Properties

Label 841.2.a.f.1.3
Level $841$
Weight $2$
Character 841.1
Self dual yes
Analytic conductor $6.715$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(1,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 841.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80194 q^{2} -0.445042 q^{3} +1.24698 q^{4} +0.356896 q^{5} -0.801938 q^{6} -4.04892 q^{7} -1.35690 q^{8} -2.80194 q^{9} +0.643104 q^{10} -2.91185 q^{11} -0.554958 q^{12} +5.18598 q^{13} -7.29590 q^{14} -0.158834 q^{15} -4.93900 q^{16} -1.10992 q^{17} -5.04892 q^{18} -2.04892 q^{19} +0.445042 q^{20} +1.80194 q^{21} -5.24698 q^{22} -4.13706 q^{23} +0.603875 q^{24} -4.87263 q^{25} +9.34481 q^{26} +2.58211 q^{27} -5.04892 q^{28} -0.286208 q^{30} +6.35690 q^{31} -6.18598 q^{32} +1.29590 q^{33} -2.00000 q^{34} -1.44504 q^{35} -3.49396 q^{36} +2.91185 q^{37} -3.69202 q^{38} -2.30798 q^{39} -0.484271 q^{40} -0.396125 q^{41} +3.24698 q^{42} -5.74094 q^{43} -3.63102 q^{44} -1.00000 q^{45} -7.45473 q^{46} +7.80194 q^{47} +2.19806 q^{48} +9.39373 q^{49} -8.78017 q^{50} +0.493959 q^{51} +6.46681 q^{52} -4.35690 q^{53} +4.65279 q^{54} -1.03923 q^{55} +5.49396 q^{56} +0.911854 q^{57} -9.10992 q^{59} -0.198062 q^{60} +6.04892 q^{61} +11.4547 q^{62} +11.3448 q^{63} -1.26875 q^{64} +1.85086 q^{65} +2.33513 q^{66} +0.374354 q^{67} -1.38404 q^{68} +1.84117 q^{69} -2.60388 q^{70} -11.4058 q^{71} +3.80194 q^{72} +8.94869 q^{73} +5.24698 q^{74} +2.16852 q^{75} -2.55496 q^{76} +11.7899 q^{77} -4.15883 q^{78} +0.594187 q^{79} -1.76271 q^{80} +7.25667 q^{81} -0.713792 q^{82} -9.43296 q^{83} +2.24698 q^{84} -0.396125 q^{85} -10.3448 q^{86} +3.95108 q^{88} -1.42327 q^{89} -1.80194 q^{90} -20.9976 q^{91} -5.15883 q^{92} -2.82908 q^{93} +14.0586 q^{94} -0.731250 q^{95} +2.75302 q^{96} -15.7506 q^{97} +16.9269 q^{98} +8.15883 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - q^{3} - q^{4} - 3 q^{5} + 2 q^{6} - 3 q^{7} - 4 q^{9} + 6 q^{10} - 5 q^{11} - 2 q^{12} + q^{13} - 8 q^{14} + 8 q^{15} - 5 q^{16} - 4 q^{17} - 6 q^{18} + 3 q^{19} + q^{20} + q^{21} - 11 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80194 1.27416 0.637081 0.770797i \(-0.280142\pi\)
0.637081 + 0.770797i \(0.280142\pi\)
\(3\) −0.445042 −0.256945 −0.128473 0.991713i \(-0.541007\pi\)
−0.128473 + 0.991713i \(0.541007\pi\)
\(4\) 1.24698 0.623490
\(5\) 0.356896 0.159609 0.0798043 0.996811i \(-0.474570\pi\)
0.0798043 + 0.996811i \(0.474570\pi\)
\(6\) −0.801938 −0.327390
\(7\) −4.04892 −1.53035 −0.765173 0.643824i \(-0.777347\pi\)
−0.765173 + 0.643824i \(0.777347\pi\)
\(8\) −1.35690 −0.479735
\(9\) −2.80194 −0.933979
\(10\) 0.643104 0.203367
\(11\) −2.91185 −0.877957 −0.438979 0.898498i \(-0.644660\pi\)
−0.438979 + 0.898498i \(0.644660\pi\)
\(12\) −0.554958 −0.160203
\(13\) 5.18598 1.43833 0.719166 0.694838i \(-0.244524\pi\)
0.719166 + 0.694838i \(0.244524\pi\)
\(14\) −7.29590 −1.94991
\(15\) −0.158834 −0.0410107
\(16\) −4.93900 −1.23475
\(17\) −1.10992 −0.269194 −0.134597 0.990900i \(-0.542974\pi\)
−0.134597 + 0.990900i \(0.542974\pi\)
\(18\) −5.04892 −1.19004
\(19\) −2.04892 −0.470054 −0.235027 0.971989i \(-0.575518\pi\)
−0.235027 + 0.971989i \(0.575518\pi\)
\(20\) 0.445042 0.0995144
\(21\) 1.80194 0.393215
\(22\) −5.24698 −1.11866
\(23\) −4.13706 −0.862637 −0.431319 0.902200i \(-0.641952\pi\)
−0.431319 + 0.902200i \(0.641952\pi\)
\(24\) 0.603875 0.123266
\(25\) −4.87263 −0.974525
\(26\) 9.34481 1.83267
\(27\) 2.58211 0.496926
\(28\) −5.04892 −0.954156
\(29\) 0 0
\(30\) −0.286208 −0.0522542
\(31\) 6.35690 1.14173 0.570866 0.821043i \(-0.306608\pi\)
0.570866 + 0.821043i \(0.306608\pi\)
\(32\) −6.18598 −1.09354
\(33\) 1.29590 0.225587
\(34\) −2.00000 −0.342997
\(35\) −1.44504 −0.244257
\(36\) −3.49396 −0.582327
\(37\) 2.91185 0.478706 0.239353 0.970933i \(-0.423065\pi\)
0.239353 + 0.970933i \(0.423065\pi\)
\(38\) −3.69202 −0.598925
\(39\) −2.30798 −0.369572
\(40\) −0.484271 −0.0765699
\(41\) −0.396125 −0.0618643 −0.0309321 0.999521i \(-0.509848\pi\)
−0.0309321 + 0.999521i \(0.509848\pi\)
\(42\) 3.24698 0.501020
\(43\) −5.74094 −0.875485 −0.437742 0.899100i \(-0.644222\pi\)
−0.437742 + 0.899100i \(0.644222\pi\)
\(44\) −3.63102 −0.547397
\(45\) −1.00000 −0.149071
\(46\) −7.45473 −1.09914
\(47\) 7.80194 1.13803 0.569015 0.822327i \(-0.307325\pi\)
0.569015 + 0.822327i \(0.307325\pi\)
\(48\) 2.19806 0.317263
\(49\) 9.39373 1.34196
\(50\) −8.78017 −1.24170
\(51\) 0.493959 0.0691681
\(52\) 6.46681 0.896785
\(53\) −4.35690 −0.598466 −0.299233 0.954180i \(-0.596731\pi\)
−0.299233 + 0.954180i \(0.596731\pi\)
\(54\) 4.65279 0.633165
\(55\) −1.03923 −0.140130
\(56\) 5.49396 0.734161
\(57\) 0.911854 0.120778
\(58\) 0 0
\(59\) −9.10992 −1.18601 −0.593005 0.805199i \(-0.702059\pi\)
−0.593005 + 0.805199i \(0.702059\pi\)
\(60\) −0.198062 −0.0255697
\(61\) 6.04892 0.774485 0.387242 0.921978i \(-0.373428\pi\)
0.387242 + 0.921978i \(0.373428\pi\)
\(62\) 11.4547 1.45475
\(63\) 11.3448 1.42931
\(64\) −1.26875 −0.158594
\(65\) 1.85086 0.229570
\(66\) 2.33513 0.287434
\(67\) 0.374354 0.0457347 0.0228673 0.999739i \(-0.492720\pi\)
0.0228673 + 0.999739i \(0.492720\pi\)
\(68\) −1.38404 −0.167840
\(69\) 1.84117 0.221650
\(70\) −2.60388 −0.311223
\(71\) −11.4058 −1.35362 −0.676810 0.736157i \(-0.736638\pi\)
−0.676810 + 0.736157i \(0.736638\pi\)
\(72\) 3.80194 0.448063
\(73\) 8.94869 1.04736 0.523682 0.851914i \(-0.324558\pi\)
0.523682 + 0.851914i \(0.324558\pi\)
\(74\) 5.24698 0.609949
\(75\) 2.16852 0.250399
\(76\) −2.55496 −0.293074
\(77\) 11.7899 1.34358
\(78\) −4.15883 −0.470895
\(79\) 0.594187 0.0668512 0.0334256 0.999441i \(-0.489358\pi\)
0.0334256 + 0.999441i \(0.489358\pi\)
\(80\) −1.76271 −0.197077
\(81\) 7.25667 0.806296
\(82\) −0.713792 −0.0788251
\(83\) −9.43296 −1.03540 −0.517701 0.855562i \(-0.673212\pi\)
−0.517701 + 0.855562i \(0.673212\pi\)
\(84\) 2.24698 0.245166
\(85\) −0.396125 −0.0429657
\(86\) −10.3448 −1.11551
\(87\) 0 0
\(88\) 3.95108 0.421187
\(89\) −1.42327 −0.150866 −0.0754332 0.997151i \(-0.524034\pi\)
−0.0754332 + 0.997151i \(0.524034\pi\)
\(90\) −1.80194 −0.189941
\(91\) −20.9976 −2.20115
\(92\) −5.15883 −0.537846
\(93\) −2.82908 −0.293362
\(94\) 14.0586 1.45003
\(95\) −0.731250 −0.0750247
\(96\) 2.75302 0.280979
\(97\) −15.7506 −1.59923 −0.799617 0.600510i \(-0.794964\pi\)
−0.799617 + 0.600510i \(0.794964\pi\)
\(98\) 16.9269 1.70988
\(99\) 8.15883 0.819994
\(100\) −6.07606 −0.607606
\(101\) 17.4426 1.73561 0.867804 0.496906i \(-0.165531\pi\)
0.867804 + 0.496906i \(0.165531\pi\)
\(102\) 0.890084 0.0881314
\(103\) −2.81402 −0.277274 −0.138637 0.990343i \(-0.544272\pi\)
−0.138637 + 0.990343i \(0.544272\pi\)
\(104\) −7.03684 −0.690019
\(105\) 0.643104 0.0627605
\(106\) −7.85086 −0.762542
\(107\) −7.46011 −0.721196 −0.360598 0.932721i \(-0.617427\pi\)
−0.360598 + 0.932721i \(0.617427\pi\)
\(108\) 3.21983 0.309829
\(109\) −1.65279 −0.158309 −0.0791544 0.996862i \(-0.525222\pi\)
−0.0791544 + 0.996862i \(0.525222\pi\)
\(110\) −1.87263 −0.178548
\(111\) −1.29590 −0.123001
\(112\) 19.9976 1.88960
\(113\) −8.64071 −0.812850 −0.406425 0.913684i \(-0.633225\pi\)
−0.406425 + 0.913684i \(0.633225\pi\)
\(114\) 1.64310 0.153891
\(115\) −1.47650 −0.137684
\(116\) 0 0
\(117\) −14.5308 −1.34337
\(118\) −16.4155 −1.51117
\(119\) 4.49396 0.411961
\(120\) 0.215521 0.0196743
\(121\) −2.52111 −0.229191
\(122\) 10.8998 0.986819
\(123\) 0.176292 0.0158957
\(124\) 7.92692 0.711858
\(125\) −3.52350 −0.315151
\(126\) 20.4426 1.82118
\(127\) −10.4722 −0.929257 −0.464628 0.885506i \(-0.653812\pi\)
−0.464628 + 0.885506i \(0.653812\pi\)
\(128\) 10.0858 0.891463
\(129\) 2.55496 0.224952
\(130\) 3.33513 0.292510
\(131\) 0.454731 0.0397300 0.0198650 0.999803i \(-0.493676\pi\)
0.0198650 + 0.999803i \(0.493676\pi\)
\(132\) 1.61596 0.140651
\(133\) 8.29590 0.719345
\(134\) 0.674563 0.0582734
\(135\) 0.921543 0.0793138
\(136\) 1.50604 0.129142
\(137\) 13.2403 1.13119 0.565597 0.824682i \(-0.308646\pi\)
0.565597 + 0.824682i \(0.308646\pi\)
\(138\) 3.31767 0.282419
\(139\) −2.79656 −0.237201 −0.118601 0.992942i \(-0.537841\pi\)
−0.118601 + 0.992942i \(0.537841\pi\)
\(140\) −1.80194 −0.152292
\(141\) −3.47219 −0.292411
\(142\) −20.5526 −1.72473
\(143\) −15.1008 −1.26279
\(144\) 13.8388 1.15323
\(145\) 0 0
\(146\) 16.1250 1.33451
\(147\) −4.18060 −0.344810
\(148\) 3.63102 0.298468
\(149\) 2.70841 0.221882 0.110941 0.993827i \(-0.464614\pi\)
0.110941 + 0.993827i \(0.464614\pi\)
\(150\) 3.90754 0.319049
\(151\) −2.43535 −0.198186 −0.0990931 0.995078i \(-0.531594\pi\)
−0.0990931 + 0.995078i \(0.531594\pi\)
\(152\) 2.78017 0.225501
\(153\) 3.10992 0.251422
\(154\) 21.2446 1.71194
\(155\) 2.26875 0.182230
\(156\) −2.87800 −0.230425
\(157\) −17.6775 −1.41082 −0.705411 0.708799i \(-0.749238\pi\)
−0.705411 + 0.708799i \(0.749238\pi\)
\(158\) 1.07069 0.0851793
\(159\) 1.93900 0.153773
\(160\) −2.20775 −0.174538
\(161\) 16.7506 1.32013
\(162\) 13.0761 1.02735
\(163\) 4.96615 0.388979 0.194489 0.980905i \(-0.437695\pi\)
0.194489 + 0.980905i \(0.437695\pi\)
\(164\) −0.493959 −0.0385717
\(165\) 0.462500 0.0360056
\(166\) −16.9976 −1.31927
\(167\) 14.4644 1.11929 0.559645 0.828732i \(-0.310937\pi\)
0.559645 + 0.828732i \(0.310937\pi\)
\(168\) −2.44504 −0.188639
\(169\) 13.8944 1.06880
\(170\) −0.713792 −0.0547453
\(171\) 5.74094 0.439021
\(172\) −7.15883 −0.545856
\(173\) 10.5133 0.799314 0.399657 0.916665i \(-0.369129\pi\)
0.399657 + 0.916665i \(0.369129\pi\)
\(174\) 0 0
\(175\) 19.7289 1.49136
\(176\) 14.3817 1.08406
\(177\) 4.05429 0.304739
\(178\) −2.56465 −0.192228
\(179\) −5.74094 −0.429098 −0.214549 0.976713i \(-0.568828\pi\)
−0.214549 + 0.976713i \(0.568828\pi\)
\(180\) −1.24698 −0.0929444
\(181\) −6.64071 −0.493600 −0.246800 0.969066i \(-0.579379\pi\)
−0.246800 + 0.969066i \(0.579379\pi\)
\(182\) −37.8364 −2.80462
\(183\) −2.69202 −0.199000
\(184\) 5.61356 0.413837
\(185\) 1.03923 0.0764056
\(186\) −5.09783 −0.373791
\(187\) 3.23191 0.236341
\(188\) 9.72886 0.709550
\(189\) −10.4547 −0.760470
\(190\) −1.31767 −0.0955936
\(191\) 18.8116 1.36116 0.680581 0.732673i \(-0.261728\pi\)
0.680581 + 0.732673i \(0.261728\pi\)
\(192\) 0.564647 0.0407499
\(193\) −10.8847 −0.783498 −0.391749 0.920072i \(-0.628130\pi\)
−0.391749 + 0.920072i \(0.628130\pi\)
\(194\) −28.3817 −2.03768
\(195\) −0.823708 −0.0589870
\(196\) 11.7138 0.836699
\(197\) −8.40044 −0.598506 −0.299253 0.954174i \(-0.596738\pi\)
−0.299253 + 0.954174i \(0.596738\pi\)
\(198\) 14.7017 1.04481
\(199\) −6.62133 −0.469374 −0.234687 0.972071i \(-0.575407\pi\)
−0.234687 + 0.972071i \(0.575407\pi\)
\(200\) 6.61165 0.467514
\(201\) −0.166603 −0.0117513
\(202\) 31.4306 2.21145
\(203\) 0 0
\(204\) 0.615957 0.0431256
\(205\) −0.141375 −0.00987407
\(206\) −5.07069 −0.353292
\(207\) 11.5918 0.805685
\(208\) −25.6136 −1.77598
\(209\) 5.96615 0.412687
\(210\) 1.15883 0.0799671
\(211\) 8.10023 0.557643 0.278821 0.960343i \(-0.410056\pi\)
0.278821 + 0.960343i \(0.410056\pi\)
\(212\) −5.43296 −0.373137
\(213\) 5.07606 0.347806
\(214\) −13.4426 −0.918921
\(215\) −2.04892 −0.139735
\(216\) −3.50365 −0.238393
\(217\) −25.7385 −1.74725
\(218\) −2.97823 −0.201711
\(219\) −3.98254 −0.269115
\(220\) −1.29590 −0.0873694
\(221\) −5.75600 −0.387191
\(222\) −2.33513 −0.156723
\(223\) 21.9191 1.46781 0.733907 0.679250i \(-0.237695\pi\)
0.733907 + 0.679250i \(0.237695\pi\)
\(224\) 25.0465 1.67349
\(225\) 13.6528 0.910186
\(226\) −15.5700 −1.03570
\(227\) −18.2784 −1.21318 −0.606591 0.795014i \(-0.707464\pi\)
−0.606591 + 0.795014i \(0.707464\pi\)
\(228\) 1.13706 0.0753039
\(229\) −16.0248 −1.05895 −0.529473 0.848327i \(-0.677610\pi\)
−0.529473 + 0.848327i \(0.677610\pi\)
\(230\) −2.66056 −0.175432
\(231\) −5.24698 −0.345226
\(232\) 0 0
\(233\) 1.95646 0.128172 0.0640860 0.997944i \(-0.479587\pi\)
0.0640860 + 0.997944i \(0.479587\pi\)
\(234\) −26.1836 −1.71167
\(235\) 2.78448 0.181639
\(236\) −11.3599 −0.739465
\(237\) −0.264438 −0.0171771
\(238\) 8.09783 0.524905
\(239\) −8.96316 −0.579779 −0.289889 0.957060i \(-0.593619\pi\)
−0.289889 + 0.957060i \(0.593619\pi\)
\(240\) 0.784479 0.0506379
\(241\) 19.8998 1.28186 0.640929 0.767601i \(-0.278549\pi\)
0.640929 + 0.767601i \(0.278549\pi\)
\(242\) −4.54288 −0.292027
\(243\) −10.9758 −0.704100
\(244\) 7.54288 0.482883
\(245\) 3.35258 0.214189
\(246\) 0.317667 0.0202537
\(247\) −10.6256 −0.676094
\(248\) −8.62565 −0.547729
\(249\) 4.19806 0.266041
\(250\) −6.34913 −0.401554
\(251\) −25.8049 −1.62879 −0.814396 0.580309i \(-0.802932\pi\)
−0.814396 + 0.580309i \(0.802932\pi\)
\(252\) 14.1468 0.891162
\(253\) 12.0465 0.757359
\(254\) −18.8702 −1.18402
\(255\) 0.176292 0.0110398
\(256\) 20.7114 1.29446
\(257\) 11.9511 0.745488 0.372744 0.927934i \(-0.378417\pi\)
0.372744 + 0.927934i \(0.378417\pi\)
\(258\) 4.60388 0.286625
\(259\) −11.7899 −0.732586
\(260\) 2.30798 0.143135
\(261\) 0 0
\(262\) 0.819396 0.0506225
\(263\) 0.332733 0.0205172 0.0102586 0.999947i \(-0.496735\pi\)
0.0102586 + 0.999947i \(0.496735\pi\)
\(264\) −1.75840 −0.108222
\(265\) −1.55496 −0.0955203
\(266\) 14.9487 0.916563
\(267\) 0.633415 0.0387644
\(268\) 0.466812 0.0285151
\(269\) 1.06398 0.0648722 0.0324361 0.999474i \(-0.489673\pi\)
0.0324361 + 0.999474i \(0.489673\pi\)
\(270\) 1.66056 0.101059
\(271\) 16.4644 1.00014 0.500071 0.865984i \(-0.333307\pi\)
0.500071 + 0.865984i \(0.333307\pi\)
\(272\) 5.48188 0.332388
\(273\) 9.34481 0.565574
\(274\) 23.8582 1.44132
\(275\) 14.1884 0.855591
\(276\) 2.29590 0.138197
\(277\) 6.59419 0.396206 0.198103 0.980181i \(-0.436522\pi\)
0.198103 + 0.980181i \(0.436522\pi\)
\(278\) −5.03923 −0.302233
\(279\) −17.8116 −1.06635
\(280\) 1.96077 0.117179
\(281\) −30.5351 −1.82157 −0.910786 0.412879i \(-0.864523\pi\)
−0.910786 + 0.412879i \(0.864523\pi\)
\(282\) −6.25667 −0.372579
\(283\) −3.55496 −0.211320 −0.105660 0.994402i \(-0.533696\pi\)
−0.105660 + 0.994402i \(0.533696\pi\)
\(284\) −14.2228 −0.843969
\(285\) 0.325437 0.0192772
\(286\) −27.2107 −1.60900
\(287\) 1.60388 0.0946738
\(288\) 17.3327 1.02134
\(289\) −15.7681 −0.927534
\(290\) 0 0
\(291\) 7.00969 0.410915
\(292\) 11.1588 0.653021
\(293\) −32.8799 −1.92087 −0.960433 0.278512i \(-0.910159\pi\)
−0.960433 + 0.278512i \(0.910159\pi\)
\(294\) −7.53319 −0.439344
\(295\) −3.25129 −0.189298
\(296\) −3.95108 −0.229652
\(297\) −7.51871 −0.436280
\(298\) 4.88040 0.282714
\(299\) −21.4547 −1.24076
\(300\) 2.70410 0.156121
\(301\) 23.2446 1.33980
\(302\) −4.38835 −0.252521
\(303\) −7.76271 −0.445956
\(304\) 10.1196 0.580399
\(305\) 2.15883 0.123614
\(306\) 5.60388 0.320352
\(307\) −14.6703 −0.837275 −0.418638 0.908153i \(-0.637492\pi\)
−0.418638 + 0.908153i \(0.637492\pi\)
\(308\) 14.7017 0.837708
\(309\) 1.25236 0.0712441
\(310\) 4.08815 0.232191
\(311\) −18.5265 −1.05054 −0.525270 0.850935i \(-0.676036\pi\)
−0.525270 + 0.850935i \(0.676036\pi\)
\(312\) 3.13169 0.177297
\(313\) 22.9922 1.29960 0.649799 0.760106i \(-0.274853\pi\)
0.649799 + 0.760106i \(0.274853\pi\)
\(314\) −31.8538 −1.79762
\(315\) 4.04892 0.228131
\(316\) 0.740939 0.0416811
\(317\) −14.0586 −0.789610 −0.394805 0.918765i \(-0.629188\pi\)
−0.394805 + 0.918765i \(0.629188\pi\)
\(318\) 3.49396 0.195932
\(319\) 0 0
\(320\) −0.452812 −0.0253129
\(321\) 3.32006 0.185308
\(322\) 30.1836 1.68207
\(323\) 2.27413 0.126536
\(324\) 9.04892 0.502718
\(325\) −25.2693 −1.40169
\(326\) 8.94869 0.495622
\(327\) 0.735562 0.0406767
\(328\) 0.537500 0.0296785
\(329\) −31.5894 −1.74158
\(330\) 0.833397 0.0458770
\(331\) −13.9565 −0.767116 −0.383558 0.923517i \(-0.625301\pi\)
−0.383558 + 0.923517i \(0.625301\pi\)
\(332\) −11.7627 −0.645563
\(333\) −8.15883 −0.447101
\(334\) 26.0640 1.42616
\(335\) 0.133605 0.00729965
\(336\) −8.89977 −0.485522
\(337\) 13.9976 0.762498 0.381249 0.924472i \(-0.375494\pi\)
0.381249 + 0.924472i \(0.375494\pi\)
\(338\) 25.0368 1.36182
\(339\) 3.84548 0.208858
\(340\) −0.493959 −0.0267887
\(341\) −18.5104 −1.00239
\(342\) 10.3448 0.559383
\(343\) −9.69202 −0.523320
\(344\) 7.78986 0.420001
\(345\) 0.657105 0.0353773
\(346\) 18.9444 1.01846
\(347\) −19.8538 −1.06581 −0.532905 0.846175i \(-0.678900\pi\)
−0.532905 + 0.846175i \(0.678900\pi\)
\(348\) 0 0
\(349\) −26.9202 −1.44101 −0.720503 0.693452i \(-0.756089\pi\)
−0.720503 + 0.693452i \(0.756089\pi\)
\(350\) 35.5502 1.90024
\(351\) 13.3907 0.714745
\(352\) 18.0127 0.960079
\(353\) −4.01507 −0.213700 −0.106850 0.994275i \(-0.534077\pi\)
−0.106850 + 0.994275i \(0.534077\pi\)
\(354\) 7.30559 0.388287
\(355\) −4.07069 −0.216050
\(356\) −1.77479 −0.0940637
\(357\) −2.00000 −0.105851
\(358\) −10.3448 −0.546740
\(359\) 0.746316 0.0393890 0.0196945 0.999806i \(-0.493731\pi\)
0.0196945 + 0.999806i \(0.493731\pi\)
\(360\) 1.35690 0.0715147
\(361\) −14.8019 −0.779049
\(362\) −11.9661 −0.628927
\(363\) 1.12200 0.0588896
\(364\) −26.1836 −1.37239
\(365\) 3.19375 0.167169
\(366\) −4.85086 −0.253558
\(367\) 34.0489 1.77734 0.888670 0.458548i \(-0.151630\pi\)
0.888670 + 0.458548i \(0.151630\pi\)
\(368\) 20.4330 1.06514
\(369\) 1.10992 0.0577799
\(370\) 1.87263 0.0973532
\(371\) 17.6407 0.915860
\(372\) −3.52781 −0.182908
\(373\) 28.0006 1.44982 0.724908 0.688846i \(-0.241882\pi\)
0.724908 + 0.688846i \(0.241882\pi\)
\(374\) 5.82371 0.301137
\(375\) 1.56810 0.0809766
\(376\) −10.5864 −0.545953
\(377\) 0 0
\(378\) −18.8388 −0.968962
\(379\) −22.8810 −1.17532 −0.587659 0.809109i \(-0.699950\pi\)
−0.587659 + 0.809109i \(0.699950\pi\)
\(380\) −0.911854 −0.0467771
\(381\) 4.66056 0.238768
\(382\) 33.8974 1.73434
\(383\) 11.8582 0.605923 0.302962 0.953003i \(-0.402025\pi\)
0.302962 + 0.953003i \(0.402025\pi\)
\(384\) −4.48858 −0.229057
\(385\) 4.20775 0.214447
\(386\) −19.6136 −0.998304
\(387\) 16.0858 0.817685
\(388\) −19.6407 −0.997106
\(389\) 10.3913 0.526862 0.263431 0.964678i \(-0.415146\pi\)
0.263431 + 0.964678i \(0.415146\pi\)
\(390\) −1.48427 −0.0751590
\(391\) 4.59179 0.232217
\(392\) −12.7463 −0.643786
\(393\) −0.202374 −0.0102084
\(394\) −15.1371 −0.762594
\(395\) 0.212063 0.0106700
\(396\) 10.1739 0.511258
\(397\) 8.21744 0.412421 0.206211 0.978508i \(-0.433887\pi\)
0.206211 + 0.978508i \(0.433887\pi\)
\(398\) −11.9312 −0.598059
\(399\) −3.69202 −0.184832
\(400\) 24.0659 1.20330
\(401\) 24.8810 1.24250 0.621249 0.783614i \(-0.286626\pi\)
0.621249 + 0.783614i \(0.286626\pi\)
\(402\) −0.300209 −0.0149731
\(403\) 32.9667 1.64219
\(404\) 21.7506 1.08213
\(405\) 2.58987 0.128692
\(406\) 0 0
\(407\) −8.47889 −0.420283
\(408\) −0.670251 −0.0331824
\(409\) −18.8955 −0.934320 −0.467160 0.884173i \(-0.654723\pi\)
−0.467160 + 0.884173i \(0.654723\pi\)
\(410\) −0.254749 −0.0125812
\(411\) −5.89248 −0.290654
\(412\) −3.50902 −0.172877
\(413\) 36.8853 1.81501
\(414\) 20.8877 1.02657
\(415\) −3.36658 −0.165259
\(416\) −32.0804 −1.57287
\(417\) 1.24459 0.0609477
\(418\) 10.7506 0.525830
\(419\) −10.8925 −0.532132 −0.266066 0.963955i \(-0.585724\pi\)
−0.266066 + 0.963955i \(0.585724\pi\)
\(420\) 0.801938 0.0391306
\(421\) 19.9608 0.972828 0.486414 0.873728i \(-0.338305\pi\)
0.486414 + 0.873728i \(0.338305\pi\)
\(422\) 14.5961 0.710527
\(423\) −21.8605 −1.06290
\(424\) 5.91185 0.287105
\(425\) 5.40821 0.262337
\(426\) 9.14675 0.443162
\(427\) −24.4916 −1.18523
\(428\) −9.30260 −0.449658
\(429\) 6.72050 0.324469
\(430\) −3.69202 −0.178045
\(431\) −30.1903 −1.45422 −0.727108 0.686524i \(-0.759136\pi\)
−0.727108 + 0.686524i \(0.759136\pi\)
\(432\) −12.7530 −0.613580
\(433\) 20.1914 0.970335 0.485167 0.874421i \(-0.338759\pi\)
0.485167 + 0.874421i \(0.338759\pi\)
\(434\) −46.3793 −2.22628
\(435\) 0 0
\(436\) −2.06100 −0.0987039
\(437\) 8.47650 0.405486
\(438\) −7.17629 −0.342896
\(439\) −10.6649 −0.509007 −0.254503 0.967072i \(-0.581912\pi\)
−0.254503 + 0.967072i \(0.581912\pi\)
\(440\) 1.41013 0.0672251
\(441\) −26.3207 −1.25336
\(442\) −10.3720 −0.493344
\(443\) 20.3502 0.966867 0.483433 0.875381i \(-0.339390\pi\)
0.483433 + 0.875381i \(0.339390\pi\)
\(444\) −1.61596 −0.0766899
\(445\) −0.507960 −0.0240796
\(446\) 39.4969 1.87023
\(447\) −1.20536 −0.0570115
\(448\) 5.13706 0.242703
\(449\) −19.4233 −0.916641 −0.458320 0.888787i \(-0.651549\pi\)
−0.458320 + 0.888787i \(0.651549\pi\)
\(450\) 24.6015 1.15973
\(451\) 1.15346 0.0543142
\(452\) −10.7748 −0.506804
\(453\) 1.08383 0.0509230
\(454\) −32.9366 −1.54579
\(455\) −7.49396 −0.351322
\(456\) −1.23729 −0.0579415
\(457\) −12.4209 −0.581024 −0.290512 0.956871i \(-0.593826\pi\)
−0.290512 + 0.956871i \(0.593826\pi\)
\(458\) −28.8756 −1.34927
\(459\) −2.86592 −0.133770
\(460\) −1.84117 −0.0858448
\(461\) 21.9463 1.02214 0.511070 0.859539i \(-0.329249\pi\)
0.511070 + 0.859539i \(0.329249\pi\)
\(462\) −9.45473 −0.439874
\(463\) −33.0073 −1.53398 −0.766990 0.641660i \(-0.778246\pi\)
−0.766990 + 0.641660i \(0.778246\pi\)
\(464\) 0 0
\(465\) −1.00969 −0.0468232
\(466\) 3.52542 0.163312
\(467\) 26.1032 1.20791 0.603956 0.797017i \(-0.293590\pi\)
0.603956 + 0.797017i \(0.293590\pi\)
\(468\) −18.1196 −0.837579
\(469\) −1.51573 −0.0699899
\(470\) 5.01746 0.231438
\(471\) 7.86725 0.362504
\(472\) 12.3612 0.568971
\(473\) 16.7168 0.768638
\(474\) −0.476501 −0.0218864
\(475\) 9.98361 0.458079
\(476\) 5.60388 0.256853
\(477\) 12.2078 0.558955
\(478\) −16.1511 −0.738732
\(479\) −33.0659 −1.51082 −0.755410 0.655253i \(-0.772562\pi\)
−0.755410 + 0.655253i \(0.772562\pi\)
\(480\) 0.982542 0.0448467
\(481\) 15.1008 0.688538
\(482\) 35.8582 1.63329
\(483\) −7.45473 −0.339202
\(484\) −3.14377 −0.142899
\(485\) −5.62133 −0.255252
\(486\) −19.7778 −0.897138
\(487\) −10.1564 −0.460232 −0.230116 0.973163i \(-0.573911\pi\)
−0.230116 + 0.973163i \(0.573911\pi\)
\(488\) −8.20775 −0.371547
\(489\) −2.21014 −0.0999462
\(490\) 6.04115 0.272911
\(491\) 19.6819 0.888230 0.444115 0.895970i \(-0.353518\pi\)
0.444115 + 0.895970i \(0.353518\pi\)
\(492\) 0.219833 0.00991082
\(493\) 0 0
\(494\) −19.1468 −0.861453
\(495\) 2.91185 0.130878
\(496\) −31.3967 −1.40975
\(497\) 46.1812 2.07151
\(498\) 7.56465 0.338980
\(499\) 27.8495 1.24672 0.623358 0.781937i \(-0.285768\pi\)
0.623358 + 0.781937i \(0.285768\pi\)
\(500\) −4.39373 −0.196494
\(501\) −6.43727 −0.287596
\(502\) −46.4989 −2.07535
\(503\) 0.225209 0.0100416 0.00502079 0.999987i \(-0.498402\pi\)
0.00502079 + 0.999987i \(0.498402\pi\)
\(504\) −15.3937 −0.685691
\(505\) 6.22521 0.277018
\(506\) 21.7071 0.964998
\(507\) −6.18359 −0.274623
\(508\) −13.0586 −0.579382
\(509\) −25.3032 −1.12154 −0.560772 0.827970i \(-0.689496\pi\)
−0.560772 + 0.827970i \(0.689496\pi\)
\(510\) 0.317667 0.0140665
\(511\) −36.2325 −1.60283
\(512\) 17.1491 0.757892
\(513\) −5.29052 −0.233582
\(514\) 21.5351 0.949873
\(515\) −1.00431 −0.0442553
\(516\) 3.18598 0.140255
\(517\) −22.7181 −0.999141
\(518\) −21.2446 −0.933434
\(519\) −4.67887 −0.205380
\(520\) −2.51142 −0.110133
\(521\) 23.5797 1.03305 0.516523 0.856273i \(-0.327226\pi\)
0.516523 + 0.856273i \(0.327226\pi\)
\(522\) 0 0
\(523\) 3.96508 0.173381 0.0866905 0.996235i \(-0.472371\pi\)
0.0866905 + 0.996235i \(0.472371\pi\)
\(524\) 0.567040 0.0247712
\(525\) −8.78017 −0.383198
\(526\) 0.599564 0.0261422
\(527\) −7.05562 −0.307348
\(528\) −6.40044 −0.278543
\(529\) −5.88471 −0.255857
\(530\) −2.80194 −0.121708
\(531\) 25.5254 1.10771
\(532\) 10.3448 0.448505
\(533\) −2.05429 −0.0889814
\(534\) 1.14138 0.0493921
\(535\) −2.66248 −0.115109
\(536\) −0.507960 −0.0219405
\(537\) 2.55496 0.110255
\(538\) 1.91723 0.0826577
\(539\) −27.3532 −1.17818
\(540\) 1.14914 0.0494513
\(541\) 24.6601 1.06022 0.530110 0.847929i \(-0.322151\pi\)
0.530110 + 0.847929i \(0.322151\pi\)
\(542\) 29.6679 1.27434
\(543\) 2.95539 0.126828
\(544\) 6.86592 0.294374
\(545\) −0.589875 −0.0252675
\(546\) 16.8388 0.720633
\(547\) 24.8412 1.06213 0.531066 0.847331i \(-0.321792\pi\)
0.531066 + 0.847331i \(0.321792\pi\)
\(548\) 16.5104 0.705287
\(549\) −16.9487 −0.723352
\(550\) 25.5666 1.09016
\(551\) 0 0
\(552\) −2.49827 −0.106333
\(553\) −2.40581 −0.102306
\(554\) 11.8823 0.504831
\(555\) −0.462500 −0.0196320
\(556\) −3.48725 −0.147893
\(557\) 7.76510 0.329018 0.164509 0.986376i \(-0.447396\pi\)
0.164509 + 0.986376i \(0.447396\pi\)
\(558\) −32.0954 −1.35871
\(559\) −29.7724 −1.25924
\(560\) 7.13706 0.301596
\(561\) −1.43834 −0.0607266
\(562\) −55.0224 −2.32098
\(563\) −20.8009 −0.876652 −0.438326 0.898816i \(-0.644429\pi\)
−0.438326 + 0.898816i \(0.644429\pi\)
\(564\) −4.32975 −0.182315
\(565\) −3.08383 −0.129738
\(566\) −6.40581 −0.269256
\(567\) −29.3817 −1.23391
\(568\) 15.4765 0.649380
\(569\) −2.80923 −0.117769 −0.0588846 0.998265i \(-0.518754\pi\)
−0.0588846 + 0.998265i \(0.518754\pi\)
\(570\) 0.586417 0.0245623
\(571\) 2.89248 0.121046 0.0605232 0.998167i \(-0.480723\pi\)
0.0605232 + 0.998167i \(0.480723\pi\)
\(572\) −18.8304 −0.787339
\(573\) −8.37196 −0.349744
\(574\) 2.89008 0.120630
\(575\) 20.1584 0.840662
\(576\) 3.55496 0.148123
\(577\) −7.18896 −0.299281 −0.149640 0.988741i \(-0.547812\pi\)
−0.149640 + 0.988741i \(0.547812\pi\)
\(578\) −28.4131 −1.18183
\(579\) 4.84415 0.201316
\(580\) 0 0
\(581\) 38.1933 1.58452
\(582\) 12.6310 0.523573
\(583\) 12.6866 0.525427
\(584\) −12.1424 −0.502458
\(585\) −5.18598 −0.214414
\(586\) −59.2476 −2.44749
\(587\) −31.0368 −1.28103 −0.640514 0.767947i \(-0.721279\pi\)
−0.640514 + 0.767947i \(0.721279\pi\)
\(588\) −5.21313 −0.214986
\(589\) −13.0248 −0.536676
\(590\) −5.85862 −0.241196
\(591\) 3.73855 0.153783
\(592\) −14.3817 −0.591082
\(593\) 36.4674 1.49754 0.748768 0.662832i \(-0.230646\pi\)
0.748768 + 0.662832i \(0.230646\pi\)
\(594\) −13.5483 −0.555892
\(595\) 1.60388 0.0657525
\(596\) 3.37734 0.138341
\(597\) 2.94677 0.120603
\(598\) −38.6601 −1.58093
\(599\) −30.0683 −1.22856 −0.614279 0.789089i \(-0.710553\pi\)
−0.614279 + 0.789089i \(0.710553\pi\)
\(600\) −2.94246 −0.120125
\(601\) 33.1860 1.35368 0.676842 0.736128i \(-0.263348\pi\)
0.676842 + 0.736128i \(0.263348\pi\)
\(602\) 41.8853 1.70712
\(603\) −1.04892 −0.0427152
\(604\) −3.03684 −0.123567
\(605\) −0.899772 −0.0365810
\(606\) −13.9879 −0.568220
\(607\) 15.1202 0.613710 0.306855 0.951756i \(-0.400723\pi\)
0.306855 + 0.951756i \(0.400723\pi\)
\(608\) 12.6746 0.514021
\(609\) 0 0
\(610\) 3.89008 0.157505
\(611\) 40.4607 1.63686
\(612\) 3.87800 0.156759
\(613\) 3.75541 0.151680 0.0758399 0.997120i \(-0.475836\pi\)
0.0758399 + 0.997120i \(0.475836\pi\)
\(614\) −26.4349 −1.06682
\(615\) 0.0629179 0.00253709
\(616\) −15.9976 −0.644562
\(617\) −29.8562 −1.20197 −0.600983 0.799262i \(-0.705224\pi\)
−0.600983 + 0.799262i \(0.705224\pi\)
\(618\) 2.25667 0.0907765
\(619\) 46.1178 1.85363 0.926816 0.375517i \(-0.122535\pi\)
0.926816 + 0.375517i \(0.122535\pi\)
\(620\) 2.82908 0.113619
\(621\) −10.6823 −0.428667
\(622\) −33.3836 −1.33856
\(623\) 5.76271 0.230878
\(624\) 11.3991 0.456330
\(625\) 23.1056 0.924224
\(626\) 41.4306 1.65590
\(627\) −2.65519 −0.106038
\(628\) −22.0435 −0.879633
\(629\) −3.23191 −0.128865
\(630\) 7.29590 0.290675
\(631\) 12.6300 0.502791 0.251395 0.967884i \(-0.419111\pi\)
0.251395 + 0.967884i \(0.419111\pi\)
\(632\) −0.806250 −0.0320709
\(633\) −3.60494 −0.143284
\(634\) −25.3327 −1.00609
\(635\) −3.73748 −0.148317
\(636\) 2.41789 0.0958758
\(637\) 48.7157 1.93019
\(638\) 0 0
\(639\) 31.9584 1.26425
\(640\) 3.59956 0.142285
\(641\) −39.0019 −1.54048 −0.770242 0.637752i \(-0.779864\pi\)
−0.770242 + 0.637752i \(0.779864\pi\)
\(642\) 5.98254 0.236112
\(643\) 41.2965 1.62857 0.814287 0.580462i \(-0.197128\pi\)
0.814287 + 0.580462i \(0.197128\pi\)
\(644\) 20.8877 0.823090
\(645\) 0.911854 0.0359042
\(646\) 4.09783 0.161227
\(647\) −17.9105 −0.704135 −0.352068 0.935975i \(-0.614521\pi\)
−0.352068 + 0.935975i \(0.614521\pi\)
\(648\) −9.84654 −0.386809
\(649\) 26.5267 1.04127
\(650\) −45.5338 −1.78598
\(651\) 11.4547 0.448946
\(652\) 6.19269 0.242524
\(653\) 13.3207 0.521277 0.260639 0.965436i \(-0.416067\pi\)
0.260639 + 0.965436i \(0.416067\pi\)
\(654\) 1.32544 0.0518287
\(655\) 0.162291 0.00634125
\(656\) 1.95646 0.0763869
\(657\) −25.0737 −0.978217
\(658\) −56.9221 −2.21906
\(659\) −18.7657 −0.731008 −0.365504 0.930810i \(-0.619103\pi\)
−0.365504 + 0.930810i \(0.619103\pi\)
\(660\) 0.576728 0.0224491
\(661\) −24.7289 −0.961841 −0.480921 0.876764i \(-0.659697\pi\)
−0.480921 + 0.876764i \(0.659697\pi\)
\(662\) −25.1487 −0.977431
\(663\) 2.56166 0.0994867
\(664\) 12.7995 0.496719
\(665\) 2.96077 0.114814
\(666\) −14.7017 −0.569680
\(667\) 0 0
\(668\) 18.0368 0.697866
\(669\) −9.75494 −0.377148
\(670\) 0.240749 0.00930094
\(671\) −17.6136 −0.679964
\(672\) −11.1468 −0.429995
\(673\) 25.4426 0.980742 0.490371 0.871514i \(-0.336861\pi\)
0.490371 + 0.871514i \(0.336861\pi\)
\(674\) 25.2228 0.971547
\(675\) −12.5816 −0.484267
\(676\) 17.3260 0.666386
\(677\) −0.616548 −0.0236959 −0.0118479 0.999930i \(-0.503771\pi\)
−0.0118479 + 0.999930i \(0.503771\pi\)
\(678\) 6.92931 0.266119
\(679\) 63.7730 2.44738
\(680\) 0.537500 0.0206122
\(681\) 8.13467 0.311721
\(682\) −33.3545 −1.27721
\(683\) 18.0218 0.689584 0.344792 0.938679i \(-0.387949\pi\)
0.344792 + 0.938679i \(0.387949\pi\)
\(684\) 7.15883 0.273725
\(685\) 4.72540 0.180548
\(686\) −17.4644 −0.666795
\(687\) 7.13169 0.272091
\(688\) 28.3545 1.08101
\(689\) −22.5948 −0.860792
\(690\) 1.18406 0.0450765
\(691\) 12.3461 0.469669 0.234835 0.972035i \(-0.424545\pi\)
0.234835 + 0.972035i \(0.424545\pi\)
\(692\) 13.1099 0.498364
\(693\) −33.0344 −1.25487
\(694\) −35.7754 −1.35801
\(695\) −0.998081 −0.0378594
\(696\) 0 0
\(697\) 0.439665 0.0166535
\(698\) −48.5086 −1.83608
\(699\) −0.870706 −0.0329331
\(700\) 24.6015 0.929849
\(701\) −34.0974 −1.28784 −0.643920 0.765093i \(-0.722693\pi\)
−0.643920 + 0.765093i \(0.722693\pi\)
\(702\) 24.1293 0.910702
\(703\) −5.96615 −0.225018
\(704\) 3.69441 0.139238
\(705\) −1.23921 −0.0466713
\(706\) −7.23490 −0.272289
\(707\) −70.6238 −2.65608
\(708\) 5.05562 0.190002
\(709\) 42.0954 1.58093 0.790464 0.612509i \(-0.209840\pi\)
0.790464 + 0.612509i \(0.209840\pi\)
\(710\) −7.33513 −0.275282
\(711\) −1.66487 −0.0624377
\(712\) 1.93123 0.0723760
\(713\) −26.2989 −0.984901
\(714\) −3.60388 −0.134872
\(715\) −5.38942 −0.201553
\(716\) −7.15883 −0.267538
\(717\) 3.98898 0.148971
\(718\) 1.34481 0.0501880
\(719\) −52.2543 −1.94876 −0.974378 0.224917i \(-0.927789\pi\)
−0.974378 + 0.224917i \(0.927789\pi\)
\(720\) 4.93900 0.184066
\(721\) 11.3937 0.424325
\(722\) −26.6722 −0.992635
\(723\) −8.85623 −0.329367
\(724\) −8.28083 −0.307755
\(725\) 0 0
\(726\) 2.02177 0.0750349
\(727\) −29.9849 −1.11208 −0.556040 0.831156i \(-0.687680\pi\)
−0.556040 + 0.831156i \(0.687680\pi\)
\(728\) 28.4916 1.05597
\(729\) −16.8853 −0.625381
\(730\) 5.75494 0.213000
\(731\) 6.37196 0.235676
\(732\) −3.35690 −0.124074
\(733\) −3.01447 −0.111342 −0.0556711 0.998449i \(-0.517730\pi\)
−0.0556711 + 0.998449i \(0.517730\pi\)
\(734\) 61.3540 2.26462
\(735\) −1.49204 −0.0550347
\(736\) 25.5918 0.943326
\(737\) −1.09006 −0.0401531
\(738\) 2.00000 0.0736210
\(739\) 20.8374 0.766518 0.383259 0.923641i \(-0.374802\pi\)
0.383259 + 0.923641i \(0.374802\pi\)
\(740\) 1.29590 0.0476381
\(741\) 4.72886 0.173719
\(742\) 31.7875 1.16695
\(743\) 30.7657 1.12868 0.564342 0.825541i \(-0.309130\pi\)
0.564342 + 0.825541i \(0.309130\pi\)
\(744\) 3.83877 0.140736
\(745\) 0.966622 0.0354143
\(746\) 50.4553 1.84730
\(747\) 26.4306 0.967044
\(748\) 4.03013 0.147356
\(749\) 30.2054 1.10368
\(750\) 2.82563 0.103177
\(751\) 4.46921 0.163084 0.0815418 0.996670i \(-0.474016\pi\)
0.0815418 + 0.996670i \(0.474016\pi\)
\(752\) −38.5338 −1.40518
\(753\) 11.4843 0.418510
\(754\) 0 0
\(755\) −0.869167 −0.0316322
\(756\) −13.0368 −0.474145
\(757\) 8.45580 0.307331 0.153666 0.988123i \(-0.450892\pi\)
0.153666 + 0.988123i \(0.450892\pi\)
\(758\) −41.2301 −1.49755
\(759\) −5.36121 −0.194600
\(760\) 0.992230 0.0359920
\(761\) 24.6950 0.895193 0.447597 0.894236i \(-0.352280\pi\)
0.447597 + 0.894236i \(0.352280\pi\)
\(762\) 8.39804 0.304229
\(763\) 6.69202 0.242267
\(764\) 23.4577 0.848670
\(765\) 1.10992 0.0401291
\(766\) 21.3676 0.772045
\(767\) −47.2438 −1.70588
\(768\) −9.21744 −0.332606
\(769\) −30.1430 −1.08699 −0.543493 0.839414i \(-0.682898\pi\)
−0.543493 + 0.839414i \(0.682898\pi\)
\(770\) 7.58211 0.273240
\(771\) −5.31873 −0.191549
\(772\) −13.5730 −0.488503
\(773\) −5.67696 −0.204186 −0.102093 0.994775i \(-0.532554\pi\)
−0.102093 + 0.994775i \(0.532554\pi\)
\(774\) 28.9855 1.04186
\(775\) −30.9748 −1.11265
\(776\) 21.3720 0.767209
\(777\) 5.24698 0.188234
\(778\) 18.7245 0.671307
\(779\) 0.811626 0.0290795
\(780\) −1.02715 −0.0367778
\(781\) 33.2121 1.18842
\(782\) 8.27413 0.295882
\(783\) 0 0
\(784\) −46.3957 −1.65699
\(785\) −6.30904 −0.225179
\(786\) −0.364666 −0.0130072
\(787\) −3.60925 −0.128656 −0.0643280 0.997929i \(-0.520490\pi\)
−0.0643280 + 0.997929i \(0.520490\pi\)
\(788\) −10.4752 −0.373163
\(789\) −0.148080 −0.00527179
\(790\) 0.382124 0.0135954
\(791\) 34.9855 1.24394
\(792\) −11.0707 −0.393380
\(793\) 31.3696 1.11397
\(794\) 14.8073 0.525492
\(795\) 0.692021 0.0245435
\(796\) −8.25667 −0.292650
\(797\) 30.7832 1.09040 0.545198 0.838308i \(-0.316455\pi\)
0.545198 + 0.838308i \(0.316455\pi\)
\(798\) −6.65279 −0.235506
\(799\) −8.65950 −0.306351
\(800\) 30.1420 1.06568
\(801\) 3.98792 0.140906
\(802\) 44.8340 1.58314
\(803\) −26.0573 −0.919541
\(804\) −0.207751 −0.00732681
\(805\) 5.97823 0.210705
\(806\) 59.4040 2.09242
\(807\) −0.473517 −0.0166686
\(808\) −23.6679 −0.832632
\(809\) −5.23729 −0.184133 −0.0920667 0.995753i \(-0.529347\pi\)
−0.0920667 + 0.995753i \(0.529347\pi\)
\(810\) 4.66679 0.163974
\(811\) 41.8646 1.47006 0.735032 0.678032i \(-0.237167\pi\)
0.735032 + 0.678032i \(0.237167\pi\)
\(812\) 0 0
\(813\) −7.32736 −0.256982
\(814\) −15.2784 −0.535509
\(815\) 1.77240 0.0620844
\(816\) −2.43967 −0.0854054
\(817\) 11.7627 0.411525
\(818\) −34.0484 −1.19048
\(819\) 58.8340 2.05583
\(820\) −0.176292 −0.00615638
\(821\) 15.4058 0.537667 0.268833 0.963187i \(-0.413362\pi\)
0.268833 + 0.963187i \(0.413362\pi\)
\(822\) −10.6179 −0.370341
\(823\) 35.6558 1.24288 0.621441 0.783461i \(-0.286548\pi\)
0.621441 + 0.783461i \(0.286548\pi\)
\(824\) 3.81833 0.133018
\(825\) −6.31442 −0.219840
\(826\) 66.4650 2.31261
\(827\) 52.0538 1.81009 0.905044 0.425317i \(-0.139837\pi\)
0.905044 + 0.425317i \(0.139837\pi\)
\(828\) 14.4547 0.502337
\(829\) 13.4168 0.465986 0.232993 0.972478i \(-0.425148\pi\)
0.232993 + 0.972478i \(0.425148\pi\)
\(830\) −6.06638 −0.210567
\(831\) −2.93469 −0.101803
\(832\) −6.57971 −0.228110
\(833\) −10.4263 −0.361248
\(834\) 2.24267 0.0776572
\(835\) 5.16229 0.178648
\(836\) 7.43967 0.257306
\(837\) 16.4142 0.567357
\(838\) −19.6276 −0.678023
\(839\) 31.0513 1.07201 0.536005 0.844215i \(-0.319933\pi\)
0.536005 + 0.844215i \(0.319933\pi\)
\(840\) −0.872625 −0.0301084
\(841\) 0 0
\(842\) 35.9681 1.23954
\(843\) 13.5894 0.468044
\(844\) 10.1008 0.347685
\(845\) 4.95885 0.170590
\(846\) −39.3913 −1.35430
\(847\) 10.2078 0.350742
\(848\) 21.5187 0.738956
\(849\) 1.58211 0.0542977
\(850\) 9.74525 0.334259
\(851\) −12.0465 −0.412950
\(852\) 6.32975 0.216854
\(853\) −21.3357 −0.730521 −0.365261 0.930905i \(-0.619020\pi\)
−0.365261 + 0.930905i \(0.619020\pi\)
\(854\) −44.1323 −1.51018
\(855\) 2.04892 0.0700715
\(856\) 10.1226 0.345983
\(857\) −9.83207 −0.335857 −0.167929 0.985799i \(-0.553708\pi\)
−0.167929 + 0.985799i \(0.553708\pi\)
\(858\) 12.1099 0.413426
\(859\) 51.7837 1.76684 0.883419 0.468583i \(-0.155235\pi\)
0.883419 + 0.468583i \(0.155235\pi\)
\(860\) −2.55496 −0.0871233
\(861\) −0.713792 −0.0243260
\(862\) −54.4010 −1.85291
\(863\) −16.2747 −0.553998 −0.276999 0.960870i \(-0.589340\pi\)
−0.276999 + 0.960870i \(0.589340\pi\)
\(864\) −15.9729 −0.543407
\(865\) 3.75217 0.127577
\(866\) 36.3836 1.23636
\(867\) 7.01746 0.238325
\(868\) −32.0954 −1.08939
\(869\) −1.73019 −0.0586925
\(870\) 0 0
\(871\) 1.94139 0.0657816
\(872\) 2.24267 0.0759463
\(873\) 44.1323 1.49365
\(874\) 15.2741 0.516655
\(875\) 14.2664 0.482291
\(876\) −4.96615 −0.167791
\(877\) 14.8062 0.499972 0.249986 0.968250i \(-0.419574\pi\)
0.249986 + 0.968250i \(0.419574\pi\)
\(878\) −19.2174 −0.648557
\(879\) 14.6329 0.493557
\(880\) 5.13275 0.173025
\(881\) 18.6377 0.627921 0.313960 0.949436i \(-0.398344\pi\)
0.313960 + 0.949436i \(0.398344\pi\)
\(882\) −47.4282 −1.59699
\(883\) −32.3937 −1.09014 −0.545068 0.838392i \(-0.683496\pi\)
−0.545068 + 0.838392i \(0.683496\pi\)
\(884\) −7.17762 −0.241409
\(885\) 1.44696 0.0486391
\(886\) 36.6698 1.23195
\(887\) 6.16288 0.206929 0.103465 0.994633i \(-0.467007\pi\)
0.103465 + 0.994633i \(0.467007\pi\)
\(888\) 1.75840 0.0590079
\(889\) 42.4010 1.42208
\(890\) −0.915312 −0.0306813
\(891\) −21.1304 −0.707894
\(892\) 27.3327 0.915168
\(893\) −15.9855 −0.534935
\(894\) −2.17198 −0.0726419
\(895\) −2.04892 −0.0684878
\(896\) −40.8364 −1.36425
\(897\) 9.54825 0.318807
\(898\) −34.9995 −1.16795
\(899\) 0 0
\(900\) 17.0248 0.567492
\(901\) 4.83579 0.161104
\(902\) 2.07846 0.0692051
\(903\) −10.3448 −0.344254
\(904\) 11.7245 0.389953
\(905\) −2.37004 −0.0787829
\(906\) 1.95300 0.0648841
\(907\) −43.9842 −1.46047 −0.730236 0.683195i \(-0.760590\pi\)
−0.730236 + 0.683195i \(0.760590\pi\)
\(908\) −22.7928 −0.756407
\(909\) −48.8732 −1.62102
\(910\) −13.5036 −0.447642
\(911\) 25.6233 0.848936 0.424468 0.905443i \(-0.360461\pi\)
0.424468 + 0.905443i \(0.360461\pi\)
\(912\) −4.50365 −0.149131
\(913\) 27.4674 0.909038
\(914\) −22.3817 −0.740319
\(915\) −0.960771 −0.0317621
\(916\) −19.9825 −0.660242
\(917\) −1.84117 −0.0608007
\(918\) −5.16421 −0.170444
\(919\) −6.24160 −0.205891 −0.102946 0.994687i \(-0.532827\pi\)
−0.102946 + 0.994687i \(0.532827\pi\)
\(920\) 2.00346 0.0660520
\(921\) 6.52888 0.215134
\(922\) 39.5459 1.30237
\(923\) −59.1503 −1.94696
\(924\) −6.54288 −0.215245
\(925\) −14.1884 −0.466511
\(926\) −59.4771 −1.95454
\(927\) 7.88471 0.258968
\(928\) 0 0
\(929\) −24.5133 −0.804256 −0.402128 0.915583i \(-0.631729\pi\)
−0.402128 + 0.915583i \(0.631729\pi\)
\(930\) −1.81940 −0.0596603
\(931\) −19.2470 −0.630794
\(932\) 2.43967 0.0799139
\(933\) 8.24506 0.269931
\(934\) 47.0364 1.53908
\(935\) 1.15346 0.0377221
\(936\) 19.7168 0.644463
\(937\) −4.08947 −0.133597 −0.0667986 0.997766i \(-0.521279\pi\)
−0.0667986 + 0.997766i \(0.521279\pi\)
\(938\) −2.73125 −0.0891785
\(939\) −10.2325 −0.333925
\(940\) 3.47219 0.113250
\(941\) 6.16315 0.200913 0.100456 0.994941i \(-0.467970\pi\)
0.100456 + 0.994941i \(0.467970\pi\)
\(942\) 14.1763 0.461889
\(943\) 1.63879 0.0533664
\(944\) 44.9939 1.46443
\(945\) −3.73125 −0.121378
\(946\) 30.1226 0.979370
\(947\) 49.7023 1.61511 0.807554 0.589794i \(-0.200791\pi\)
0.807554 + 0.589794i \(0.200791\pi\)
\(948\) −0.329749 −0.0107097
\(949\) 46.4077 1.50646
\(950\) 17.9898 0.583667
\(951\) 6.25667 0.202886
\(952\) −6.09783 −0.197632
\(953\) 17.6856 0.572892 0.286446 0.958096i \(-0.407526\pi\)
0.286446 + 0.958096i \(0.407526\pi\)
\(954\) 21.9976 0.712199
\(955\) 6.71379 0.217253
\(956\) −11.1769 −0.361486
\(957\) 0 0
\(958\) −59.5827 −1.92503
\(959\) −53.6088 −1.73112
\(960\) 0.201520 0.00650403
\(961\) 9.41013 0.303552
\(962\) 27.2107 0.877309
\(963\) 20.9028 0.673582
\(964\) 24.8146 0.799225
\(965\) −3.88471 −0.125053
\(966\) −13.4330 −0.432198
\(967\) 12.8933 0.414622 0.207311 0.978275i \(-0.433529\pi\)
0.207311 + 0.978275i \(0.433529\pi\)
\(968\) 3.42088 0.109951
\(969\) −1.01208 −0.0325127
\(970\) −10.1293 −0.325232
\(971\) −4.83745 −0.155241 −0.0776205 0.996983i \(-0.524732\pi\)
−0.0776205 + 0.996983i \(0.524732\pi\)
\(972\) −13.6866 −0.438999
\(973\) 11.3230 0.363000
\(974\) −18.3013 −0.586411
\(975\) 11.2459 0.360158
\(976\) −29.8756 −0.956295
\(977\) 16.4421 0.526028 0.263014 0.964792i \(-0.415283\pi\)
0.263014 + 0.964792i \(0.415283\pi\)
\(978\) −3.98254 −0.127348
\(979\) 4.14436 0.132454
\(980\) 4.18060 0.133544
\(981\) 4.63102 0.147857
\(982\) 35.4655 1.13175
\(983\) −26.4993 −0.845198 −0.422599 0.906317i \(-0.638882\pi\)
−0.422599 + 0.906317i \(0.638882\pi\)
\(984\) −0.239210 −0.00762573
\(985\) −2.99808 −0.0955268
\(986\) 0 0
\(987\) 14.0586 0.447490
\(988\) −13.2500 −0.421537
\(989\) 23.7506 0.755226
\(990\) 5.24698 0.166760
\(991\) 40.4064 1.28355 0.641776 0.766892i \(-0.278198\pi\)
0.641776 + 0.766892i \(0.278198\pi\)
\(992\) −39.3236 −1.24853
\(993\) 6.21121 0.197107
\(994\) 83.2156 2.63944
\(995\) −2.36313 −0.0749162
\(996\) 5.23490 0.165874
\(997\) 23.4553 0.742837 0.371419 0.928465i \(-0.378871\pi\)
0.371419 + 0.928465i \(0.378871\pi\)
\(998\) 50.1831 1.58852
\(999\) 7.51871 0.237882
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.f.1.3 3
3.2 odd 2 7569.2.a.p.1.1 3
29.2 odd 28 841.2.e.c.236.2 12
29.3 odd 28 841.2.e.b.270.2 12
29.4 even 14 841.2.d.e.190.1 6
29.5 even 14 841.2.d.b.605.1 6
29.6 even 14 841.2.d.b.645.1 6
29.7 even 7 841.2.d.a.571.1 6
29.8 odd 28 841.2.e.d.267.2 12
29.9 even 14 29.2.d.a.23.1 6
29.10 odd 28 841.2.e.b.651.2 12
29.11 odd 28 841.2.e.d.63.2 12
29.12 odd 4 841.2.b.c.840.6 6
29.13 even 14 29.2.d.a.24.1 yes 6
29.14 odd 28 841.2.e.c.196.1 12
29.15 odd 28 841.2.e.c.196.2 12
29.16 even 7 841.2.d.d.778.1 6
29.17 odd 4 841.2.b.c.840.1 6
29.18 odd 28 841.2.e.d.63.1 12
29.19 odd 28 841.2.e.b.651.1 12
29.20 even 7 841.2.d.d.574.1 6
29.21 odd 28 841.2.e.d.267.1 12
29.22 even 14 841.2.d.e.571.1 6
29.23 even 7 841.2.d.c.645.1 6
29.24 even 7 841.2.d.c.605.1 6
29.25 even 7 841.2.d.a.190.1 6
29.26 odd 28 841.2.e.b.270.1 12
29.27 odd 28 841.2.e.c.236.1 12
29.28 even 2 841.2.a.e.1.1 3
87.38 odd 14 261.2.k.a.226.1 6
87.71 odd 14 261.2.k.a.82.1 6
87.86 odd 2 7569.2.a.r.1.3 3
116.67 odd 14 464.2.u.f.81.1 6
116.71 odd 14 464.2.u.f.401.1 6
145.9 even 14 725.2.l.b.226.1 6
145.13 odd 28 725.2.r.b.24.1 12
145.38 odd 28 725.2.r.b.574.2 12
145.42 odd 28 725.2.r.b.24.2 12
145.67 odd 28 725.2.r.b.574.1 12
145.129 even 14 725.2.l.b.401.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.23.1 6 29.9 even 14
29.2.d.a.24.1 yes 6 29.13 even 14
261.2.k.a.82.1 6 87.71 odd 14
261.2.k.a.226.1 6 87.38 odd 14
464.2.u.f.81.1 6 116.67 odd 14
464.2.u.f.401.1 6 116.71 odd 14
725.2.l.b.226.1 6 145.9 even 14
725.2.l.b.401.1 6 145.129 even 14
725.2.r.b.24.1 12 145.13 odd 28
725.2.r.b.24.2 12 145.42 odd 28
725.2.r.b.574.1 12 145.67 odd 28
725.2.r.b.574.2 12 145.38 odd 28
841.2.a.e.1.1 3 29.28 even 2
841.2.a.f.1.3 3 1.1 even 1 trivial
841.2.b.c.840.1 6 29.17 odd 4
841.2.b.c.840.6 6 29.12 odd 4
841.2.d.a.190.1 6 29.25 even 7
841.2.d.a.571.1 6 29.7 even 7
841.2.d.b.605.1 6 29.5 even 14
841.2.d.b.645.1 6 29.6 even 14
841.2.d.c.605.1 6 29.24 even 7
841.2.d.c.645.1 6 29.23 even 7
841.2.d.d.574.1 6 29.20 even 7
841.2.d.d.778.1 6 29.16 even 7
841.2.d.e.190.1 6 29.4 even 14
841.2.d.e.571.1 6 29.22 even 14
841.2.e.b.270.1 12 29.26 odd 28
841.2.e.b.270.2 12 29.3 odd 28
841.2.e.b.651.1 12 29.19 odd 28
841.2.e.b.651.2 12 29.10 odd 28
841.2.e.c.196.1 12 29.14 odd 28
841.2.e.c.196.2 12 29.15 odd 28
841.2.e.c.236.1 12 29.27 odd 28
841.2.e.c.236.2 12 29.2 odd 28
841.2.e.d.63.1 12 29.18 odd 28
841.2.e.d.63.2 12 29.11 odd 28
841.2.e.d.267.1 12 29.21 odd 28
841.2.e.d.267.2 12 29.8 odd 28
7569.2.a.p.1.1 3 3.2 odd 2
7569.2.a.r.1.3 3 87.86 odd 2