i −1.00703 2.09113i
\(563\) 20.8009i 0.876652i −0.898816 0.438326i \(-0.855571\pi\)
0.898816 0.438326i \(-0.144429\pi\)
\(564\) −3.90097 + 1.87861i −0.164260 + 0.0791036i
\(565\) −2.41104 + 1.92274i −0.101433 + 0.0808902i
\(566\) 5.00827 3.99396i 0.210513 0.167879i
\(567\) 26.4720 12.7482i 1.11172 0.535375i
\(568\) 15.4765i 0.649380i
\(569\) 1.21888 + 2.53103i 0.0510981 + 0.106106i 0.924955 0.380078i \(-0.124103\pi\)
−0.873856 + 0.486184i \(0.838388\pi\)
\(570\) −0.571714 + 0.130490i −0.0239465 + 0.00546563i
\(571\) −2.60603 1.25500i −0.109059 0.0525201i 0.378559 0.925577i \(-0.376420\pi\)
−0.487618 + 0.873057i \(0.662134\pi\)
\(572\) 8.17021 16.9656i 0.341614 0.709368i
\(573\) −1.86294 + 8.16206i −0.0778253 + 0.340975i
\(574\) 1.80194 + 2.25956i 0.0752114 + 0.0943121i
\(575\) 12.5685 15.7604i 0.524144 0.657256i
\(576\) −0.791053 3.46583i −0.0329605 0.144409i
\(577\) 7.00872 + 1.59970i 0.291777 + 0.0665962i 0.365904 0.930653i \(-0.380760\pi\)
−0.0741270 + 0.997249i \(0.523617\pi\)
\(578\) −22.2143 17.7153i −0.923992 0.736859i
\(579\) −4.84415 −0.201316
\(580\) 0 0
\(581\) 38.1933 1.58452
\(582\) −9.87533 7.87531i −0.409346 0.326442i
\(583\) 12.3686 + 2.82304i 0.512254 + 0.116919i
\(584\) −2.70195 11.8380i −0.111807 0.489860i
\(585\) 3.23341 4.05456i 0.133685 0.167636i
\(586\) 36.9403 + 46.3216i 1.52599 + 1.91353i
\(587\) 6.90635 30.2587i 0.285055 1.24891i −0.606165 0.795339i \(-0.707293\pi\)
0.891220 0.453570i \(-0.149850\pi\)
\(588\) −2.26189 + 4.69687i −0.0932788 + 0.193695i
\(589\) −11.7349 5.65123i −0.483528 0.232855i
\(590\) −5.71174 + 1.30367i −0.235148 + 0.0536711i
\(591\) 1.62209 + 3.36831i 0.0667240 + 0.138554i
\(592\) 14.3817i 0.591082i
\(593\) 32.8560 15.8226i 1.34923 0.649757i 0.387025 0.922069i \(-0.373503\pi\)
0.962209 + 0.272312i \(0.0877884\pi\)
\(594\) −10.5925 + 8.44720i −0.434614 + 0.346593i
\(595\) −1.25396 + 1.00000i −0.0514074 + 0.0409960i
\(596\) −3.04288 + 1.46537i −0.124641 + 0.0600240i
\(597\) 2.94677i 0.120603i
\(598\) 16.7740 + 34.8315i 0.685939 + 1.42437i
\(599\) 29.3144 6.69083i 1.19775 0.273380i 0.423288 0.905995i \(-0.360876\pi\)
0.774466 + 0.632615i \(0.218019\pi\)
\(600\) 2.65106 + 1.27669i 0.108229 + 0.0521205i
\(601\) −14.3989 + 29.8995i −0.587342 + 1.21963i 0.369558 + 0.929208i \(0.379509\pi\)
−0.956899 + 0.290420i \(0.906205\pi\)
\(602\) 9.32036 40.8351i 0.379869 1.66432i
\(603\) −0.653989 0.820077i −0.0266325 0.0333961i
\(604\) −1.89344 + 2.37429i −0.0770428 + 0.0966086i
\(605\) 0.200218 + 0.877213i 0.00814003 + 0.0356638i
\(606\) 13.6372 + 3.11260i 0.553974 + 0.126441i
\(607\) 11.8214 + 9.42729i 0.479818 + 0.382642i 0.833319 0.552792i \(-0.186438\pi\)
−0.353502 + 0.935434i \(0.615009\pi\)
\(608\) −12.6746 −0.514021
\(609\) 0 0
\(610\) 3.89008 0.157505
\(611\) −31.6334 25.2268i −1.27975 1.02057i
\(612\) 3.78077 + 0.862937i 0.152829 + 0.0348821i
\(613\) 0.835658 + 3.66126i 0.0337519 + 0.147877i 0.988996 0.147942i \(-0.0472648\pi\)
−0.955244 + 0.295818i \(0.904408\pi\)
\(614\) 16.4819 20.6676i 0.665154 0.834077i
\(615\) −0.0392287 0.0491912i −0.00158185 0.00198358i
\(616\) 3.55980 15.5965i 0.143429 0.628401i
\(617\) −12.9541 + 26.8995i −0.521514 + 1.08293i 0.459353 + 0.888254i \(0.348081\pi\)
−0.980867 + 0.194681i \(0.937633\pi\)
\(618\) 2.03319 + 0.979132i 0.0817868 + 0.0393865i
\(619\) 44.9615 10.2622i 1.80716 0.412472i 0.820018 0.572338i \(-0.193963\pi\)
0.987139 + 0.159866i \(0.0511063\pi\)
\(620\) 1.22749 + 2.54892i 0.0492973 + 0.102367i
\(621\) 10.6823i 0.428667i
\(622\) −30.0776 + 14.4846i −1.20600 + 0.580779i
\(623\) 4.50547 3.59299i 0.180508 0.143950i
\(624\) −8.91218 + 7.10723i −0.356773 + 0.284517i
\(625\) −20.8174 + 10.0251i −0.832697 + 0.401006i
\(626\) 41.4306i 1.65590i
\(627\) 1.15204 + 2.39224i 0.0460081 + 0.0955368i
\(628\) 21.4909 4.90515i 0.857579 0.195737i
\(629\) 2.91185 + 1.40227i 0.116103 + 0.0559124i
\(630\) −3.16557 + 6.57338i −0.126119 + 0.261890i
\(631\) 2.81043 12.3133i 0.111881 0.490185i −0.887677 0.460467i \(-0.847682\pi\)
0.999558 0.0297178i \(-0.00946085\pi\)
\(632\) −0.502688 0.630351i −0.0199959 0.0250740i
\(633\) −2.24764 + 2.81846i −0.0893358 + 0.112024i
\(634\) 5.63706 + 24.6976i 0.223876 + 0.980867i
\(635\) 3.64377 + 0.831668i 0.144599 + 0.0330037i
\(636\) 1.89039 + 1.50753i 0.0749587 + 0.0597776i
\(637\) −48.7157 −1.93019
\(638\) 0 0
\(639\) 31.9584 1.26425
\(640\) −2.81425 2.24429i −0.111243 0.0887134i
\(641\) −38.0241 8.67874i −1.50186 0.342790i −0.609017 0.793157i \(-0.708436\pi\)
−0.892843 + 0.450368i \(0.851293\pi\)
\(642\) 1.33124 + 5.83255i 0.0525399 + 0.230192i
\(643\) −25.7479 + 32.2869i −1.01540 + 1.27327i −0.0538762 + 0.998548i \(0.517158\pi\)
−0.961523 + 0.274723i \(0.911414\pi\)
\(644\) −13.0233 16.3307i −0.513188 0.643518i
\(645\) −0.202907 + 0.888992i −0.00798944 + 0.0350040i
\(646\) 1.77798 3.69202i 0.0699538 0.145261i
\(647\) −16.1368 7.77109i −0.634404 0.305513i 0.0889021 0.996040i \(-0.471664\pi\)
−0.723306 + 0.690527i \(0.757378\pi\)
\(648\) −9.59967 + 2.19106i −0.377111 + 0.0860730i
\(649\) 11.5095 + 23.8998i 0.451788 + 0.938148i
\(650\) 45.5338i 1.78598i
\(651\) 10.3204 4.97002i 0.404487 0.194790i
\(652\) 4.84164 3.86108i 0.189613 0.151211i
\(653\) −10.4145 + 8.30529i −0.407551 + 0.325011i −0.805715 0.592303i \(-0.798219\pi\)
0.398164 + 0.917314i \(0.369647\pi\)
\(654\) −1.19418 + 0.575086i −0.0466960 + 0.0224876i
\(655\) 0.162291i 0.00634125i
\(656\) −0.848876 1.76271i −0.0331430 0.0688222i
\(657\) 24.4450 5.57942i 0.953691 0.217674i
\(658\) 51.2851 + 24.6976i 1.99930 + 0.962812i
\(659\) 8.14213 16.9073i 0.317172 0.658615i −0.680045 0.733171i \(-0.738040\pi\)
0.997217 + 0.0745557i \(0.0237539\pi\)
\(660\) 0.128334 0.562269i 0.00499540 0.0218863i
\(661\) −15.4182 19.3338i −0.599698 0.751998i 0.385633 0.922652i \(-0.373983\pi\)
−0.985331 + 0.170655i \(0.945412\pi\)
\(662\) −15.6799 + 19.6620i −0.609418 + 0.764186i
\(663\) −0.570024 2.49744i −0.0221379 0.0969924i
\(664\) −12.4786 2.84817i −0.484265 0.110530i
\(665\) 2.31482 + 1.84601i 0.0897650 + 0.0715852i
\(666\) 14.7017 0.569680
\(667\) 0 0
\(668\) 18.0368 0.697866
\(669\) 7.62672 + 6.08211i 0.294866 + 0.235148i
\(670\) 0.234713 + 0.0535716i 0.00906774 + 0.00206965i
\(671\) −3.91939 17.1720i −0.151306 0.662916i
\(672\) 6.94989 8.71488i 0.268098 0.336184i
\(673\) −15.8632 19.8919i −0.611483 0.766775i 0.375636 0.926767i \(-0.377424\pi\)
−0.987118 + 0.159992i \(0.948853\pi\)
\(674\) −5.61260 + 24.5904i −0.216189 + 0.947188i
\(675\) −5.45897 + 11.3357i −0.210116 + 0.436310i
\(676\) 15.6102 + 7.51748i 0.600393 + 0.289134i
\(677\) −0.601090 + 0.137195i −0.0231018 + 0.00527283i −0.234056 0.972223i \(-0.575200\pi\)
0.210954 + 0.977496i \(0.432343\pi\)
\(678\) 3.00652 + 6.24309i 0.115465 + 0.239765i
\(679\) 63.7730i 2.44738i
\(680\) 0.484271 0.233212i 0.0185709 0.00894329i
\(681\) 6.35994 5.07188i 0.243713 0.194355i
\(682\) 26.0776 20.7962i 0.998563 0.796327i
\(683\) −16.2371 + 7.81935i −0.621294 + 0.299199i −0.717924 0.696121i \(-0.754908\pi\)
0.0966308 + 0.995320i \(0.469193\pi\)
\(684\) 7.15883i 0.273725i
\(685\) −2.05027 4.25744i −0.0783369 0.162668i
\(686\) 17.0265 3.88620i 0.650077 0.148376i
\(687\) −6.42543 3.09432i −0.245145 0.118056i
\(688\) −12.3026 + 25.5465i −0.469031 + 0.973952i
\(689\) −5.02781 + 22.0283i −0.191544 + 0.839211i
\(690\) 0.738250 + 0.925737i 0.0281047 + 0.0352422i
\(691\) 7.69769 9.65260i 0.292834 0.367202i −0.613551 0.789655i \(-0.710259\pi\)
0.906385 + 0.422453i \(0.138831\pi\)
\(692\) −2.91723 12.7812i −0.110896 0.485869i
\(693\) 32.2062 + 7.35086i 1.22341 + 0.279236i
\(694\) −27.9703 22.3056i −1.06174 0.846708i
\(695\) 0.998081 0.0378594
\(696\) 0 0
\(697\) 0.439665 0.0166535
\(698\) 37.9255 + 30.2446i 1.43550 + 1.14477i
\(699\) −0.848876 0.193750i −0.0321074 0.00732831i
\(700\) 5.47434 + 23.9847i 0.206911 + 0.906535i
\(701\) 21.2594 26.6584i 0.802955 1.00687i −0.196696 0.980464i \(-0.563021\pi\)
0.999651 0.0264091i \(-0.00840724\pi\)
\(702\) −15.0444 18.8650i −0.567813 0.712015i
\(703\) 1.32759 5.81656i 0.0500711 0.219376i
\(704\) 1.60295 3.32855i 0.0604133 0.125450i
\(705\) −1.11649 0.537673i −0.0420494 0.0202499i
\(706\) −7.05350 + 1.60992i −0.265462 + 0.0605900i
\(707\) −30.6425 63.6299i −1.15243 2.39305i
\(708\) 5.05562i 0.190002i
\(709\) 37.9267 18.2645i 1.42437 0.685939i 0.446426 0.894821i \(-0.352697\pi\)
0.977941 + 0.208882i \(0.0669825\pi\)
\(710\) −5.73483 + 4.57338i −0.215224 + 0.171636i
\(711\) 1.30165 1.03803i 0.0488157 0.0389292i
\(712\) −1.73998 + 0.837930i −0.0652085 + 0.0314028i
\(713\) 26.2989i 0.984901i
\(714\) 1.56366 + 3.24698i 0.0585186 + 0.121515i
\(715\) 5.25430 1.19926i 0.196500 0.0448497i
\(716\) 6.44989 + 3.10610i 0.241044 + 0.116080i
\(717\) −1.73076 + 3.59395i −0.0646362 + 0.134219i
\(718\) 0.299249 1.31110i 0.0111679 0.0489297i
\(719\) −32.5800 40.8540i −1.21503 1.52360i −0.783362 0.621566i \(-0.786497\pi\)
−0.431667 0.902033i \(-0.642074\pi\)
\(720\) 3.07942 3.86147i 0.114763 0.143908i
\(721\) −2.53534 11.1081i −0.0944211 0.413686i
\(722\) 26.0034 + 5.93512i 0.967748 + 0.220882i
\(723\) −6.92408 5.52177i −0.257509 0.205357i
\(724\) 8.28083 0.307755
\(725\) 0 0
\(726\) 2.02177 0.0750349
\(727\) 23.4432 + 18.6953i 0.869459 + 0.693370i 0.952947 0.303138i \(-0.0980345\pi\)
−0.0834876 + 0.996509i \(0.526606\pi\)
\(728\) 27.7772 + 6.33997i 1.02949 + 0.234975i
\(729\) −3.75733 16.4619i −0.139160 0.609702i
\(730\) −3.58815 + 4.49939i −0.132803 + 0.166530i
\(731\) −3.97285 4.98180i −0.146941 0.184259i
\(732\) 0.746980 3.27273i 0.0276092 0.120964i
\(733\) −1.30793 + 2.71595i −0.0483096 + 0.100316i −0.923726 0.383053i \(-0.874873\pi\)
0.875417 + 0.483369i \(0.160587\pi\)
\(734\) 55.2781 + 26.6205i 2.04035 + 0.982581i
\(735\) −1.45463 + 0.332010i −0.0536549 + 0.0122464i
\(736\) 11.1039 + 23.0574i 0.409294 + 0.849907i
\(737\) 1.09006i 0.0401531i
\(738\) 1.80194 0.867767i 0.0663302 0.0319430i
\(739\) 16.2914 12.9919i 0.599288 0.477916i −0.276237 0.961090i \(-0.589087\pi\)
0.875525 + 0.483174i \(0.160516\pi\)
\(740\) −1.01317 + 0.807979i −0.0372450 + 0.0297019i
\(741\) −4.26055 + 2.05177i −0.156515 + 0.0753738i
\(742\) 31.7875i 1.16695i
\(743\) −13.3487 27.7189i −0.489718 1.01691i −0.988646 0.150266i \(-0.951987\pi\)
0.498928 0.866643i \(-0.333727\pi\)
\(744\) −3.74253 + 0.854207i −0.137208 + 0.0313168i
\(745\) −0.870896 0.419402i −0.0319072 0.0153657i
\(746\) −21.8917 + 45.4587i −0.801514 + 1.66436i
\(747\) 5.88135 25.7679i 0.215188 0.942798i
\(748\) 2.51275 + 3.15088i 0.0918751 + 0.115208i
\(749\) 18.8327 23.6155i 0.688133 0.862892i
\(750\) −0.628761 2.75478i −0.0229591 0.100590i
\(751\) −4.35715 0.994492i −0.158995 0.0362895i 0.142283 0.989826i \(-0.454556\pi\)
−0.301277 + 0.953537i \(0.597413\pi\)
\(752\) −30.1269 24.0254i −1.09862 0.876117i
\(753\) −11.4843 −0.418510
\(754\) 0 0
\(755\) −0.869167 −0.0316322
\(756\) 10.1926 + 8.12833i 0.370702 + 0.295625i
\(757\) 8.24379 + 1.88159i 0.299626 + 0.0683876i 0.369691 0.929155i \(-0.379464\pi\)
−0.0700652 + 0.997542i \(0.522321\pi\)
\(758\) −9.17456 40.1964i −0.333235 1.46000i
\(759\) 3.34266 4.19156i 0.121331 0.152144i
\(760\) −0.618645 0.775757i −0.0224406 0.0281397i
\(761\) −5.49516 + 24.0759i −0.199199 + 0.872749i 0.772216 + 0.635361i \(0.219149\pi\)
−0.971415 + 0.237388i \(0.923709\pi\)
\(762\) 3.64377 7.56638i 0.132000 0.274101i
\(763\) 6.02930 + 2.90356i 0.218275 + 0.105116i
\(764\) 22.8696 5.21983i 0.827392 0.188847i
\(765\) 0.481575 + 1.00000i 0.0174114 + 0.0361551i
\(766\) 21.3676i 0.772045i
\(767\) −42.5652 + 20.4983i −1.53694 + 0.740152i
\(768\) −7.20648 + 5.74698i −0.260042 + 0.207376i
\(769\) 23.5668 18.7939i 0.849839 0.677724i −0.0984462 0.995142i \(-0.531387\pi\)
0.948286 + 0.317418i \(0.102816\pi\)
\(770\) −6.83124 + 3.28975i −0.246181 + 0.118554i
\(771\) 5.31873i 0.191549i
\(772\) 5.88911 + 12.2289i 0.211954 + 0.440126i
\(773\) 5.53462 1.26324i 0.199067 0.0454356i −0.121825 0.992552i \(-0.538875\pi\)
0.320892 + 0.947116i \(0.396018\pi\)
\(774\) −26.1151 12.5763i −0.938686 0.452048i
\(775\) 13.4394 27.9073i 0.482759 1.00246i
\(776\) 4.75571 20.8361i 0.170720 0.747973i
\(777\) 3.27144 + 4.10225i 0.117362 + 0.147168i
\(778\) 11.6746 14.6394i 0.418553 0.524849i
\(779\) −0.180604 0.791277i −0.00647081 0.0283504i
\(780\) 1.00139 + 0.228562i 0.0358557 + 0.00818382i
\(781\) 25.9662 + 20.7074i 0.929145 + 0.740968i
\(782\) −8.27413 −0.295882
\(783\) 0 0
\(784\) −46.3957 −1.65699
\(785\) 4.93261 + 3.93362i 0.176052 + 0.140397i
\(786\) −0.355523 0.0811457i −0.0126811 0.00289437i
\(787\) −0.803134 3.51876i −0.0286286 0.125430i 0.958594 0.284775i \(-0.0919190\pi\)
−0.987223 + 0.159345i \(0.949062\pi\)
\(788\) 6.53116 8.18982i 0.232663 0.291750i
\(789\) 0.0923264 + 0.115774i 0.00328691 + 0.00412165i
\(790\) −0.0850306 + 0.372543i −0.00302525 + 0.0132545i
\(791\) 15.1797 31.5209i 0.539726 1.12075i
\(792\) −9.97434 4.80339i −0.354423 0.170681i
\(793\) 30.5831 6.98039i 1.08604 0.247881i
\(794\) 6.42465 + 13.3409i 0.228002 + 0.473452i
\(795\) 0.692021i 0.0245435i
\(796\) −7.43900 + 3.58243i −0.263668 + 0.126976i
\(797\) 24.0672 19.1930i 0.852505 0.679850i −0.0964236 0.995340i \(-0.530740\pi\)
0.948929 + 0.315490i \(0.102169\pi\)
\(798\) 5.20136 4.14795i 0.184126 0.146836i
\(799\) 7.80194 3.75722i 0.276013 0.132921i
\(800\) 30.1420i 1.06568i
\(801\) −1.73029 3.59299i −0.0611369 0.126952i
\(802\) −43.7099 + 9.97650i −1.54345 + 0.352282i
\(803\) 23.4768 + 11.3058i 0.828478 + 0.398974i
\(804\) 0.0901398 0.187177i 0.00317898 0.00660123i
\(805\) 1.33028 5.82834i 0.0468863 0.205422i
\(806\) 37.0378 + 46.4439i 1.30460 + 1.63592i
\(807\) −0.295233 + 0.370210i −0.0103927 + 0.0130320i
\(808\) 5.26659 + 23.0745i 0.185278 + 0.811757i
\(809\) 5.10598 + 1.16541i 0.179517 + 0.0409735i 0.311334 0.950300i \(-0.399224\pi\)
−0.131817 + 0.991274i \(0.542081\pi\)
\(810\) 3.64865 + 2.90970i 0.128200 + 0.102236i
\(811\) −41.8646 −1.47006 −0.735032 0.678032i \(-0.762833\pi\)
−0.735032 + 0.678032i \(0.762833\pi\)
\(812\) 0 0
\(813\) −7.32736 −0.256982
\(814\) 11.9452 + 9.52595i 0.418678 + 0.333884i
\(815\) 1.72796 + 0.394396i 0.0605278 + 0.0138151i
\(816\) −0.542877 2.37850i −0.0190045 0.0832641i
\(817\) −7.33393 + 9.19646i −0.256582 + 0.321743i
\(818\) 21.2289 + 26.6201i 0.742250 + 0.930752i
\(819\) −13.0918 + 57.3589i −0.457464 + 2.00428i
\(820\) −0.0764902 + 0.158834i −0.00267115 + 0.00554671i
\(821\) 13.8802 + 6.68433i 0.484421 + 0.233285i 0.660121 0.751159i \(-0.270505\pi\)
−0.175701 + 0.984444i \(0.556219\pi\)
\(822\) −10.3517 + 2.36270i −0.361056 + 0.0824086i
\(823\) 15.4705 + 32.1247i 0.539266 + 1.11980i 0.975507 + 0.219968i \(0.0705954\pi\)
−0.436241 + 0.899830i \(0.643690\pi\)
\(824\) 3.81833i 0.133018i
\(825\) −5.68910 + 2.73972i −0.198069 + 0.0953850i
\(826\) 51.9644 41.4403i 1.80807 1.44189i
\(827\) −40.6973 + 32.4550i −1.41518 + 1.12857i −0.442411 + 0.896812i \(0.645877\pi\)
−0.972773 + 0.231760i \(0.925552\pi\)
\(828\) −13.0233 + 6.27167i −0.452590 + 0.217956i
\(829\) 13.4168i 0.465986i −0.972478 0.232993i \(-0.925148\pi\)
0.972478 0.232993i \(-0.0748519\pi\)
\(830\) 2.63210 + 5.46562i 0.0913616 + 0.189714i
\(831\) 2.86111 0.653030i 0.0992508 0.0226534i
\(832\) 5.92812 + 2.85483i 0.205520 + 0.0989734i
\(833\) 4.52378 9.39373i 0.156740 0.325474i
\(834\) 0.499041 2.18644i 0.0172804 0.0757102i
\(835\) 3.21864 + 4.03604i 0.111385 + 0.139673i
\(836\) 4.63856 5.81656i 0.160428 0.201170i
\(837\) −3.65250 16.0026i −0.126249 0.553132i
\(838\) 19.1355 + 4.36754i 0.661024 + 0.150874i
\(839\) 24.2769 + 19.3602i 0.838131 + 0.668387i 0.945425 0.325840i \(-0.105647\pi\)
−0.107294 + 0.994227i \(0.534218\pi\)
\(840\) 0.872625 0.0301084
\(841\) 0 0
\(842\) 35.9681 1.23954
\(843\) −10.6246 8.47285i −0.365931 0.291821i
\(844\) 9.84757 + 2.24764i 0.338967 + 0.0773671i
\(845\) 1.10345 + 4.83452i 0.0379598 + 0.166313i
\(846\) 24.5601 30.7974i 0.844394 1.05884i
\(847\) −6.36443 7.98074i −0.218684 0.274222i
\(848\) −4.78836 + 20.9792i −0.164433 + 0.720428i
\(849\) 0.686450 1.42543i 0.0235589 0.0489205i
\(850\) 8.78017 + 4.22831i 0.301157 + 0.145030i
\(851\) −11.7445 + 2.68060i −0.402596 + 0.0918899i
\(852\) 2.74638 + 5.70291i 0.0940893 + 0.195378i
\(853\) 21.3357i 0.730521i −0.930905 0.365261i \(-0.880980\pi\)
0.930905 0.365261i \(-0.119020\pi\)
\(854\) −39.7618 + 19.1483i −1.36062 + 0.655241i
\(855\) 1.60191 1.27748i 0.0547841 0.0436889i
\(856\) −7.91416 + 6.31133i −0.270500 + 0.215717i
\(857\) 8.85839 4.26597i 0.302597 0.145723i −0.276424 0.961036i \(-0.589149\pi\)
0.579021 + 0.815313i \(0.303435\pi\)
\(858\) 12.1099i 0.413426i
\(859\) −22.4681 46.6555i −0.766602 1.59187i −0.805480 0.592623i \(-0.798093\pi\)
0.0388778 0.999244i \(-0.487622\pi\)
\(860\) 2.49090 0.568532i 0.0849390 0.0193868i
\(861\) 0.643104 + 0.309703i 0.0219169 + 0.0105546i
\(862\) 23.6037 49.0136i 0.803946 1.66941i
\(863\) −3.62147 + 15.8667i −0.123276 + 0.540108i 0.875141 + 0.483868i \(0.160768\pi\)
−0.998417 + 0.0562402i \(0.982089\pi\)
\(864\) −9.95891 12.4881i −0.338809 0.424853i
\(865\) 2.33944 2.93356i 0.0795433 0.0997441i
\(866\) −8.09611 35.4714i −0.275117 1.20537i
\(867\) −6.84152 1.56153i −0.232350 0.0530324i
\(868\) −25.0932 20.0112i −0.851720 0.679224i
\(869\) 1.73019 0.0586925
\(870\) 0 0
\(871\) 1.94139 0.0657816
\(872\) −1.75339 1.39828i −0.0593772 0.0473518i
\(873\) 43.0258 + 9.82036i 1.45620 + 0.332369i
\(874\) 3.39881 + 14.8912i 0.114967 + 0.503701i
\(875\) −8.89493 + 11.1539i −0.300703 + 0.377070i
\(876\) 3.09634 + 3.88269i 0.104616 + 0.131184i
\(877\) −3.29470 + 14.4350i −0.111254 + 0.487436i 0.888346 + 0.459174i \(0.151855\pi\)
−0.999601 + 0.0282623i \(0.991003\pi\)
\(878\) −8.33813 + 17.3143i −0.281398 + 0.584330i
\(879\) 13.1838 + 6.34900i 0.444679 + 0.214146i
\(880\) 5.00406 1.14214i 0.168687 0.0385017i
\(881\) 8.08661 + 16.7920i 0.272445 + 0.565737i 0.991635 0.129076i \(-0.0412012\pi\)
−0.719190 + 0.694813i \(0.755487\pi\)
\(882\) 47.4282i 1.59699i
\(883\) −29.1857 + 14.0551i −0.982178 + 0.472992i −0.854854 0.518869i \(-0.826353\pi\)
−0.127325 + 0.991861i \(0.540639\pi\)
\(884\) −5.61169 + 4.47517i −0.188742 + 0.150516i
\(885\) −1.13128 + 0.902165i −0.0380275 + 0.0303260i
\(886\) −33.0383 + 15.9104i −1.10994 + 0.534521i
\(887\) 6.16288i 0.206929i −0.994633 0.103465i \(-0.967007\pi\)
0.994633 0.103465i \(-0.0329929\pi\)
\(888\) −0.762940 1.58426i −0.0256026 0.0531643i
\(889\) −41.3379 + 9.43512i −1.38643 + 0.316444i
\(890\) 0.824667 + 0.397139i 0.0276429 + 0.0133121i
\(891\) 9.16812 19.0378i 0.307144 0.637790i
\(892\) 6.08211 26.6474i 0.203644 0.892222i
\(893\) −9.96681 12.4980i −0.333527 0.418229i
\(894\) −1.35421 + 1.69812i −0.0452915 + 0.0567937i
\(895\) 0.455927 + 1.99755i 0.0152400 + 0.0667706i
\(896\) 39.8125 + 9.08695i 1.33004 + 0.303574i
\(897\) 7.46513 + 5.95324i 0.249253 + 0.198773i
\(898\) 34.9995 1.16795
\(899\) 0 0
\(900\) 17.0248 0.567492
\(901\) −3.78077 3.01507i −0.125956 0.100446i
\(902\) 2.02635 + 0.462500i 0.0674699 + 0.0153996i
\(903\) −2.30194 10.0854i −0.0766037 0.335623i
\(904\) −7.31013 + 9.16662i −0.243131 + 0.304877i
\(905\) 1.47770 + 1.85297i 0.0491203 + 0.0615949i
\(906\) −0.434584 + 1.90404i −0.0144381 + 0.0632574i
\(907\) −19.0840 + 39.6284i −0.633675 + 1.31584i 0.298700 + 0.954347i \(0.403447\pi\)
−0.932375 + 0.361492i \(0.882267\pi\)
\(908\) −20.5356 9.88944i −0.681499 0.328193i
\(909\) −47.6479 + 10.8753i −1.58038 + 0.360711i
\(910\) −5.85901 12.1664i −0.194224 0.403311i
\(911\) 25.6233i 0.848936i 0.905443 + 0.424468i \(0.139539\pi\)
−0.905443 + 0.424468i \(0.860461\pi\)
\(912\) −4.05765 + 1.95406i −0.134362 + 0.0647054i
\(913\) 21.4749 17.1256i 0.710715 0.566776i
\(914\) 17.4987 13.9547i 0.578805 0.461581i
\(915\) 0.865625 0.416863i 0.0286167 0.0137811i
\(916\) 19.9825i 0.660242i
\(917\) 0.798852 + 1.65883i 0.0263804 + 0.0547795i
\(918\) 5.03473 1.14914i 0.166171 0.0379274i
\(919\) 5.62349 + 2.70813i 0.185502 + 0.0893330i 0.524329 0.851516i \(-0.324316\pi\)
−0.338828 + 0.940848i \(0.610030\pi\)
\(920\) −0.869268 + 1.80505i −0.0286589 + 0.0595108i
\(921\) 1.45281 6.36518i 0.0478718 0.209740i
\(922\) 24.6564 + 30.9182i 0.812017 + 1.01824i
\(923\) −36.8796 + 46.2456i −1.21391 + 1.52219i
\(924\) 1.45593 + 6.37883i 0.0478965 + 0.209848i
\(925\) 13.8326 + 3.15721i 0.454814 + 0.103808i
\(926\) −46.5011 37.0834i −1.52812 1.21863i
\(927\) −7.88471 −0.258968
\(928\) 0 0
\(929\) −24.5133 −0.804256 −0.402128 0.915583i \(-0.631729\pi\)
−0.402128 + 0.915583i \(0.631729\pi\)
\(930\) 1.42246 + 1.13437i 0.0466443 + 0.0371976i
\(931\) −18.7644 4.28286i −0.614979 0.140365i
\(932\) 0.542877 + 2.37850i 0.0177825 + 0.0779103i
\(933\) −5.14071 + 6.44625i −0.168299 + 0.211041i
\(934\) −29.3267 36.7745i −0.959599 1.20330i
\(935\) −0.256668 + 1.12454i −0.00839395 + 0.0367763i
\(936\) 8.55479 17.7642i 0.279622 0.580641i
\(937\) −3.68449 1.77436i −0.120367 0.0579657i 0.372731 0.927939i \(-0.378421\pi\)
−0.493098 + 0.869974i \(0.664136\pi\)
\(938\) −2.66277 + 0.607760i −0.0869426 + 0.0198441i
\(939\) −4.43972 9.21917i −0.144885 0.300856i
\(940\) 3.47219i 0.113250i
\(941\) 5.55280 2.67409i 0.181016 0.0871728i −0.341181 0.939998i \(-0.610827\pi\)
0.522197 + 0.852825i \(0.325113\pi\)
\(942\) 11.0835 8.83877i 0.361119 0.287983i
\(943\) −1.28126 + 1.02177i −0.0417235 + 0.0332734i
\(944\) −40.5381 + 19.5221i −1.31940 + 0.635391i
\(945\) 3.73125i 0.121378i
\(946\) −13.0697 27.1395i −0.424933 0.882382i
\(947\) −48.4562 + 11.0598i −1.57461 + 0.359395i −0.918548 0.395309i \(-0.870638\pi\)
−0.656065 + 0.754704i \(0.727780\pi\)
\(948\) 0.297093 + 0.143073i 0.00964914 + 0.00464678i
\(949\) −20.1356 + 41.8119i −0.653628 + 1.35727i
\(950\) 4.00312 17.5388i 0.129878 0.569034i
\(951\) 3.90097 + 4.89166i 0.126498 + 0.158623i
\(952\) −3.80194 + 4.76748i −0.123222 + 0.154515i
\(953\) −3.93541 17.2422i −0.127480 0.558529i −0.997815 0.0660678i \(-0.978955\pi\)
0.870335 0.492461i \(-0.163902\pi\)
\(954\) −21.4461 4.89493i −0.694343 0.158479i
\(955\) 5.24905 + 4.18598i 0.169855 + 0.135455i
\(956\) 11.1769 0.361486
\(957\) 0 0
\(958\) −59.5827 −1.92503
\(959\) 41.9130 + 33.4245i 1.35344 + 1.07933i
\(960\) 0.196468 + 0.0448424i 0.00634096 + 0.00144728i
\(961\) 2.09395 + 9.17419i 0.0675468 + 0.295942i
\(962\) −16.9656 + 21.2742i −0.546993 + 0.685908i
\(963\) −13.0327 16.3424i −0.419971 0.526628i
\(964\) −5.52177 + 24.1925i −0.177844 + 0.779187i
\(965\) −1.68551 + 3.50000i −0.0542585 + 0.112669i
\(966\) −12.1027 5.82834i −0.389397 0.187524i
\(967\) 12.5701 2.86904i 0.404226 0.0922620i −0.0155736 0.999879i \(-0.504957\pi\)
0.419800 + 0.907617i \(0.362100\pi\)
\(968\) 1.48426 + 3.08211i 0.0477060 + 0.0990626i
\(969\) 1.01208i 0.0325127i
\(970\) −9.12618 + 4.39494i −0.293024 + 0.141113i
\(971\) −3.78207 + 3.01610i −0.121372 + 0.0967912i −0.682295 0.731077i \(-0.739018\pi\)
0.560923 + 0.827868i \(0.310447\pi\)
\(972\) 10.7006 8.53348i 0.343223 0.273712i
\(973\) −10.2017 + 4.91288i −0.327052 + 0.157500i
\(974\) 18.3013i 0.586411i
\(975\) −4.87942 10.1322i −0.156266 0.324491i
\(976\) 29.1266 6.64795i 0.932319 0.212796i
\(977\) −14.8138 7.13394i −0.473935 0.228235i 0.181640 0.983365i \(-0.441859\pi\)
−0.655575 + 0.755130i \(0.727574\pi\)
\(978\) 1.72796 3.58815i 0.0552541 0.114736i
\(979\) 0.922207 4.04045i 0.0294739 0.129133i
\(980\) 2.60656 + 3.26853i 0.0832636 + 0.104409i
\(981\) 2.88740 3.62068i 0.0921874 0.115599i
\(982\) −7.89181 34.5763i −0.251838 1.10337i
\(983\) 25.8349 + 5.89666i 0.824007 + 0.188074i 0.613678 0.789557i \(-0.289689\pi\)
0.210329 + 0.977631i \(0.432547\pi\)
\(984\) −0.187022 0.149145i −0.00596204 0.00475457i
\(985\) 2.99808 0.0955268
\(986\) 0 0
\(987\) 14.0586 0.447490
\(988\) 10.3592 + 8.26122i 0.329571 + 0.262824i
\(989\) 23.1551 + 5.28501i 0.736291 + 0.168054i
\(990\) 1.16756 + 5.11543i 0.0371076 + 0.162579i
\(991\) −25.1930 + 31.5910i −0.800281 + 1.00352i 0.199440 + 0.979910i \(0.436088\pi\)
−0.999721 + 0.0236111i \(0.992484\pi\)
\(992\) 24.5179 + 30.7445i 0.778444 + 0.976137i
\(993\) −1.38212 + 6.05548i −0.0438604 + 0.192165i
\(994\) 36.1059 74.9747i 1.14521 2.37805i
\(995\) −2.12910 1.02532i −0.0674971 0.0325049i
\(996\) 5.10365 1.16487i 0.161715 0.0369105i
\(997\) 10.1769 + 21.1325i 0.322305 + 0.669273i 0.997671 0.0682093i \(-0.0217286\pi\)
−0.675366 + 0.737483i \(0.736014\pi\)
\(998\) 50.1831i 1.58852i
\(999\) 6.77413 3.26225i 0.214324 0.103213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.e.d.267.1 12
29.2 odd 28 29.2.d.a.24.1 yes 6
29.3 odd 28 841.2.d.b.605.1 6
29.4 even 14 841.2.e.b.270.1 12
29.5 even 14 inner 841.2.e.d.63.1 12
29.6 even 14 841.2.e.b.651.2 12
29.7 even 7 841.2.e.c.236.2 12
29.8 odd 28 841.2.d.c.645.1 6
29.9 even 14 841.2.e.c.196.2 12
29.10 odd 28 841.2.d.a.571.1 6
29.11 odd 28 841.2.a.e.1.1 3
29.12 odd 4 841.2.d.d.574.1 6
29.13 even 14 841.2.b.c.840.6 6
29.14 odd 28 841.2.d.e.190.1 6
29.15 odd 28 841.2.d.a.190.1 6
29.16 even 7 841.2.b.c.840.1 6
29.17 odd 4 29.2.d.a.23.1 6
29.18 odd 28 841.2.a.f.1.3 3
29.19 odd 28 841.2.d.e.571.1 6
29.20 even 7 841.2.e.c.196.1 12
29.21 odd 28 841.2.d.b.645.1 6
29.22 even 14 841.2.e.c.236.1 12
29.23 even 7 841.2.e.b.651.1 12
29.24 even 7 inner 841.2.e.d.63.2 12
29.25 even 7 841.2.e.b.270.2 12
29.26 odd 28 841.2.d.c.605.1 6
29.27 odd 28 841.2.d.d.778.1 6
29.28 even 2 inner 841.2.e.d.267.2 12
87.2 even 28 261.2.k.a.82.1 6
87.11 even 28 7569.2.a.r.1.3 3
87.17 even 4 261.2.k.a.226.1 6
87.47 even 28 7569.2.a.p.1.1 3
116.31 even 28 464.2.u.f.401.1 6
116.75 even 4 464.2.u.f.81.1 6
145.2 even 28 725.2.r.b.24.2 12
145.17 even 4 725.2.r.b.574.1 12
145.89 odd 28 725.2.l.b.401.1 6
145.104 odd 4 725.2.l.b.226.1 6
145.118 even 28 725.2.r.b.24.1 12
145.133 even 4 725.2.r.b.574.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.23.1 6 29.17 odd 4
29.2.d.a.24.1 yes 6 29.2 odd 28
261.2.k.a.82.1 6 87.2 even 28
261.2.k.a.226.1 6 87.17 even 4
464.2.u.f.81.1 6 116.75 even 4
464.2.u.f.401.1 6 116.31 even 28
725.2.l.b.226.1 6 145.104 odd 4
725.2.l.b.401.1 6 145.89 odd 28
725.2.r.b.24.1 12 145.118 even 28
725.2.r.b.24.2 12 145.2 even 28
725.2.r.b.574.1 12 145.17 even 4
725.2.r.b.574.2 12 145.133 even 4
841.2.a.e.1.1 3 29.11 odd 28
841.2.a.f.1.3 3 29.18 odd 28
841.2.b.c.840.1 6 29.16 even 7
841.2.b.c.840.6 6 29.13 even 14
841.2.d.a.190.1 6 29.15 odd 28
841.2.d.a.571.1 6 29.10 odd 28
841.2.d.b.605.1 6 29.3 odd 28
841.2.d.b.645.1 6 29.21 odd 28
841.2.d.c.605.1 6 29.26 odd 28
841.2.d.c.645.1 6 29.8 odd 28
841.2.d.d.574.1 6 29.12 odd 4
841.2.d.d.778.1 6 29.27 odd 28
841.2.d.e.190.1 6 29.14 odd 28
841.2.d.e.571.1 6 29.19 odd 28
841.2.e.b.270.1 12 29.4 even 14
841.2.e.b.270.2 12 29.25 even 7
841.2.e.b.651.1 12 29.23 even 7
841.2.e.b.651.2 12 29.6 even 14
841.2.e.c.196.1 12 29.20 even 7
841.2.e.c.196.2 12 29.9 even 14
841.2.e.c.236.1 12 29.22 even 14
841.2.e.c.236.2 12 29.7 even 7
841.2.e.d.63.1 12 29.5 even 14 inner
841.2.e.d.63.2 12 29.24 even 7 inner
841.2.e.d.267.1 12 1.1 even 1 trivial
841.2.e.d.267.2 12 29.28 even 2 inner
7569.2.a.p.1.1 3 87.47 even 28
7569.2.a.r.1.3 3 87.11 even 28