Properties

Label 841.2.d.e.571.1
Level $841$
Weight $2$
Character 841.571
Analytic conductor $6.715$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,2,Mod(190,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.190"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.d (of order \(7\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,5,2,5,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 571.1
Root \(-0.623490 + 0.781831i\) of defining polynomial
Character \(\chi\) \(=\) 841.571
Dual form 841.2.d.e.190.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.62349 - 0.781831i) q^{2} +(0.277479 + 0.347948i) q^{3} +(0.777479 - 0.974928i) q^{4} +(-0.321552 + 0.154851i) q^{5} +(0.722521 + 0.347948i) q^{6} +(-2.52446 - 3.16557i) q^{7} +(-0.301938 + 1.32288i) q^{8} +(0.623490 - 2.73169i) q^{9} +(-0.400969 + 0.502799i) q^{10} +(-0.647948 - 2.83885i) q^{11} +0.554958 q^{12} +(-1.15399 - 5.05596i) q^{13} +(-6.57338 - 3.16557i) q^{14} +(-0.143104 - 0.0689153i) q^{15} +(1.09903 + 4.81517i) q^{16} +1.10992 q^{17} +(-1.12349 - 4.92233i) q^{18} +(1.27748 - 1.60191i) q^{19} +(-0.0990311 + 0.433884i) q^{20} +(0.400969 - 1.75676i) q^{21} +(-3.27144 - 4.10225i) q^{22} +(3.72737 + 1.79500i) q^{23} +(-0.544073 + 0.262012i) q^{24} +(-3.03803 + 3.80957i) q^{25} +(-5.82640 - 7.30607i) q^{26} +(2.32640 - 1.12033i) q^{27} -5.04892 q^{28} -0.286208 q^{30} +(5.72737 - 2.75815i) q^{31} +(3.85690 + 4.83639i) q^{32} +(0.807979 - 1.01317i) q^{33} +(1.80194 - 0.867767i) q^{34} +(1.30194 + 0.626980i) q^{35} +(-2.17845 - 2.73169i) q^{36} +(0.647948 - 2.83885i) q^{37} +(0.821552 - 3.59945i) q^{38} +(1.43900 - 1.80445i) q^{39} +(-0.107760 - 0.472129i) q^{40} +0.396125 q^{41} +(-0.722521 - 3.16557i) q^{42} +(-5.17241 - 2.49090i) q^{43} +(-3.27144 - 1.57544i) q^{44} +(0.222521 + 0.974928i) q^{45} +7.45473 q^{46} +(1.73609 + 7.60633i) q^{47} +(-1.37047 + 1.71851i) q^{48} +(-2.09030 + 9.15821i) q^{49} +(-1.95377 + 8.56003i) q^{50} +(0.307979 + 0.386193i) q^{51} +(-5.82640 - 2.80584i) q^{52} +(3.92543 - 1.89039i) q^{53} +(2.90097 - 3.63770i) q^{54} +(0.647948 + 0.812502i) q^{55} +(4.94989 - 2.38374i) q^{56} +0.911854 q^{57} -9.10992 q^{59} +(-0.178448 + 0.0859360i) q^{60} +(-3.77144 - 4.72923i) q^{61} +(7.14191 - 8.95567i) q^{62} +(-10.2213 + 4.92233i) q^{63} +(1.14310 + 0.550490i) q^{64} +(1.15399 + 1.44706i) q^{65} +(0.519614 - 2.27658i) q^{66} +(-0.0833017 + 0.364968i) q^{67} +(0.862937 - 1.08209i) q^{68} +(0.409698 + 1.79500i) q^{69} +2.60388 q^{70} +(2.53803 + 11.1198i) q^{71} +(3.42543 + 1.64960i) q^{72} +(8.06249 + 3.88269i) q^{73} +(-1.16756 - 5.11543i) q^{74} -2.16852 q^{75} +(-0.568532 - 2.49090i) q^{76} +(-7.35086 + 9.21768i) q^{77} +(0.925428 - 4.05456i) q^{78} +(0.132219 - 0.579289i) q^{79} +(-1.09903 - 1.37814i) q^{80} +(-6.53803 - 3.14855i) q^{81} +(0.643104 - 0.309703i) q^{82} +(-5.88135 + 7.37499i) q^{83} +(-1.40097 - 1.75676i) q^{84} +(-0.356896 + 0.171872i) q^{85} -10.3448 q^{86} +3.95108 q^{88} +(-1.28232 + 0.617534i) q^{89} +(1.12349 + 1.40881i) q^{90} +(-13.0918 + 16.4166i) q^{91} +(4.64795 - 2.23833i) q^{92} +(2.54892 + 1.22749i) q^{93} +(8.76540 + 10.9915i) q^{94} +(-0.162718 + 0.712916i) q^{95} +(-0.612605 + 2.68400i) q^{96} +(9.82036 - 12.3143i) q^{97} +(3.76659 + 16.5025i) q^{98} -8.15883 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} + 2 q^{3} + 5 q^{4} - 6 q^{5} + 4 q^{6} - 6 q^{7} + 7 q^{8} - q^{9} + 2 q^{10} + 10 q^{11} + 4 q^{12} - 12 q^{13} - 12 q^{14} - 9 q^{15} + 11 q^{16} + 8 q^{17} - 2 q^{18} + 8 q^{19} - 5 q^{20}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.62349 0.781831i 1.14798 0.552838i 0.239554 0.970883i \(-0.422999\pi\)
0.908426 + 0.418045i \(0.137284\pi\)
\(3\) 0.277479 + 0.347948i 0.160203 + 0.200888i 0.855454 0.517879i \(-0.173278\pi\)
−0.695251 + 0.718767i \(0.744707\pi\)
\(4\) 0.777479 0.974928i 0.388740 0.487464i
\(5\) −0.321552 + 0.154851i −0.143802 + 0.0692516i −0.504401 0.863469i \(-0.668287\pi\)
0.360599 + 0.932721i \(0.382572\pi\)
\(6\) 0.722521 + 0.347948i 0.294968 + 0.142049i
\(7\) −2.52446 3.16557i −0.954156 1.19647i −0.980440 0.196819i \(-0.936939\pi\)
0.0262842 0.999655i \(-0.491633\pi\)
\(8\) −0.301938 + 1.32288i −0.106751 + 0.467707i
\(9\) 0.623490 2.73169i 0.207830 0.910562i
\(10\) −0.400969 + 0.502799i −0.126797 + 0.158999i
\(11\) −0.647948 2.83885i −0.195364 0.855945i −0.973652 0.228038i \(-0.926769\pi\)
0.778288 0.627907i \(-0.216088\pi\)
\(12\) 0.554958 0.160203
\(13\) −1.15399 5.05596i −0.320059 1.40227i −0.837447 0.546519i \(-0.815953\pi\)
0.517388 0.855751i \(-0.326905\pi\)
\(14\) −6.57338 3.16557i −1.75681 0.846034i
\(15\) −0.143104 0.0689153i −0.0369493 0.0177939i
\(16\) 1.09903 + 4.81517i 0.274758 + 1.20379i
\(17\) 1.10992 0.269194 0.134597 0.990900i \(-0.457026\pi\)
0.134597 + 0.990900i \(0.457026\pi\)
\(18\) −1.12349 4.92233i −0.264809 1.16020i
\(19\) 1.27748 1.60191i 0.293074 0.367503i −0.613395 0.789777i \(-0.710196\pi\)
0.906468 + 0.422274i \(0.138768\pi\)
\(20\) −0.0990311 + 0.433884i −0.0221440 + 0.0970194i
\(21\) 0.400969 1.75676i 0.0874986 0.383356i
\(22\) −3.27144 4.10225i −0.697473 0.874603i
\(23\) 3.72737 + 1.79500i 0.777209 + 0.374284i 0.780054 0.625712i \(-0.215191\pi\)
−0.00284506 + 0.999996i \(0.500906\pi\)
\(24\) −0.544073 + 0.262012i −0.111058 + 0.0534829i
\(25\) −3.03803 + 3.80957i −0.607606 + 0.761914i
\(26\) −5.82640 7.30607i −1.14265 1.43284i
\(27\) 2.32640 1.12033i 0.447715 0.215608i
\(28\) −5.04892 −0.954156
\(29\) 0 0
\(30\) −0.286208 −0.0522542
\(31\) 5.72737 2.75815i 1.02867 0.495379i 0.158095 0.987424i \(-0.449465\pi\)
0.870570 + 0.492045i \(0.163750\pi\)
\(32\) 3.85690 + 4.83639i 0.681809 + 0.854962i
\(33\) 0.807979 1.01317i 0.140651 0.176371i
\(34\) 1.80194 0.867767i 0.309030 0.148821i
\(35\) 1.30194 + 0.626980i 0.220068 + 0.105979i
\(36\) −2.17845 2.73169i −0.363075 0.455281i
\(37\) 0.647948 2.83885i 0.106522 0.466704i −0.893328 0.449405i \(-0.851636\pi\)
0.999850 0.0172990i \(-0.00550672\pi\)
\(38\) 0.821552 3.59945i 0.133273 0.583909i
\(39\) 1.43900 1.80445i 0.230425 0.288943i
\(40\) −0.107760 0.472129i −0.0170384 0.0746501i
\(41\) 0.396125 0.0618643 0.0309321 0.999521i \(-0.490152\pi\)
0.0309321 + 0.999521i \(0.490152\pi\)
\(42\) −0.722521 3.16557i −0.111487 0.488458i
\(43\) −5.17241 2.49090i −0.788785 0.379859i −0.00428731 0.999991i \(-0.501365\pi\)
−0.784497 + 0.620132i \(0.787079\pi\)
\(44\) −3.27144 1.57544i −0.493188 0.237507i
\(45\) 0.222521 + 0.974928i 0.0331715 + 0.145334i
\(46\) 7.45473 1.09914
\(47\) 1.73609 + 7.60633i 0.253235 + 1.10950i 0.928328 + 0.371763i \(0.121247\pi\)
−0.675092 + 0.737733i \(0.735896\pi\)
\(48\) −1.37047 + 1.71851i −0.197810 + 0.248046i
\(49\) −2.09030 + 9.15821i −0.298615 + 1.30832i
\(50\) −1.95377 + 8.56003i −0.276305 + 1.21057i
\(51\) 0.307979 + 0.386193i 0.0431256 + 0.0540778i
\(52\) −5.82640 2.80584i −0.807976 0.389101i
\(53\) 3.92543 1.89039i 0.539199 0.259665i −0.144404 0.989519i \(-0.546126\pi\)
0.683603 + 0.729854i \(0.260412\pi\)
\(54\) 2.90097 3.63770i 0.394772 0.495028i
\(55\) 0.647948 + 0.812502i 0.0873694 + 0.109558i
\(56\) 4.94989 2.38374i 0.661456 0.318541i
\(57\) 0.911854 0.120778
\(58\) 0 0
\(59\) −9.10992 −1.18601 −0.593005 0.805199i \(-0.702059\pi\)
−0.593005 + 0.805199i \(0.702059\pi\)
\(60\) −0.178448 + 0.0859360i −0.0230375 + 0.0110943i
\(61\) −3.77144 4.72923i −0.482883 0.605516i 0.479390 0.877602i \(-0.340858\pi\)
−0.962273 + 0.272086i \(0.912287\pi\)
\(62\) 7.14191 8.95567i 0.907023 1.13737i
\(63\) −10.2213 + 4.92233i −1.28777 + 0.620155i
\(64\) 1.14310 + 0.550490i 0.142888 + 0.0688112i
\(65\) 1.15399 + 1.44706i 0.143135 + 0.179485i
\(66\) 0.519614 2.27658i 0.0639601 0.280228i
\(67\) −0.0833017 + 0.364968i −0.0101769 + 0.0445880i −0.979761 0.200169i \(-0.935851\pi\)
0.969585 + 0.244757i \(0.0787081\pi\)
\(68\) 0.862937 1.08209i 0.104646 0.131222i
\(69\) 0.409698 + 1.79500i 0.0493219 + 0.216093i
\(70\) 2.60388 0.311223
\(71\) 2.53803 + 11.1198i 0.301209 + 1.31968i 0.868305 + 0.496031i \(0.165210\pi\)
−0.567096 + 0.823652i \(0.691933\pi\)
\(72\) 3.42543 + 1.64960i 0.403691 + 0.194407i
\(73\) 8.06249 + 3.88269i 0.943643 + 0.454435i 0.841453 0.540330i \(-0.181701\pi\)
0.102190 + 0.994765i \(0.467415\pi\)
\(74\) −1.16756 5.11543i −0.135726 0.594656i
\(75\) −2.16852 −0.250399
\(76\) −0.568532 2.49090i −0.0652151 0.285726i
\(77\) −7.35086 + 9.21768i −0.837708 + 1.05045i
\(78\) 0.925428 4.05456i 0.104784 0.459089i
\(79\) 0.132219 0.579289i 0.0148758 0.0651751i −0.966945 0.254984i \(-0.917930\pi\)
0.981821 + 0.189809i \(0.0607869\pi\)
\(80\) −1.09903 1.37814i −0.122875 0.154081i
\(81\) −6.53803 3.14855i −0.726448 0.349839i
\(82\) 0.643104 0.309703i 0.0710190 0.0342009i
\(83\) −5.88135 + 7.37499i −0.645563 + 0.809510i −0.991686 0.128679i \(-0.958926\pi\)
0.346124 + 0.938189i \(0.387498\pi\)
\(84\) −1.40097 1.75676i −0.152858 0.191678i
\(85\) −0.356896 + 0.171872i −0.0387108 + 0.0186421i
\(86\) −10.3448 −1.11551
\(87\) 0 0
\(88\) 3.95108 0.421187
\(89\) −1.28232 + 0.617534i −0.135926 + 0.0654585i −0.500611 0.865673i \(-0.666891\pi\)
0.364685 + 0.931131i \(0.381177\pi\)
\(90\) 1.12349 + 1.40881i 0.118426 + 0.148502i
\(91\) −13.0918 + 16.4166i −1.37239 + 1.72093i
\(92\) 4.64795 2.23833i 0.484582 0.233362i
\(93\) 2.54892 + 1.22749i 0.264310 + 0.127285i
\(94\) 8.76540 + 10.9915i 0.904082 + 1.13368i
\(95\) −0.162718 + 0.712916i −0.0166946 + 0.0731437i
\(96\) −0.612605 + 2.68400i −0.0625237 + 0.273934i
\(97\) 9.82036 12.3143i 0.997106 1.25033i 0.0290551 0.999578i \(-0.490750\pi\)
0.968051 0.250754i \(-0.0806784\pi\)
\(98\) 3.76659 + 16.5025i 0.380483 + 1.66701i
\(99\) −8.15883 −0.819994
\(100\) 1.35205 + 5.92372i 0.135205 + 0.592372i
\(101\) 15.7153 + 7.56808i 1.56373 + 0.753052i 0.997464 0.0711709i \(-0.0226736\pi\)
0.566265 + 0.824223i \(0.308388\pi\)
\(102\) 0.801938 + 0.386193i 0.0794037 + 0.0382388i
\(103\) 0.626178 + 2.74347i 0.0616992 + 0.270322i 0.996363 0.0852112i \(-0.0271565\pi\)
−0.934664 + 0.355533i \(0.884299\pi\)
\(104\) 7.03684 0.690019
\(105\) 0.143104 + 0.626980i 0.0139655 + 0.0611870i
\(106\) 4.89493 6.13805i 0.475437 0.596180i
\(107\) 1.66003 7.27307i 0.160481 0.703114i −0.829096 0.559107i \(-0.811144\pi\)
0.989577 0.144007i \(-0.0459988\pi\)
\(108\) 0.716480 3.13910i 0.0689433 0.302060i
\(109\) −1.03050 1.29221i −0.0987039 0.123771i 0.730026 0.683419i \(-0.239508\pi\)
−0.828730 + 0.559648i \(0.810936\pi\)
\(110\) 1.68718 + 0.812502i 0.160866 + 0.0774690i
\(111\) 1.16756 0.562269i 0.110820 0.0533682i
\(112\) 12.4683 15.6348i 1.17814 1.47735i
\(113\) 5.38740 + 6.75558i 0.506804 + 0.635512i 0.967749 0.251917i \(-0.0810610\pi\)
−0.460945 + 0.887429i \(0.652490\pi\)
\(114\) 1.48039 0.712916i 0.138651 0.0667707i
\(115\) −1.47650 −0.137684
\(116\) 0 0
\(117\) −14.5308 −1.34337
\(118\) −14.7899 + 7.12242i −1.36152 + 0.655672i
\(119\) −2.80194 3.51352i −0.256853 0.322084i
\(120\) 0.134375 0.168501i 0.0122667 0.0153820i
\(121\) 2.27144 1.09387i 0.206494 0.0994425i
\(122\) −9.82036 4.72923i −0.889093 0.428165i
\(123\) 0.109916 + 0.137831i 0.00991082 + 0.0124278i
\(124\) 1.76391 7.72818i 0.158403 0.694011i
\(125\) 0.784052 3.43516i 0.0701278 0.307250i
\(126\) −12.7458 + 15.9827i −1.13548 + 1.42385i
\(127\) −2.33028 10.2096i −0.206779 0.905958i −0.966694 0.255935i \(-0.917617\pi\)
0.759915 0.650023i \(-0.225241\pi\)
\(128\) −10.0858 −0.891463
\(129\) −0.568532 2.49090i −0.0500564 0.219312i
\(130\) 3.00484 + 1.44706i 0.263542 + 0.126915i
\(131\) 0.409698 + 0.197300i 0.0357955 + 0.0172382i 0.451696 0.892172i \(-0.350819\pi\)
−0.415900 + 0.909410i \(0.636534\pi\)
\(132\) −0.359584 1.57544i −0.0312978 0.137125i
\(133\) −8.29590 −0.719345
\(134\) 0.150104 + 0.657650i 0.0129670 + 0.0568123i
\(135\) −0.574572 + 0.720491i −0.0494513 + 0.0620100i
\(136\) −0.335126 + 1.46828i −0.0287368 + 0.125904i
\(137\) 2.94624 12.9083i 0.251714 1.10283i −0.678149 0.734925i \(-0.737217\pi\)
0.929863 0.367907i \(-0.119925\pi\)
\(138\) 2.06853 + 2.59386i 0.176085 + 0.220804i
\(139\) 2.51961 + 1.21338i 0.213711 + 0.102918i 0.537677 0.843151i \(-0.319302\pi\)
−0.323966 + 0.946069i \(0.605016\pi\)
\(140\) 1.62349 0.781831i 0.137210 0.0660768i
\(141\) −2.16487 + 2.71467i −0.182315 + 0.228616i
\(142\) 12.8143 + 16.0686i 1.07535 + 1.34845i
\(143\) −13.6054 + 6.55200i −1.13774 + 0.547906i
\(144\) 13.8388 1.15323
\(145\) 0 0
\(146\) 16.1250 1.33451
\(147\) −3.76659 + 1.81390i −0.310663 + 0.149608i
\(148\) −2.26391 2.83885i −0.186092 0.233352i
\(149\) 1.68867 2.11752i 0.138341 0.173474i −0.707835 0.706378i \(-0.750328\pi\)
0.846176 + 0.532904i \(0.178899\pi\)
\(150\) −3.52057 + 1.69542i −0.287454 + 0.138430i
\(151\) 2.19418 + 1.05666i 0.178560 + 0.0859898i 0.521028 0.853540i \(-0.325549\pi\)
−0.342468 + 0.939529i \(0.611263\pi\)
\(152\) 1.73341 + 2.17362i 0.140598 + 0.176304i
\(153\) 0.692021 3.03194i 0.0559466 0.245118i
\(154\) −4.72737 + 20.7119i −0.380942 + 1.66902i
\(155\) −1.41454 + 1.77378i −0.113619 + 0.142473i
\(156\) −0.640416 2.80584i −0.0512743 0.224647i
\(157\) 17.6775 1.41082 0.705411 0.708799i \(-0.250762\pi\)
0.705411 + 0.708799i \(0.250762\pi\)
\(158\) −0.238250 1.04384i −0.0189542 0.0830437i
\(159\) 1.74698 + 0.841301i 0.138544 + 0.0667195i
\(160\) −1.98911 0.957907i −0.157253 0.0757292i
\(161\) −3.72737 16.3307i −0.293758 1.28704i
\(162\) −13.0761 −1.02735
\(163\) 1.10507 + 4.84164i 0.0865559 + 0.379226i 0.999589 0.0286587i \(-0.00912360\pi\)
−0.913033 + 0.407885i \(0.866266\pi\)
\(164\) 0.307979 0.386193i 0.0240491 0.0301566i
\(165\) −0.102916 + 0.450904i −0.00801200 + 0.0351029i
\(166\) −3.78232 + 16.5714i −0.293565 + 1.28619i
\(167\) 9.01842 + 11.3087i 0.697866 + 0.875096i 0.996862 0.0791579i \(-0.0252231\pi\)
−0.298996 + 0.954254i \(0.596652\pi\)
\(168\) 2.20291 + 1.06086i 0.169958 + 0.0818474i
\(169\) −12.5184 + 6.02855i −0.962955 + 0.463735i
\(170\) −0.445042 + 0.558065i −0.0341332 + 0.0428016i
\(171\) −3.57942 4.48845i −0.273725 0.343240i
\(172\) −6.44989 + 3.10610i −0.491799 + 0.236838i
\(173\) 10.5133 0.799314 0.399657 0.916665i \(-0.369129\pi\)
0.399657 + 0.916665i \(0.369129\pi\)
\(174\) 0 0
\(175\) 19.7289 1.49136
\(176\) 12.9574 6.23996i 0.976702 0.470355i
\(177\) −2.52781 3.16977i −0.190002 0.238255i
\(178\) −1.59903 + 2.00512i −0.119852 + 0.150290i
\(179\) 5.17241 2.49090i 0.386604 0.186179i −0.230478 0.973078i \(-0.574029\pi\)
0.617082 + 0.786899i \(0.288315\pi\)
\(180\) 1.12349 + 0.541044i 0.0837400 + 0.0403271i
\(181\) −4.14042 5.19192i −0.307755 0.385912i 0.603769 0.797159i \(-0.293665\pi\)
−0.911524 + 0.411247i \(0.865093\pi\)
\(182\) −8.41939 + 36.8877i −0.624086 + 2.73430i
\(183\) 0.599031 2.62453i 0.0442817 0.194011i
\(184\) −3.50000 + 4.38886i −0.258023 + 0.323551i
\(185\) 0.231250 + 1.01317i 0.0170018 + 0.0744900i
\(186\) 5.09783 0.373791
\(187\) −0.719169 3.15088i −0.0525908 0.230415i
\(188\) 8.76540 + 4.22119i 0.639282 + 0.307862i
\(189\) −9.41939 4.53614i −0.685160 0.329955i
\(190\) 0.293209 + 1.28463i 0.0212716 + 0.0931969i
\(191\) −18.8116 −1.36116 −0.680581 0.732673i \(-0.738272\pi\)
−0.680581 + 0.732673i \(0.738272\pi\)
\(192\) 0.125646 + 0.550490i 0.00906770 + 0.0397282i
\(193\) 6.78650 8.51001i 0.488503 0.612564i −0.475090 0.879937i \(-0.657584\pi\)
0.963593 + 0.267374i \(0.0861558\pi\)
\(194\) 6.31551 27.6701i 0.453427 1.98659i
\(195\) −0.183292 + 0.803056i −0.0131258 + 0.0575080i
\(196\) 7.30343 + 9.15821i 0.521674 + 0.654158i
\(197\) 7.56853 + 3.64481i 0.539236 + 0.259682i 0.683618 0.729840i \(-0.260405\pi\)
−0.144383 + 0.989522i \(0.546120\pi\)
\(198\) −13.2458 + 6.37883i −0.941337 + 0.453324i
\(199\) −4.12833 + 5.17677i −0.292650 + 0.366971i −0.906321 0.422591i \(-0.861121\pi\)
0.613671 + 0.789562i \(0.289692\pi\)
\(200\) −4.12229 5.16919i −0.291490 0.365517i
\(201\) −0.150104 + 0.0722865i −0.0105875 + 0.00509869i
\(202\) 31.4306 2.21145
\(203\) 0 0
\(204\) 0.615957 0.0431256
\(205\) −0.127375 + 0.0613404i −0.00889623 + 0.00428420i
\(206\) 3.16152 + 3.96442i 0.220274 + 0.276214i
\(207\) 7.22737 9.06283i 0.502337 0.629910i
\(208\) 23.0770 11.1133i 1.60010 0.770569i
\(209\) −5.37531 2.58861i −0.371818 0.179058i
\(210\) 0.722521 + 0.906013i 0.0498587 + 0.0625208i
\(211\) 1.80247 7.89714i 0.124087 0.543661i −0.874222 0.485527i \(-0.838628\pi\)
0.998309 0.0581343i \(-0.0185152\pi\)
\(212\) 1.20895 5.29674i 0.0830308 0.363782i
\(213\) −3.16487 + 3.96863i −0.216854 + 0.271926i
\(214\) −2.99127 13.1056i −0.204479 0.895881i
\(215\) 2.04892 0.139735
\(216\) 0.779635 + 3.41580i 0.0530474 + 0.232416i
\(217\) −23.1896 11.1675i −1.57421 0.758102i
\(218\) −2.68329 1.29221i −0.181735 0.0875192i
\(219\) 0.886199 + 3.88269i 0.0598838 + 0.262368i
\(220\) 1.29590 0.0873694
\(221\) −1.28083 5.61169i −0.0861580 0.377483i
\(222\) 1.45593 1.82567i 0.0977154 0.122531i
\(223\) −4.87747 + 21.3696i −0.326620 + 1.43101i 0.498910 + 0.866654i \(0.333734\pi\)
−0.825529 + 0.564360i \(0.809123\pi\)
\(224\) 5.57338 24.4186i 0.372387 1.63153i
\(225\) 8.51238 + 10.6742i 0.567492 + 0.711612i
\(226\) 14.0281 + 6.75558i 0.933136 + 0.449375i
\(227\) 16.4683 7.93072i 1.09304 0.526380i 0.201576 0.979473i \(-0.435394\pi\)
0.891463 + 0.453093i \(0.149679\pi\)
\(228\) 0.708947 0.888992i 0.0469512 0.0588749i
\(229\) 9.99127 + 12.5287i 0.660242 + 0.827917i 0.993370 0.114965i \(-0.0366755\pi\)
−0.333128 + 0.942882i \(0.608104\pi\)
\(230\) −2.39708 + 1.15437i −0.158059 + 0.0761172i
\(231\) −5.24698 −0.345226
\(232\) 0 0
\(233\) 1.95646 0.128172 0.0640860 0.997944i \(-0.479587\pi\)
0.0640860 + 0.997944i \(0.479587\pi\)
\(234\) −23.5906 + 11.3606i −1.54217 + 0.742668i
\(235\) −1.73609 2.17699i −0.113250 0.142011i
\(236\) −7.08277 + 8.88151i −0.461049 + 0.578137i
\(237\) 0.238250 0.114735i 0.0154760 0.00745286i
\(238\) −7.29590 3.51352i −0.472923 0.227748i
\(239\) −5.58844 7.00768i −0.361486 0.453289i 0.567517 0.823362i \(-0.307904\pi\)
−0.929003 + 0.370073i \(0.879333\pi\)
\(240\) 0.174563 0.764811i 0.0112680 0.0493683i
\(241\) −4.42812 + 19.4008i −0.285240 + 1.24972i 0.605735 + 0.795666i \(0.292879\pi\)
−0.890975 + 0.454052i \(0.849978\pi\)
\(242\) 2.83244 3.55176i 0.182076 0.228316i
\(243\) −2.44235 10.7006i −0.156677 0.686447i
\(244\) −7.54288 −0.482883
\(245\) −0.746020 3.26853i −0.0476615 0.208819i
\(246\) 0.286208 + 0.137831i 0.0182480 + 0.00878776i
\(247\) −9.57338 4.61029i −0.609139 0.293346i
\(248\) 1.91939 + 8.40938i 0.121881 + 0.533996i
\(249\) −4.19806 −0.266041
\(250\) −1.41281 6.18994i −0.0893542 0.391486i
\(251\) 16.0891 20.1751i 1.01554 1.27344i 0.0540635 0.998537i \(-0.482783\pi\)
0.961472 0.274904i \(-0.0886459\pi\)
\(252\) −3.14795 + 13.7921i −0.198302 + 0.868818i
\(253\) 2.68060 11.7445i 0.168528 0.738370i
\(254\) −11.7654 14.7533i −0.738227 0.925707i
\(255\) −0.158834 0.0764902i −0.00994655 0.00479000i
\(256\) −18.6603 + 8.98634i −1.16627 + 0.561646i
\(257\) 7.45138 9.34373i 0.464804 0.582846i −0.493086 0.869981i \(-0.664131\pi\)
0.957890 + 0.287134i \(0.0927027\pi\)
\(258\) −2.87047 3.59945i −0.178708 0.224092i
\(259\) −10.6223 + 5.11543i −0.660037 + 0.317857i
\(260\) 2.30798 0.143135
\(261\) 0 0
\(262\) 0.819396 0.0506225
\(263\) 0.299782 0.144367i 0.0184853 0.00890207i −0.424618 0.905372i \(-0.639592\pi\)
0.443104 + 0.896470i \(0.353877\pi\)
\(264\) 1.09634 + 1.37477i 0.0674752 + 0.0846113i
\(265\) −0.969501 + 1.21572i −0.0595559 + 0.0746808i
\(266\) −13.4683 + 6.48599i −0.825795 + 0.397682i
\(267\) −0.570688 0.274829i −0.0349255 0.0168192i
\(268\) 0.291053 + 0.364968i 0.0177789 + 0.0222940i
\(269\) 0.236758 1.03731i 0.0144354 0.0632457i −0.967197 0.254027i \(-0.918245\pi\)
0.981633 + 0.190781i \(0.0611020\pi\)
\(270\) −0.369510 + 1.61893i −0.0224877 + 0.0985249i
\(271\) −10.2654 + 12.8724i −0.623578 + 0.781943i −0.988843 0.148961i \(-0.952407\pi\)
0.365265 + 0.930904i \(0.380979\pi\)
\(272\) 1.21983 + 5.34444i 0.0739632 + 0.324054i
\(273\) −9.34481 −0.565574
\(274\) −5.30894 23.2600i −0.320725 1.40519i
\(275\) 12.7833 + 6.15610i 0.770861 + 0.371227i
\(276\) 2.06853 + 0.996152i 0.124511 + 0.0599613i
\(277\) −1.46734 6.42886i −0.0881642 0.386273i 0.911524 0.411247i \(-0.134907\pi\)
−0.999688 + 0.0249745i \(0.992050\pi\)
\(278\) 5.03923 0.302233
\(279\) −3.96346 17.3651i −0.237286 1.03962i
\(280\) −1.22252 + 1.53299i −0.0730596 + 0.0916138i
\(281\) 6.79470 29.7695i 0.405338 1.77590i −0.199858 0.979825i \(-0.564048\pi\)
0.605196 0.796076i \(-0.293095\pi\)
\(282\) −1.39224 + 6.09980i −0.0829067 + 0.363238i
\(283\) −2.21648 2.77938i −0.131756 0.165217i 0.711577 0.702608i \(-0.247981\pi\)
−0.843333 + 0.537391i \(0.819410\pi\)
\(284\) 12.8143 + 6.17105i 0.760390 + 0.366184i
\(285\) −0.293209 + 0.141202i −0.0173682 + 0.00836407i
\(286\) −16.9656 + 21.2742i −1.00320 + 1.25797i
\(287\) −1.00000 1.25396i −0.0590281 0.0740189i
\(288\) 15.6163 7.52039i 0.920197 0.443143i
\(289\) −15.7681 −0.927534
\(290\) 0 0
\(291\) 7.00969 0.410915
\(292\) 10.0538 4.84164i 0.588352 0.283335i
\(293\) 20.5003 + 25.7066i 1.19764 + 1.50179i 0.816569 + 0.577247i \(0.195873\pi\)
0.381071 + 0.924546i \(0.375555\pi\)
\(294\) −4.69687 + 5.88968i −0.273927 + 0.343493i
\(295\) 2.92931 1.41068i 0.170551 0.0821331i
\(296\) 3.55980 + 1.71431i 0.206909 + 0.0996423i
\(297\) −4.68784 5.87837i −0.272016 0.341097i
\(298\) 1.08599 4.75803i 0.0629097 0.275625i
\(299\) 4.77413 20.9168i 0.276095 1.20965i
\(300\) −1.68598 + 2.11415i −0.0973401 + 0.122061i
\(301\) 5.17241 + 22.6618i 0.298133 + 1.30620i
\(302\) 4.38835 0.252521
\(303\) 1.72737 + 7.56808i 0.0992345 + 0.434775i
\(304\) 9.11745 + 4.39073i 0.522922 + 0.251826i
\(305\) 1.94504 + 0.936683i 0.111373 + 0.0536343i
\(306\) −1.24698 5.46337i −0.0712851 0.312320i
\(307\) 14.6703 0.837275 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(308\) 3.27144 + 14.3331i 0.186407 + 0.816705i
\(309\) −0.780831 + 0.979132i −0.0444199 + 0.0557009i
\(310\) −0.909698 + 3.98565i −0.0516674 + 0.226370i
\(311\) −4.12253 + 18.0620i −0.233767 + 1.02420i 0.712717 + 0.701452i \(0.247464\pi\)
−0.946484 + 0.322750i \(0.895393\pi\)
\(312\) 1.95257 + 2.44845i 0.110543 + 0.138616i
\(313\) −20.7153 9.97595i −1.17090 0.563874i −0.255651 0.966769i \(-0.582290\pi\)
−0.915246 + 0.402895i \(0.868004\pi\)
\(314\) 28.6993 13.8209i 1.61960 0.779956i
\(315\) 2.52446 3.16557i 0.142237 0.178360i
\(316\) −0.461968 0.579289i −0.0259877 0.0325876i
\(317\) −12.6664 + 6.09980i −0.711414 + 0.342599i −0.754344 0.656479i \(-0.772045\pi\)
0.0429302 + 0.999078i \(0.486331\pi\)
\(318\) 3.49396 0.195932
\(319\) 0 0
\(320\) −0.452812 −0.0253129
\(321\) 2.99127 1.44052i 0.166956 0.0804020i
\(322\) −18.8192 23.5985i −1.04875 1.31509i
\(323\) 1.41789 1.77798i 0.0788938 0.0989297i
\(324\) −8.15279 + 3.92618i −0.452933 + 0.218121i
\(325\) 22.7669 + 10.9640i 1.26288 + 0.608171i
\(326\) 5.57942 + 6.99637i 0.309015 + 0.387493i
\(327\) 0.163678 0.717120i 0.00905141 0.0396568i
\(328\) −0.119605 + 0.524023i −0.00660408 + 0.0289344i
\(329\) 19.6957 24.6976i 1.08586 1.36162i
\(330\) 0.185448 + 0.812502i 0.0102086 + 0.0447267i
\(331\) 13.9565 0.767116 0.383558 0.923517i \(-0.374699\pi\)
0.383558 + 0.923517i \(0.374699\pi\)
\(332\) 2.61745 + 11.4678i 0.143651 + 0.629377i
\(333\) −7.35086 3.53999i −0.402824 0.193990i
\(334\) 23.4828 + 11.3087i 1.28492 + 0.618787i
\(335\) −0.0297300 0.130256i −0.00162432 0.00711663i
\(336\) 8.89977 0.485522
\(337\) 3.11476 + 13.6467i 0.169672 + 0.743381i 0.986130 + 0.165976i \(0.0530774\pi\)
−0.816458 + 0.577405i \(0.804065\pi\)
\(338\) −15.6102 + 19.5746i −0.849084 + 1.06472i
\(339\) −0.855699 + 3.74906i −0.0464752 + 0.203621i
\(340\) −0.109916 + 0.481575i −0.00596105 + 0.0261171i
\(341\) −11.5410 14.4720i −0.624981 0.783701i
\(342\) −9.32036 4.48845i −0.503987 0.242707i
\(343\) 8.73221 4.20521i 0.471495 0.227060i
\(344\) 4.85690 6.09035i 0.261866 0.328370i
\(345\) −0.409698 0.513745i −0.0220574 0.0276591i
\(346\) 17.0683 8.21966i 0.917597 0.441892i
\(347\) −19.8538 −1.06581 −0.532905 0.846175i \(-0.678900\pi\)
−0.532905 + 0.846175i \(0.678900\pi\)
\(348\) 0 0
\(349\) −26.9202 −1.44101 −0.720503 0.693452i \(-0.756089\pi\)
−0.720503 + 0.693452i \(0.756089\pi\)
\(350\) 32.0296 15.4246i 1.71205 0.824482i
\(351\) −8.34899 10.4693i −0.445636 0.558810i
\(352\) 11.2307 14.0829i 0.598599 0.750620i
\(353\) 3.61745 1.74207i 0.192537 0.0927211i −0.335131 0.942171i \(-0.608781\pi\)
0.527669 + 0.849450i \(0.323066\pi\)
\(354\) −6.58211 3.16977i −0.349835 0.168472i
\(355\) −2.53803 3.18259i −0.134705 0.168914i
\(356\) −0.394928 + 1.73029i −0.0209311 + 0.0917053i
\(357\) 0.445042 1.94986i 0.0235541 0.103197i
\(358\) 6.44989 8.08790i 0.340887 0.427459i
\(359\) 0.166071 + 0.727604i 0.00876488 + 0.0384015i 0.979121 0.203277i \(-0.0651592\pi\)
−0.970356 + 0.241679i \(0.922302\pi\)
\(360\) −1.35690 −0.0715147
\(361\) 3.29374 + 14.4308i 0.173355 + 0.759517i
\(362\) −10.7811 5.19192i −0.566643 0.272881i
\(363\) 1.01089 + 0.486817i 0.0530577 + 0.0255512i
\(364\) 5.82640 + 25.5271i 0.305386 + 1.33798i
\(365\) −3.19375 −0.167169
\(366\) −1.07942 4.72923i −0.0564220 0.247201i
\(367\) −21.2292 + 26.6205i −1.10815 + 1.38958i −0.195569 + 0.980690i \(0.562655\pi\)
−0.912584 + 0.408890i \(0.865916\pi\)
\(368\) −4.54676 + 19.9207i −0.237016 + 1.03844i
\(369\) 0.246980 1.08209i 0.0128572 0.0563313i
\(370\) 1.16756 + 1.46408i 0.0606987 + 0.0761138i
\(371\) −15.8937 7.65402i −0.825161 0.397377i
\(372\) 3.17845 1.53066i 0.164795 0.0793610i
\(373\) 17.4581 21.8917i 0.903945 1.13351i −0.0865888 0.996244i \(-0.527597\pi\)
0.990534 0.137267i \(-0.0438320\pi\)
\(374\) −3.63102 4.55316i −0.187756 0.235438i
\(375\) 1.41281 0.680375i 0.0729574 0.0351344i
\(376\) −10.5864 −0.545953
\(377\) 0 0
\(378\) −18.8388 −0.968962
\(379\) −20.6151 + 9.92769i −1.05892 + 0.509951i −0.880521 0.474006i \(-0.842807\pi\)
−0.178403 + 0.983958i \(0.557093\pi\)
\(380\) 0.568532 + 0.712916i 0.0291651 + 0.0365718i
\(381\) 2.90581 3.64377i 0.148869 0.186676i
\(382\) −30.5405 + 14.7075i −1.56259 + 0.752502i
\(383\) −10.6838 5.14506i −0.545918 0.262900i 0.140533 0.990076i \(-0.455118\pi\)
−0.686451 + 0.727176i \(0.740833\pi\)
\(384\) −2.79859 3.50932i −0.142815 0.179084i
\(385\) 0.936313 4.10225i 0.0477189 0.209070i
\(386\) 4.36443 19.1218i 0.222144 0.973275i
\(387\) −10.0293 + 12.5763i −0.509818 + 0.639292i
\(388\) −4.37047 19.1483i −0.221877 0.972107i
\(389\) −10.3913 −0.526862 −0.263431 0.964678i \(-0.584854\pi\)
−0.263431 + 0.964678i \(0.584854\pi\)
\(390\) 0.330281 + 1.44706i 0.0167244 + 0.0732746i
\(391\) 4.13706 + 1.99230i 0.209220 + 0.100755i
\(392\) −11.4840 5.53042i −0.580031 0.279328i
\(393\) 0.0450325 + 0.197300i 0.00227159 + 0.00995248i
\(394\) 15.1371 0.762594
\(395\) 0.0471884 + 0.206746i 0.00237431 + 0.0104025i
\(396\) −6.34332 + 7.95427i −0.318764 + 0.399717i
\(397\) −1.82855 + 8.01141i −0.0917724 + 0.402081i −0.999861 0.0166978i \(-0.994685\pi\)
0.908088 + 0.418779i \(0.137542\pi\)
\(398\) −2.65495 + 11.6321i −0.133081 + 0.583064i
\(399\) −2.30194 2.88654i −0.115241 0.144508i
\(400\) −21.6826 10.4418i −1.08413 0.522090i
\(401\) −22.4170 + 10.7955i −1.11945 + 0.539099i −0.899723 0.436462i \(-0.856231\pi\)
−0.219728 + 0.975561i \(0.570517\pi\)
\(402\) −0.187177 + 0.234713i −0.00933555 + 0.0117064i
\(403\) −20.5544 25.7744i −1.02389 1.28392i
\(404\) 19.5966 9.43724i 0.974969 0.469520i
\(405\) 2.58987 0.128692
\(406\) 0 0
\(407\) −8.47889 −0.420283
\(408\) −0.603875 + 0.290811i −0.0298963 + 0.0143973i
\(409\) 11.7811 + 14.7731i 0.582539 + 0.730481i 0.982544 0.186032i \(-0.0595628\pi\)
−0.400004 + 0.916513i \(0.630991\pi\)
\(410\) −0.158834 + 0.199171i −0.00784423 + 0.00983636i
\(411\) 5.30894 2.55665i 0.261871 0.126110i
\(412\) 3.16152 + 1.52251i 0.155757 + 0.0750086i
\(413\) 22.9976 + 28.8381i 1.13164 + 1.41903i
\(414\) 4.64795 20.3640i 0.228434 1.00084i
\(415\) 0.749136 3.28218i 0.0367736 0.161116i
\(416\) 20.0018 25.0814i 0.980668 1.22972i
\(417\) 0.276947 + 1.21338i 0.0135621 + 0.0594196i
\(418\) −10.7506 −0.525830
\(419\) 2.42380 + 10.6194i 0.118411 + 0.518791i 0.998992 + 0.0448952i \(0.0142954\pi\)
−0.880581 + 0.473895i \(0.842847\pi\)
\(420\) 0.722521 + 0.347948i 0.0352554 + 0.0169781i
\(421\) 17.9840 + 8.66065i 0.876488 + 0.422094i 0.817341 0.576155i \(-0.195447\pi\)
0.0591476 + 0.998249i \(0.481162\pi\)
\(422\) −3.24794 14.2302i −0.158107 0.692713i
\(423\) 21.8605 1.06290
\(424\) 1.31551 + 5.76363i 0.0638869 + 0.279907i
\(425\) −3.37196 + 4.22831i −0.163564 + 0.205103i
\(426\) −2.03534 + 8.91742i −0.0986127 + 0.432051i
\(427\) −5.44989 + 23.8775i −0.263738 + 1.15551i
\(428\) −5.80008 7.27307i −0.280357 0.351557i
\(429\) −6.05496 2.91591i −0.292336 0.140782i
\(430\) 3.32640 1.60191i 0.160413 0.0772509i
\(431\) −18.8233 + 23.6037i −0.906688 + 1.13695i 0.0834015 + 0.996516i \(0.473422\pi\)
−0.990090 + 0.140435i \(0.955150\pi\)
\(432\) 7.95138 + 9.97071i 0.382561 + 0.479716i
\(433\) 18.1918 8.76070i 0.874241 0.421012i 0.0577235 0.998333i \(-0.481616\pi\)
0.816518 + 0.577320i \(0.195902\pi\)
\(434\) −46.3793 −2.22628
\(435\) 0 0
\(436\) −2.06100 −0.0987039
\(437\) 7.63706 3.67782i 0.365330 0.175934i
\(438\) 4.47434 + 5.61065i 0.213792 + 0.268087i
\(439\) −6.64944 + 8.33813i −0.317360 + 0.397957i −0.914767 0.403981i \(-0.867626\pi\)
0.597407 + 0.801938i \(0.296198\pi\)
\(440\) −1.27048 + 0.611830i −0.0605677 + 0.0291679i
\(441\) 23.7141 + 11.4201i 1.12924 + 0.543814i
\(442\) −6.46681 8.10913i −0.307595 0.385712i
\(443\) 4.52834 19.8400i 0.215148 0.942625i −0.745859 0.666103i \(-0.767961\pi\)
0.961008 0.276522i \(-0.0891819\pi\)
\(444\) 0.359584 1.57544i 0.0170651 0.0747672i
\(445\) 0.316708 0.397139i 0.0150134 0.0188262i
\(446\) 8.78890 + 38.5067i 0.416166 + 1.82334i
\(447\) 1.20536 0.0570115
\(448\) −1.14310 5.00827i −0.0540066 0.236618i
\(449\) −17.4998 8.42744i −0.825865 0.397716i −0.0273022 0.999627i \(-0.508692\pi\)
−0.798563 + 0.601912i \(0.794406\pi\)
\(450\) 22.1652 + 10.6742i 1.04488 + 0.503186i
\(451\) −0.256668 1.12454i −0.0120860 0.0529524i
\(452\) 10.7748 0.506804
\(453\) 0.241176 + 1.05666i 0.0113314 + 0.0496462i
\(454\) 20.5356 25.7509i 0.963785 1.20855i
\(455\) 1.66756 7.30607i 0.0781765 0.342514i
\(456\) −0.275323 + 1.20627i −0.0128932 + 0.0564887i
\(457\) −7.74429 9.71103i −0.362263 0.454263i 0.566981 0.823731i \(-0.308111\pi\)
−0.929243 + 0.369468i \(0.879540\pi\)
\(458\) 26.0160 + 12.5287i 1.21565 + 0.585426i
\(459\) 2.58211 1.24348i 0.120522 0.0580405i
\(460\) −1.14795 + 1.43948i −0.0535234 + 0.0671162i
\(461\) −13.6833 17.1583i −0.637294 0.799142i 0.353367 0.935485i \(-0.385037\pi\)
−0.990662 + 0.136343i \(0.956465\pi\)
\(462\) −8.51842 + 4.10225i −0.396313 + 0.190854i
\(463\) −33.0073 −1.53398 −0.766990 0.641660i \(-0.778246\pi\)
−0.766990 + 0.641660i \(0.778246\pi\)
\(464\) 0 0
\(465\) −1.00969 −0.0468232
\(466\) 3.17629 1.52962i 0.147139 0.0708584i
\(467\) −16.2751 20.4083i −0.753121 0.944384i 0.246573 0.969124i \(-0.420696\pi\)
−0.999694 + 0.0247402i \(0.992124\pi\)
\(468\) −11.2974 + 14.1665i −0.522222 + 0.654846i
\(469\) 1.36563 0.657650i 0.0630587 0.0303675i
\(470\) −4.52057 2.17699i −0.208519 0.100417i
\(471\) 4.90515 + 6.15086i 0.226017 + 0.283417i
\(472\) 2.75063 12.0513i 0.126608 0.554705i
\(473\) −3.71983 + 16.2977i −0.171038 + 0.749367i
\(474\) 0.297093 0.372543i 0.0136460 0.0171115i
\(475\) 2.22156 + 9.73330i 0.101932 + 0.446594i
\(476\) −5.60388 −0.256853
\(477\) −2.71648 11.9017i −0.124379 0.544940i
\(478\) −14.5516 7.00768i −0.665575 0.320524i
\(479\) −29.7913 14.3468i −1.36120 0.655520i −0.396297 0.918122i \(-0.629705\pi\)
−0.964904 + 0.262602i \(0.915419\pi\)
\(480\) −0.218636 0.957907i −0.00997933 0.0437223i
\(481\) −15.1008 −0.688538
\(482\) 7.97919 + 34.9591i 0.363442 + 1.59234i
\(483\) 4.64795 5.82834i 0.211489 0.265199i
\(484\) 0.699554 3.06495i 0.0317979 0.139316i
\(485\) −1.25086 + 5.48040i −0.0567988 + 0.248852i
\(486\) −12.3312 15.4629i −0.559356 0.701411i
\(487\) 9.15064 + 4.40671i 0.414655 + 0.199687i 0.629567 0.776946i \(-0.283232\pi\)
−0.214912 + 0.976633i \(0.568947\pi\)
\(488\) 7.39493 3.56121i 0.334753 0.161208i
\(489\) −1.37800 + 1.72796i −0.0623154 + 0.0781411i
\(490\) −3.76659 4.72316i −0.170157 0.213371i
\(491\) 17.7327 8.53964i 0.800267 0.385388i 0.0113870 0.999935i \(-0.496375\pi\)
0.788880 + 0.614547i \(0.210661\pi\)
\(492\) 0.219833 0.00991082
\(493\) 0 0
\(494\) −19.1468 −0.861453
\(495\) 2.62349 1.26341i 0.117917 0.0567859i
\(496\) 19.5755 + 24.5469i 0.878967 + 1.10219i
\(497\) 28.7935 36.1059i 1.29157 1.61957i
\(498\) −6.81551 + 3.28218i −0.305410 + 0.147078i
\(499\) −25.0916 12.0835i −1.12325 0.540930i −0.222357 0.974965i \(-0.571375\pi\)
−0.900896 + 0.434036i \(0.857089\pi\)
\(500\) −2.73945 3.43516i −0.122512 0.153625i
\(501\) −1.43243 + 6.27588i −0.0639962 + 0.280385i
\(502\) 10.3470 45.3330i 0.461808 2.02331i
\(503\) −0.140416 + 0.176076i −0.00626083 + 0.00785083i −0.784952 0.619557i \(-0.787312\pi\)
0.778691 + 0.627407i \(0.215884\pi\)
\(504\) −3.42543 15.0078i −0.152581 0.668500i
\(505\) −6.22521 −0.277018
\(506\) −4.83028 21.1628i −0.214732 0.940803i
\(507\) −5.57122 2.68296i −0.247427 0.119154i
\(508\) −11.7654 5.66592i −0.522005 0.251384i
\(509\) 5.63049 + 24.6688i 0.249567 + 1.09342i 0.931995 + 0.362472i \(0.118067\pi\)
−0.682428 + 0.730953i \(0.739076\pi\)
\(510\) −0.317667 −0.0140665
\(511\) −8.06249 35.3241i −0.356664 1.56265i
\(512\) −10.6923 + 13.4077i −0.472538 + 0.592544i
\(513\) 1.17725 5.15788i 0.0519769 0.227726i
\(514\) 4.79201 20.9952i 0.211367 0.926058i
\(515\) −0.626178 0.785203i −0.0275927 0.0346002i
\(516\) −2.87047 1.38235i −0.126365 0.0608544i
\(517\) 20.4683 9.85702i 0.900195 0.433511i
\(518\) −13.2458 + 16.6097i −0.581986 + 0.729788i
\(519\) 2.91723 + 3.65809i 0.128052 + 0.160572i
\(520\) −2.26271 + 1.08966i −0.0992264 + 0.0477849i
\(521\) 23.5797 1.03305 0.516523 0.856273i \(-0.327226\pi\)
0.516523 + 0.856273i \(0.327226\pi\)
\(522\) 0 0
\(523\) 3.96508 0.173381 0.0866905 0.996235i \(-0.472371\pi\)
0.0866905 + 0.996235i \(0.472371\pi\)
\(524\) 0.510885 0.246029i 0.0223181 0.0107478i
\(525\) 5.47434 + 6.86461i 0.238920 + 0.299596i
\(526\) 0.373822 0.468758i 0.0162994 0.0204388i
\(527\) 6.35690 3.06132i 0.276911 0.133353i
\(528\) 5.76659 + 2.77705i 0.250959 + 0.120855i
\(529\) −3.66905 4.60085i −0.159524 0.200037i
\(530\) −0.623490 + 2.73169i −0.0270827 + 0.118657i
\(531\) −5.67994 + 24.8854i −0.246488 + 1.07994i
\(532\) −6.44989 + 8.08790i −0.279638 + 0.350655i
\(533\) −0.457123 2.00279i −0.0198002 0.0867504i
\(534\) −1.14138 −0.0493921
\(535\) 0.592458 + 2.59573i 0.0256142 + 0.112223i
\(536\) −0.457656 0.220395i −0.0197677 0.00951963i
\(537\) 2.30194 + 1.10855i 0.0993359 + 0.0478377i
\(538\) −0.426624 1.86916i −0.0183931 0.0805853i
\(539\) 27.3532 1.17818
\(540\) 0.255709 + 1.12033i 0.0110040 + 0.0482115i
\(541\) −15.3753 + 19.2800i −0.661036 + 0.828913i −0.993456 0.114218i \(-0.963564\pi\)
0.332419 + 0.943132i \(0.392135\pi\)
\(542\) −6.60172 + 28.9240i −0.283568 + 1.24239i
\(543\) 0.657637 2.88130i 0.0282219 0.123648i
\(544\) 4.28083 + 5.36799i 0.183539 + 0.230151i
\(545\) 0.531459 + 0.255937i 0.0227652 + 0.0109631i
\(546\) −15.1712 + 7.30607i −0.649268 + 0.312671i
\(547\) 15.4882 19.4216i 0.662228 0.830408i −0.331356 0.943506i \(-0.607506\pi\)
0.993584 + 0.113098i \(0.0360774\pi\)
\(548\) −10.2940 12.9083i −0.439739 0.551416i
\(549\) −15.2702 + 7.35376i −0.651718 + 0.313851i
\(550\) 25.5666 1.09016
\(551\) 0 0
\(552\) −2.49827 −0.106333
\(553\) −2.16756 + 1.04384i −0.0921741 + 0.0443887i
\(554\) −7.40850 9.28997i −0.314757 0.394693i
\(555\) −0.288364 + 0.361597i −0.0122404 + 0.0153489i
\(556\) 3.14191 1.51306i 0.133247 0.0641682i
\(557\) −6.99612 3.36915i −0.296435 0.142756i 0.279755 0.960071i \(-0.409747\pi\)
−0.576190 + 0.817316i \(0.695461\pi\)
\(558\) −20.0112 25.0932i −0.847141 1.06228i
\(559\) −6.62498 + 29.0259i −0.280207 + 1.22767i
\(560\) −1.58815 + 6.95812i −0.0671114 + 0.294034i
\(561\) 0.896789 1.12454i 0.0378624 0.0474780i
\(562\) −12.2436 53.6428i −0.516466 2.26279i
\(563\) 20.8009 0.876652 0.438326 0.898816i \(-0.355571\pi\)
0.438326 + 0.898816i \(0.355571\pi\)
\(564\) 0.963460 + 4.22119i 0.0405690 + 0.177744i
\(565\) −2.77844 1.33803i −0.116890 0.0562912i
\(566\) −5.77144 2.77938i −0.242592 0.116826i
\(567\) 6.53803 + 28.6450i 0.274572 + 1.20298i
\(568\) −15.4765 −0.649380
\(569\) −0.625113 2.73880i −0.0262061 0.114816i 0.960133 0.279543i \(-0.0901830\pi\)
−0.986339 + 0.164727i \(0.947326\pi\)
\(570\) −0.365625 + 0.458479i −0.0153143 + 0.0192036i
\(571\) −0.643637 + 2.81996i −0.0269354 + 0.118011i −0.986608 0.163107i \(-0.947848\pi\)
0.959673 + 0.281119i \(0.0907055\pi\)
\(572\) −4.19016 + 18.3583i −0.175199 + 0.767599i
\(573\) −5.21983 6.54546i −0.218062 0.273441i
\(574\) −2.60388 1.25396i −0.108684 0.0523393i
\(575\) −18.1621 + 8.74638i −0.757410 + 0.364749i
\(576\) 2.21648 2.77938i 0.0923533 0.115807i
\(577\) 4.48225 + 5.62056i 0.186598 + 0.233987i 0.866328 0.499476i \(-0.166474\pi\)
−0.679729 + 0.733463i \(0.737903\pi\)
\(578\) −25.5993 + 12.3280i −1.06479 + 0.512777i
\(579\) 4.84415 0.201316
\(580\) 0 0
\(581\) 38.1933 1.58452
\(582\) 11.3802 5.48040i 0.471723 0.227170i
\(583\) −7.90999 9.91882i −0.327598 0.410795i
\(584\) −7.57069 + 9.49334i −0.313277 + 0.392837i
\(585\) 4.67241 2.25011i 0.193180 0.0930307i
\(586\) 53.3802 + 25.7066i 2.20512 + 1.06193i
\(587\) −19.3512 24.2656i −0.798707 1.00155i −0.999759 0.0219668i \(-0.993007\pi\)
0.201051 0.979581i \(-0.435564\pi\)
\(588\) −1.16003 + 5.08242i −0.0478388 + 0.209596i
\(589\) 2.89828 12.6982i 0.119422 0.523220i
\(590\) 3.65279 4.58046i 0.150383 0.188574i
\(591\) 0.831905 + 3.64481i 0.0342200 + 0.149928i
\(592\) 14.3817 0.591082
\(593\) −8.11476 35.5531i −0.333233 1.45999i −0.812830 0.582501i \(-0.802074\pi\)
0.479597 0.877489i \(-0.340783\pi\)
\(594\) −12.2066 5.87837i −0.500841 0.241192i
\(595\) 1.44504 + 0.695895i 0.0592409 + 0.0285289i
\(596\) −0.751528 3.29266i −0.0307838 0.134873i
\(597\) −2.94677 −0.120603
\(598\) −8.60268 37.6908i −0.351790 1.54129i
\(599\) 18.7473 23.5083i 0.765993 0.960525i −0.233938 0.972251i \(-0.575161\pi\)
0.999931 + 0.0117267i \(0.00373282\pi\)
\(600\) 0.654759 2.86869i 0.0267304 0.117114i
\(601\) 7.38458 32.3539i 0.301223 1.31974i −0.567060 0.823676i \(-0.691919\pi\)
0.868283 0.496068i \(-0.165223\pi\)
\(602\) 26.1151 + 32.7472i 1.06437 + 1.33468i
\(603\) 0.945042 + 0.455108i 0.0384851 + 0.0185334i
\(604\) 2.73609 1.31763i 0.111330 0.0536138i
\(605\) −0.560999 + 0.703470i −0.0228078 + 0.0286001i
\(606\) 8.72132 + 10.9362i 0.354280 + 0.444253i
\(607\) 13.6228 6.56041i 0.552933 0.266279i −0.136485 0.990642i \(-0.543581\pi\)
0.689418 + 0.724363i \(0.257866\pi\)
\(608\) 12.6746 0.514021
\(609\) 0 0
\(610\) 3.89008 0.157505
\(611\) 36.4538 17.5552i 1.47476 0.710209i
\(612\) −2.41789 3.03194i −0.0977376 0.122559i
\(613\) 2.34146 2.93610i 0.0945708 0.118588i −0.732294 0.680988i \(-0.761551\pi\)
0.826865 + 0.562400i \(0.190122\pi\)
\(614\) 23.8170 11.4697i 0.961176 0.462878i
\(615\) −0.0566871 0.0272990i −0.00228584 0.00110080i
\(616\) −9.97434 12.5074i −0.401878 0.503939i
\(617\) −6.64364 + 29.1077i −0.267463 + 1.17183i 0.645491 + 0.763768i \(0.276653\pi\)
−0.912954 + 0.408063i \(0.866204\pi\)
\(618\) −0.502156 + 2.20009i −0.0201997 + 0.0885006i
\(619\) −28.7540 + 36.0564i −1.15572 + 1.44923i −0.284269 + 0.958745i \(0.591751\pi\)
−0.871451 + 0.490483i \(0.836821\pi\)
\(620\) 0.629531 + 2.75815i 0.0252826 + 0.110770i
\(621\) 10.6823 0.428667
\(622\) 7.42854 + 32.5466i 0.297857 + 1.30500i
\(623\) 5.19202 + 2.50035i 0.208014 + 0.100174i
\(624\) 10.2702 + 4.94589i 0.411139 + 0.197994i
\(625\) −5.14148 22.5263i −0.205659 0.901052i
\(626\) −41.4306 −1.65590
\(627\) −0.590834 2.58861i −0.0235957 0.103379i
\(628\) 13.7439 17.2343i 0.548442 0.687725i
\(629\) 0.719169 3.15088i 0.0286751 0.125634i
\(630\) 1.62349 7.11297i 0.0646814 0.283388i
\(631\) 7.87465 + 9.87450i 0.313485 + 0.393098i 0.913465 0.406917i \(-0.133396\pi\)
−0.599980 + 0.800015i \(0.704825\pi\)
\(632\) 0.726406 + 0.349819i 0.0288949 + 0.0139150i
\(633\) 3.24794 1.56413i 0.129094 0.0621684i
\(634\) −15.7947 + 19.8059i −0.627288 + 0.786594i
\(635\) 2.33028 + 2.92208i 0.0924744 + 0.115959i
\(636\) 2.17845 1.04909i 0.0863811 0.0415989i
\(637\) 48.7157 1.93019
\(638\) 0 0
\(639\) 31.9584 1.26425
\(640\) 3.24309 1.56179i 0.128195 0.0617353i
\(641\) 24.3173 + 30.4929i 0.960476 + 1.20440i 0.978853 + 0.204567i \(0.0655787\pi\)
−0.0183770 + 0.999831i \(0.505850\pi\)
\(642\) 3.73005 4.67734i 0.147213 0.184600i
\(643\) −37.2068 + 17.9179i −1.46729 + 0.706612i −0.985501 0.169672i \(-0.945729\pi\)
−0.481794 + 0.876284i \(0.660015\pi\)
\(644\) −18.8192 9.06283i −0.741579 0.357126i
\(645\) 0.568532 + 0.712916i 0.0223859 + 0.0280710i
\(646\) 0.911854 3.99509i 0.0358764 0.157185i
\(647\) 3.98547 17.4615i 0.156685 0.686481i −0.834165 0.551515i \(-0.814050\pi\)
0.990850 0.134967i \(-0.0430928\pi\)
\(648\) 6.13922 7.69834i 0.241171 0.302419i
\(649\) 5.90276 + 25.8617i 0.231703 + 1.01516i
\(650\) 45.5338 1.78598
\(651\) −2.54892 11.1675i −0.0998999 0.437690i
\(652\) 5.57942 + 2.68691i 0.218507 + 0.105227i
\(653\) 12.0015 + 5.77961i 0.469655 + 0.226174i 0.653714 0.756741i \(-0.273210\pi\)
−0.184060 + 0.982915i \(0.558924\pi\)
\(654\) −0.294937 1.29221i −0.0115330 0.0505292i
\(655\) −0.162291 −0.00634125
\(656\) 0.435353 + 1.90741i 0.0169977 + 0.0744717i
\(657\) 15.6332 19.6034i 0.609908 0.764801i
\(658\) 12.6664 55.4950i 0.493786 2.16342i
\(659\) −4.17576 + 18.2952i −0.162664 + 0.712680i 0.826140 + 0.563465i \(0.190532\pi\)
−0.988805 + 0.149215i \(0.952325\pi\)
\(660\) 0.359584 + 0.450904i 0.0139968 + 0.0175514i
\(661\) 22.2799 + 10.7294i 0.866589 + 0.417327i 0.813708 0.581274i \(-0.197445\pi\)
0.0528807 + 0.998601i \(0.483160\pi\)
\(662\) 22.6582 10.9116i 0.880635 0.424091i
\(663\) 1.59717 2.00279i 0.0620290 0.0777819i
\(664\) −7.98039 10.0071i −0.309699 0.388350i
\(665\) 2.66756 1.28463i 0.103444 0.0498158i
\(666\) −14.7017 −0.569680
\(667\) 0 0
\(668\) 18.0368 0.697866
\(669\) −8.78890 + 4.23251i −0.339798 + 0.163638i
\(670\) −0.150104 0.188225i −0.00579904 0.00727177i
\(671\) −10.9819 + 13.7708i −0.423951 + 0.531617i
\(672\) 10.0429 4.83639i 0.387412 0.186568i
\(673\) −22.9230 11.0392i −0.883618 0.425528i −0.0636734 0.997971i \(-0.520282\pi\)
−0.819945 + 0.572443i \(0.805996\pi\)
\(674\) 15.7262 + 19.7200i 0.605749 + 0.759586i
\(675\) −2.79968 + 12.2662i −0.107760 + 0.472126i
\(676\) −3.85540 + 16.8916i −0.148285 + 0.649678i
\(677\) 0.384411 0.482037i 0.0147741 0.0185262i −0.774390 0.632709i \(-0.781943\pi\)
0.789164 + 0.614183i \(0.210514\pi\)
\(678\) 1.54192 + 6.75558i 0.0592170 + 0.259446i
\(679\) −63.7730 −2.44738
\(680\) −0.119605 0.524023i −0.00458664 0.0200954i
\(681\) 7.32908 + 3.52950i 0.280851 + 0.135251i
\(682\) −30.0514 14.4720i −1.15073 0.554161i
\(683\) −4.01022 17.5699i −0.153447 0.672295i −0.991868 0.127272i \(-0.959378\pi\)
0.838421 0.545023i \(-0.183479\pi\)
\(684\) −7.15883 −0.273725
\(685\) 1.05150 + 4.60692i 0.0401758 + 0.176022i
\(686\) 10.8889 13.6542i 0.415740 0.521321i
\(687\) −1.58695 + 6.95288i −0.0605459 + 0.265269i
\(688\) 6.30947 27.6436i 0.240546 1.05390i
\(689\) −14.0876 17.6653i −0.536695 0.672995i
\(690\) −1.06680 0.513745i −0.0406125 0.0195579i
\(691\) −11.1235 + 5.35679i −0.423157 + 0.203782i −0.633329 0.773883i \(-0.718312\pi\)
0.210172 + 0.977665i \(0.432598\pi\)
\(692\) 8.17390 10.2497i 0.310725 0.389637i
\(693\) 20.5966 + 25.8274i 0.782402 + 0.981101i
\(694\) −32.2325 + 15.5224i −1.22353 + 0.589221i
\(695\) −0.998081 −0.0378594
\(696\) 0 0
\(697\) 0.439665 0.0166535
\(698\) −43.7047 + 21.0471i −1.65425 + 0.796643i
\(699\) 0.542877 + 0.680746i 0.0205335 + 0.0257482i
\(700\) 15.3388 19.2342i 0.579751 0.726985i
\(701\) 30.7207 14.7943i 1.16030 0.558773i 0.248190 0.968711i \(-0.420164\pi\)
0.912113 + 0.409939i \(0.134450\pi\)
\(702\) −21.7397 10.4693i −0.820514 0.395139i
\(703\) −3.71983 4.66452i −0.140296 0.175926i
\(704\) 0.822085 3.60179i 0.0309835 0.135747i
\(705\) 0.275750 1.20814i 0.0103854 0.0455012i
\(706\) 4.51089 5.65647i 0.169769 0.212884i
\(707\) −15.7153 68.8532i −0.591034 2.58949i
\(708\) −5.05562 −0.190002
\(709\) −9.36712 41.0400i −0.351789 1.54129i −0.773047 0.634349i \(-0.781268\pi\)
0.421257 0.906941i \(-0.361589\pi\)
\(710\) −6.60872 3.18259i −0.248021 0.119441i
\(711\) −1.50000 0.722362i −0.0562544 0.0270907i
\(712\) −0.429739 1.88281i −0.0161052 0.0705613i
\(713\) 26.2989 0.984901
\(714\) −0.801938 3.51352i −0.0300118 0.131490i
\(715\) 3.36025 4.21362i 0.125666 0.157580i
\(716\) 1.59299 6.97935i 0.0595328 0.260830i
\(717\) 0.887632 3.88897i 0.0331492 0.145236i
\(718\) 0.838478 + 1.05142i 0.0312917 + 0.0392386i
\(719\) 47.0795 + 22.6723i 1.75577 + 0.845533i 0.975472 + 0.220123i \(0.0706459\pi\)
0.780296 + 0.625410i \(0.215068\pi\)
\(720\) −4.44989 + 2.14295i −0.165837 + 0.0798631i
\(721\) 7.10388 8.90798i 0.264562 0.331750i
\(722\) 16.6298 + 20.8531i 0.618898 + 0.776074i
\(723\) −7.97919 + 3.84258i −0.296749 + 0.142907i
\(724\) −8.28083 −0.307755
\(725\) 0 0
\(726\) 2.02177 0.0750349
\(727\) −27.0155 + 13.0100i −1.00195 + 0.482513i −0.861599 0.507589i \(-0.830537\pi\)
−0.140350 + 0.990102i \(0.544823\pi\)
\(728\) −17.7642 22.2756i −0.658385 0.825589i
\(729\) −10.5278 + 13.2015i −0.389919 + 0.488943i
\(730\) −5.18502 + 2.49697i −0.191906 + 0.0924172i
\(731\) −5.74094 2.76469i −0.212336 0.102256i
\(732\) −2.09299 2.62453i −0.0773591 0.0970053i
\(733\) −0.670784 + 2.93890i −0.0247760 + 0.108551i −0.985804 0.167901i \(-0.946301\pi\)
0.961028 + 0.276451i \(0.0891584\pi\)
\(734\) −13.6526 + 59.8158i −0.503925 + 2.20784i
\(735\) 0.930272 1.16652i 0.0343136 0.0430279i
\(736\) 5.69471 + 24.9502i 0.209910 + 0.919675i
\(737\) 1.09006 0.0401531
\(738\) −0.445042 1.94986i −0.0163822 0.0717752i
\(739\) 18.7739 + 9.04103i 0.690609 + 0.332580i 0.746057 0.665882i \(-0.231945\pi\)
−0.0554484 + 0.998462i \(0.517659\pi\)
\(740\) 1.16756 + 0.562269i 0.0429205 + 0.0206694i
\(741\) −1.05227 4.61029i −0.0386561 0.169363i
\(742\) −31.7875 −1.16695
\(743\) 6.84601 + 29.9943i 0.251156 + 1.10039i 0.930421 + 0.366492i \(0.119441\pi\)
−0.679265 + 0.733893i \(0.737701\pi\)
\(744\) −2.39344 + 3.00127i −0.0877476 + 0.110032i
\(745\) −0.215094 + 0.942387i −0.00788042 + 0.0345264i
\(746\) 11.2274 49.1903i 0.411063 1.80098i
\(747\) 16.4792 + 20.6642i 0.602942 + 0.756065i
\(748\) −3.63102 1.74861i −0.132763 0.0639355i
\(749\) −27.2141 + 13.1056i −0.994381 + 0.478869i
\(750\) 1.76175 2.20916i 0.0643300 0.0806673i
\(751\) −2.78650 3.49417i −0.101681 0.127504i 0.728387 0.685165i \(-0.240270\pi\)
−0.830068 + 0.557662i \(0.811699\pi\)
\(752\) −34.7177 + 16.7192i −1.26603 + 0.609686i
\(753\) 11.4843 0.418510
\(754\) 0 0
\(755\) −0.869167 −0.0316322
\(756\) −11.7458 + 5.65647i −0.427190 + 0.205724i
\(757\) −5.27210 6.61101i −0.191618 0.240281i 0.676737 0.736225i \(-0.263394\pi\)
−0.868355 + 0.495944i \(0.834822\pi\)
\(758\) −25.7066 + 32.2350i −0.933704 + 1.17083i
\(759\) 4.83028 2.32614i 0.175328 0.0844336i
\(760\) −0.893969 0.430513i −0.0324276 0.0156163i
\(761\) 15.3971 + 19.3073i 0.558144 + 0.699890i 0.978213 0.207602i \(-0.0665658\pi\)
−0.420070 + 0.907492i \(0.637994\pi\)
\(762\) 1.86874 8.18749i 0.0676973 0.296601i
\(763\) −1.48911 + 6.52424i −0.0539096 + 0.236193i
\(764\) −14.6256 + 18.3400i −0.529137 + 0.663517i
\(765\) 0.246980 + 1.08209i 0.00892957 + 0.0391230i
\(766\) −21.3676 −0.772045
\(767\) 10.5127 + 46.0593i 0.379593 + 1.66311i
\(768\) −8.30463 3.99930i −0.299667 0.144312i
\(769\) −27.1579 13.0786i −0.979340 0.471625i −0.125462 0.992098i \(-0.540041\pi\)
−0.853878 + 0.520473i \(0.825756\pi\)
\(770\) −1.68718 7.39201i −0.0608016 0.266389i
\(771\) 5.31873 0.191549
\(772\) −3.02028 13.2327i −0.108702 0.476255i
\(773\) 3.53952 4.43842i 0.127308 0.159639i −0.714092 0.700051i \(-0.753160\pi\)
0.841400 + 0.540412i \(0.181732\pi\)
\(774\) −6.44989 + 28.2588i −0.231836 + 1.01574i
\(775\) −6.89254 + 30.1982i −0.247587 + 1.08475i
\(776\) 13.3252 + 16.7093i 0.478347 + 0.599828i
\(777\) −4.72737 2.27658i −0.169593 0.0816718i
\(778\) −16.8702 + 8.12428i −0.604827 + 0.291269i
\(779\) 0.506041 0.634555i 0.0181308 0.0227353i
\(780\) 0.640416 + 0.803056i 0.0229306 + 0.0287540i
\(781\) 29.9230 14.4102i 1.07073 0.515637i
\(782\) 8.27413 0.295882
\(783\) 0 0
\(784\) −46.3957 −1.65699
\(785\) −5.68425 + 2.73739i −0.202880 + 0.0977017i
\(786\) 0.227365 + 0.285107i 0.00810985 + 0.0101694i
\(787\) −2.25033 + 2.82183i −0.0802157 + 0.100587i −0.820320 0.571905i \(-0.806205\pi\)
0.740104 + 0.672492i \(0.234776\pi\)
\(788\) 9.43780 4.54501i 0.336208 0.161909i
\(789\) 0.133415 + 0.0642495i 0.00474972 + 0.00228734i
\(790\) 0.238250 + 0.298757i 0.00847657 + 0.0106293i
\(791\) 7.78501 34.1084i 0.276803 1.21275i
\(792\) 2.46346 10.7931i 0.0875352 0.383517i
\(793\) −19.5586 + 24.5257i −0.694546 + 0.870934i
\(794\) 3.29494 + 14.4361i 0.116933 + 0.512317i
\(795\) −0.692021 −0.0245435
\(796\) 1.83728 + 8.04966i 0.0651207 + 0.285313i
\(797\) 27.7347 + 13.3563i 0.982412 + 0.473105i 0.854934 0.518737i \(-0.173597\pi\)
0.127478 + 0.991841i \(0.459312\pi\)
\(798\) −5.99396 2.88654i −0.212184 0.102182i
\(799\) 1.92692 + 8.44239i 0.0681695 + 0.298670i
\(800\) −30.1420 −1.06568
\(801\) 0.887395 + 3.88793i 0.0313546 + 0.137373i
\(802\) −27.9535 + 35.0526i −0.987074 + 1.23775i
\(803\) 5.79829 25.4040i 0.204617 0.896487i
\(804\) −0.0462289 + 0.202542i −0.00163037 + 0.00714311i
\(805\) 3.72737 + 4.67397i 0.131372 + 0.164736i
\(806\) −53.5212 25.7744i −1.88520 0.907866i
\(807\) 0.426624 0.205451i 0.0150179 0.00723223i
\(808\) −14.7567 + 18.5043i −0.519138 + 0.650978i
\(809\) 3.26540 + 4.09468i 0.114805 + 0.143961i 0.835914 0.548861i \(-0.184938\pi\)
−0.721108 + 0.692822i \(0.756367\pi\)
\(810\) 4.20464 2.02485i 0.147736 0.0711458i
\(811\) 41.8646 1.47006 0.735032 0.678032i \(-0.237167\pi\)
0.735032 + 0.678032i \(0.237167\pi\)
\(812\) 0 0
\(813\) −7.32736 −0.256982
\(814\) −13.7654 + 6.62907i −0.482477 + 0.232349i
\(815\) −1.10507 1.38572i −0.0387090 0.0485395i
\(816\) −1.52111 + 1.90741i −0.0532494 + 0.0667726i
\(817\) −10.5978 + 5.10365i −0.370771 + 0.178554i
\(818\) 30.6766 + 14.7731i 1.07258 + 0.516528i
\(819\) 36.6824 + 45.9983i 1.28179 + 1.60731i
\(820\) −0.0392287 + 0.171872i −0.00136992 + 0.00600203i
\(821\) −3.42812 + 15.0196i −0.119642 + 0.524186i 0.879217 + 0.476422i \(0.158067\pi\)
−0.998859 + 0.0477639i \(0.984791\pi\)
\(822\) 6.62014 8.30139i 0.230904 0.289544i
\(823\) 7.93416 + 34.7618i 0.276567 + 1.21172i 0.902102 + 0.431524i \(0.142024\pi\)
−0.625534 + 0.780197i \(0.715119\pi\)
\(824\) −3.81833 −0.133018
\(825\) 1.40509 + 6.15610i 0.0489190 + 0.214328i
\(826\) 59.8829 + 28.8381i 2.08359 + 1.00341i
\(827\) 46.8989 + 22.5853i 1.63083 + 0.785368i 0.999955 + 0.00948645i \(0.00301967\pi\)
0.630879 + 0.775882i \(0.282695\pi\)
\(828\) −3.21648 14.0923i −0.111780 0.489742i
\(829\) −13.4168 −0.465986 −0.232993 0.972478i \(-0.574852\pi\)
−0.232993 + 0.972478i \(0.574852\pi\)
\(830\) −1.34990 5.91428i −0.0468556 0.205288i
\(831\) 1.82975 2.29443i 0.0634733 0.0795930i
\(832\) 1.46412 6.41475i 0.0507594 0.222391i
\(833\) −2.32006 + 10.1648i −0.0803853 + 0.352191i
\(834\) 1.39828 + 1.75339i 0.0484185 + 0.0607149i
\(835\) −4.65106 2.23983i −0.160957 0.0775127i
\(836\) −6.70291 + 3.22795i −0.231825 + 0.111641i
\(837\) 10.2341 12.8331i 0.353741 0.443577i
\(838\) 12.2376 + 15.3454i 0.422740 + 0.530100i
\(839\) 27.9763 13.4727i 0.965848 0.465128i 0.116633 0.993175i \(-0.462790\pi\)
0.849215 + 0.528047i \(0.177076\pi\)
\(840\) −0.872625 −0.0301084
\(841\) 0 0
\(842\) 35.9681 1.23954
\(843\) 12.2436 5.89622i 0.421693 0.203077i
\(844\) −6.29776 7.89714i −0.216778 0.271831i
\(845\) 3.09179 3.87699i 0.106361 0.133372i
\(846\) 35.4904 17.0913i 1.22018 0.587610i
\(847\) −9.19687 4.42898i −0.316008 0.152181i
\(848\) 13.4167 + 16.8240i 0.460731 + 0.577739i
\(849\) 0.352052 1.54244i 0.0120824 0.0529364i
\(850\) −2.16852 + 9.50092i −0.0743797 + 0.325879i
\(851\) 7.51089 9.41835i 0.257470 0.322857i
\(852\) 1.40850 + 6.17105i 0.0482545 + 0.211417i
\(853\) 21.3357 0.730521 0.365261 0.930905i \(-0.380980\pi\)
0.365261 + 0.930905i \(0.380980\pi\)
\(854\) 9.82036 + 43.0258i 0.336046 + 1.47231i
\(855\) 1.84601 + 0.888992i 0.0631322 + 0.0304029i
\(856\) 9.12014 + 4.39203i 0.311720 + 0.150116i
\(857\) 2.18784 + 9.58556i 0.0747352 + 0.327436i 0.998451 0.0556427i \(-0.0177208\pi\)
−0.923716 + 0.383079i \(0.874864\pi\)
\(858\) −12.1099 −0.413426
\(859\) 11.5230 + 50.4854i 0.393159 + 1.72254i 0.653414 + 0.757000i \(0.273336\pi\)
−0.260256 + 0.965540i \(0.583807\pi\)
\(860\) 1.59299 1.99755i 0.0543205 0.0681158i
\(861\) 0.158834 0.695895i 0.00541303 0.0237161i
\(862\) −12.1054 + 53.0371i −0.412310 + 1.80645i
\(863\) −10.1471 12.7241i −0.345412 0.433133i 0.578533 0.815659i \(-0.303626\pi\)
−0.923945 + 0.382526i \(0.875054\pi\)
\(864\) 14.3910 + 6.93036i 0.489593 + 0.235776i
\(865\) −3.38059 + 1.62800i −0.114943 + 0.0553538i
\(866\) 22.6848 28.4458i 0.770860 0.966628i
\(867\) −4.37531 5.48647i −0.148593 0.186330i
\(868\) −28.9170 + 13.9257i −0.981507 + 0.472669i
\(869\) −1.73019 −0.0586925
\(870\) 0 0
\(871\) 1.94139 0.0657816
\(872\) 2.02057 0.973057i 0.0684253 0.0329519i
\(873\) −27.5160 34.5040i −0.931276 1.16778i
\(874\) 9.52326 11.9418i 0.322129 0.403937i
\(875\) −12.8535 + 6.18994i −0.434529 + 0.209258i
\(876\) 4.47434 + 2.15473i 0.151174 + 0.0728016i
\(877\) 9.23155 + 11.5760i 0.311727 + 0.390893i 0.912872 0.408247i \(-0.133860\pi\)
−0.601144 + 0.799140i \(0.705288\pi\)
\(878\) −4.27628 + 18.7356i −0.144318 + 0.632296i
\(879\) −3.25614 + 14.2661i −0.109827 + 0.481182i
\(880\) −3.20022 + 4.01295i −0.107879 + 0.135276i
\(881\) 4.14728 + 18.1704i 0.139726 + 0.612178i 0.995494 + 0.0948195i \(0.0302274\pi\)
−0.855769 + 0.517358i \(0.826915\pi\)
\(882\) 47.4282 1.59699
\(883\) 7.20828 + 31.5816i 0.242578 + 1.06280i 0.938661 + 0.344842i \(0.112068\pi\)
−0.696083 + 0.717962i \(0.745075\pi\)
\(884\) −6.46681 3.11425i −0.217502 0.104744i
\(885\) 1.30367 + 0.627813i 0.0438223 + 0.0211037i
\(886\) −8.15979 35.7504i −0.274134 1.20106i
\(887\) −6.16288 −0.206929 −0.103465 0.994633i \(-0.532993\pi\)
−0.103465 + 0.994633i \(0.532993\pi\)
\(888\) 0.391280 + 1.71431i 0.0131305 + 0.0575285i
\(889\) −26.4366 + 33.1505i −0.886655 + 1.11183i
\(890\) 0.203676 0.892363i 0.00682724 0.0299121i
\(891\) −4.70195 + 20.6006i −0.157521 + 0.690145i
\(892\) 17.0417 + 21.3696i 0.570598 + 0.715507i
\(893\) 14.4025 + 6.93586i 0.481960 + 0.232100i
\(894\) 1.95689 0.942387i 0.0654481 0.0315181i
\(895\) −1.27748 + 1.60191i −0.0427014 + 0.0535459i
\(896\) 25.4611 + 31.9272i 0.850595 + 1.06661i
\(897\) 8.60268 4.14283i 0.287235 0.138325i
\(898\) −34.9995 −1.16795
\(899\) 0 0
\(900\) 17.0248 0.567492
\(901\) 4.35690 2.09817i 0.145149 0.0699002i
\(902\) −1.29590 1.62500i −0.0431486 0.0541067i
\(903\) −6.44989 + 8.08790i −0.214639 + 0.269149i
\(904\) −10.5635 + 5.08709i −0.351335 + 0.169194i
\(905\) 2.13533 + 1.02832i 0.0709809 + 0.0341826i
\(906\) 1.21768 + 1.52692i 0.0404546 + 0.0507285i
\(907\) −9.78740 + 42.8814i −0.324985 + 1.42385i 0.503573 + 0.863952i \(0.332018\pi\)
−0.828559 + 0.559902i \(0.810839\pi\)
\(908\) 5.07188 22.2214i 0.168316 0.737442i
\(909\) 30.4720 38.2106i 1.01069 1.26737i
\(910\) −3.00484 13.1651i −0.0996096 0.436418i
\(911\) −25.6233 −0.848936 −0.424468 0.905443i \(-0.639539\pi\)
−0.424468 + 0.905443i \(0.639539\pi\)
\(912\) 1.00216 + 4.39073i 0.0331847 + 0.145392i
\(913\) 24.7473 + 11.9177i 0.819015 + 0.394417i
\(914\) −20.1652 9.71103i −0.667005 0.321212i
\(915\) 0.213792 + 0.936683i 0.00706774 + 0.0309658i
\(916\) 19.9825 0.660242
\(917\) −0.409698 1.79500i −0.0135294 0.0592763i
\(918\) 3.21983 4.03754i 0.106270 0.133259i
\(919\) 1.38889 6.08511i 0.0458152 0.200729i −0.946841 0.321703i \(-0.895745\pi\)
0.992656 + 0.120974i \(0.0386018\pi\)
\(920\) 0.445811 1.95323i 0.0146980 0.0643960i
\(921\) 4.07069 + 5.10448i 0.134134 + 0.168198i
\(922\) −35.6296 17.1583i −1.17340 0.565079i
\(923\) 53.2926 25.6644i 1.75415 0.844753i
\(924\) −4.07942 + 5.11543i −0.134203 + 0.168285i
\(925\) 8.84631 + 11.0929i 0.290865 + 0.364733i
\(926\) −53.5870 + 25.8061i −1.76098 + 0.848042i
\(927\) 7.88471 0.258968
\(928\) 0 0
\(929\) −24.5133 −0.804256 −0.402128 0.915583i \(-0.631729\pi\)
−0.402128 + 0.915583i \(0.631729\pi\)
\(930\) −1.63922 + 0.789406i −0.0537521 + 0.0258857i
\(931\) 12.0003 + 15.0479i 0.393294 + 0.493175i
\(932\) 1.52111 1.90741i 0.0498255 0.0624792i
\(933\) −7.42854 + 3.57740i −0.243200 + 0.117119i
\(934\) −42.3783 20.4083i −1.38666 0.667780i
\(935\) 0.719169 + 0.901809i 0.0235193 + 0.0294923i
\(936\) 4.38740 19.2224i 0.143407 0.628305i
\(937\) 0.909994 3.98694i 0.0297282 0.130248i −0.957886 0.287148i \(-0.907293\pi\)
0.987614 + 0.156900i \(0.0501501\pi\)
\(938\) 1.70291 2.13538i 0.0556019 0.0697225i
\(939\) −2.27695 9.97595i −0.0743053 0.325553i
\(940\) −3.47219 −0.113250
\(941\) −1.37143 6.00862i −0.0447073 0.195875i 0.947643 0.319333i \(-0.103459\pi\)
−0.992350 + 0.123458i \(0.960602\pi\)
\(942\) 12.7724 + 6.15086i 0.416147 + 0.200406i
\(943\) 1.47650 + 0.711045i 0.0480815 + 0.0231548i
\(944\) −10.0121 43.8658i −0.325865 1.42771i
\(945\) 3.73125 0.121378
\(946\) 6.70291 + 29.3674i 0.217930 + 0.954815i
\(947\) −30.9889 + 38.8588i −1.00700 + 1.26274i −0.0423823 + 0.999101i \(0.513495\pi\)
−0.964621 + 0.263641i \(0.915077\pi\)
\(948\) 0.0733760 0.321481i 0.00238314 0.0104412i
\(949\) 10.3267 45.2442i 0.335219 1.46869i
\(950\) 11.2165 + 14.0650i 0.363911 + 0.456330i
\(951\) −5.63706 2.71467i −0.182794 0.0880291i
\(952\) 5.49396 2.64575i 0.178060 0.0857493i
\(953\) 11.0268 13.8271i 0.357192 0.447905i −0.570474 0.821316i \(-0.693240\pi\)
0.927666 + 0.373411i \(0.121812\pi\)
\(954\) −13.7153 17.1984i −0.444049 0.556819i
\(955\) 6.04892 2.91301i 0.195738 0.0942626i
\(956\) −11.1769 −0.361486
\(957\) 0 0
\(958\) −59.5827 −1.92503
\(959\) −48.2998 + 23.2600i −1.55968 + 0.751104i
\(960\) −0.125646 0.157555i −0.00405520 0.00508506i
\(961\) 5.86712 7.35713i 0.189262 0.237327i
\(962\) −24.5160 + 11.8063i −0.790428 + 0.380650i
\(963\) −18.8327 9.06937i −0.606876 0.292256i
\(964\) 15.4717 + 19.4008i 0.498309 + 0.624859i
\(965\) −0.864429 + 3.78731i −0.0278269 + 0.121918i
\(966\) 2.98911 13.0962i 0.0961732 0.421362i
\(967\) −8.03886 + 10.0804i −0.258512 + 0.324164i −0.894102 0.447862i \(-0.852185\pi\)
0.635590 + 0.772027i \(0.280757\pi\)
\(968\) 0.761217 + 3.33511i 0.0244664 + 0.107194i
\(969\) 1.01208 0.0325127
\(970\) 2.25398 + 9.87533i 0.0723709 + 0.317078i
\(971\) −4.35839 2.09889i −0.139867 0.0673566i 0.362641 0.931929i \(-0.381875\pi\)
−0.502508 + 0.864572i \(0.667589\pi\)
\(972\) −12.3312 5.93841i −0.395525 0.190475i
\(973\) −2.51961 11.0392i −0.0807751 0.353899i
\(974\) 18.3013 0.586411
\(975\) 2.50245 + 10.9640i 0.0801426 + 0.351128i
\(976\) 18.6271 23.3577i 0.596240 0.747661i
\(977\) −3.65870 + 16.0298i −0.117052 + 0.512839i 0.882077 + 0.471106i \(0.156145\pi\)
−0.999129 + 0.0417333i \(0.986712\pi\)
\(978\) −0.886199 + 3.88269i −0.0283375 + 0.124155i
\(979\) 2.58397 + 3.24019i 0.0825839 + 0.103557i
\(980\) −3.76659 1.81390i −0.120319 0.0579428i
\(981\) −4.17241 + 2.00933i −0.133215 + 0.0641528i
\(982\) 22.1124 27.7280i 0.705634 0.884837i
\(983\) 16.5221 + 20.7180i 0.526972 + 0.660802i 0.972073 0.234678i \(-0.0754037\pi\)
−0.445101 + 0.895480i \(0.646832\pi\)
\(984\) −0.215521 + 0.103789i −0.00687055 + 0.00330868i
\(985\) −2.99808 −0.0955268
\(986\) 0 0
\(987\) 14.0586 0.447490
\(988\) −11.9378 + 5.74894i −0.379792 + 0.182898i
\(989\) −14.8083 18.5690i −0.470876 0.590459i
\(990\) 3.27144 4.10225i 0.103973 0.130378i
\(991\) −36.4049 + 17.5317i −1.15644 + 0.556912i −0.910962 0.412490i \(-0.864659\pi\)
−0.245478 + 0.969402i \(0.578945\pi\)
\(992\) 35.4294 + 17.0619i 1.12488 + 0.541715i
\(993\) 3.87263 + 4.85612i 0.122894 + 0.154104i
\(994\) 18.5172 81.1292i 0.587331 2.57326i
\(995\) 0.525845 2.30388i 0.0166704 0.0730378i
\(996\) −3.26391 + 4.09281i −0.103421 + 0.129686i
\(997\) 5.21930 + 22.8672i 0.165297 + 0.724213i 0.987835 + 0.155503i \(0.0497000\pi\)
−0.822538 + 0.568710i \(0.807443\pi\)
\(998\) −50.1831 −1.58852
\(999\) −1.67307 7.33020i −0.0529336 0.231917i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.d.e.571.1 6
29.2 odd 28 841.2.e.c.196.2 12
29.3 odd 28 841.2.e.d.267.2 12
29.4 even 14 841.2.a.f.1.3 3
29.5 even 14 841.2.d.c.645.1 6
29.6 even 14 841.2.d.d.778.1 6
29.7 even 7 29.2.d.a.23.1 6
29.8 odd 28 841.2.e.c.236.2 12
29.9 even 14 841.2.d.c.605.1 6
29.10 odd 28 841.2.b.c.840.1 6
29.11 odd 28 841.2.e.b.651.2 12
29.12 odd 4 841.2.e.b.270.2 12
29.13 even 14 841.2.d.a.190.1 6
29.14 odd 28 841.2.e.d.63.1 12
29.15 odd 28 841.2.e.d.63.2 12
29.16 even 7 inner 841.2.d.e.190.1 6
29.17 odd 4 841.2.e.b.270.1 12
29.18 odd 28 841.2.e.b.651.1 12
29.19 odd 28 841.2.b.c.840.6 6
29.20 even 7 841.2.d.b.605.1 6
29.21 odd 28 841.2.e.c.236.1 12
29.22 even 14 841.2.d.d.574.1 6
29.23 even 7 29.2.d.a.24.1 yes 6
29.24 even 7 841.2.d.b.645.1 6
29.25 even 7 841.2.a.e.1.1 3
29.26 odd 28 841.2.e.d.267.1 12
29.27 odd 28 841.2.e.c.196.1 12
29.28 even 2 841.2.d.a.571.1 6
87.23 odd 14 261.2.k.a.82.1 6
87.62 odd 14 7569.2.a.p.1.1 3
87.65 odd 14 261.2.k.a.226.1 6
87.83 odd 14 7569.2.a.r.1.3 3
116.7 odd 14 464.2.u.f.81.1 6
116.23 odd 14 464.2.u.f.401.1 6
145.7 odd 28 725.2.r.b.574.1 12
145.23 odd 28 725.2.r.b.24.1 12
145.52 odd 28 725.2.r.b.24.2 12
145.94 even 14 725.2.l.b.226.1 6
145.123 odd 28 725.2.r.b.574.2 12
145.139 even 14 725.2.l.b.401.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.23.1 6 29.7 even 7
29.2.d.a.24.1 yes 6 29.23 even 7
261.2.k.a.82.1 6 87.23 odd 14
261.2.k.a.226.1 6 87.65 odd 14
464.2.u.f.81.1 6 116.7 odd 14
464.2.u.f.401.1 6 116.23 odd 14
725.2.l.b.226.1 6 145.94 even 14
725.2.l.b.401.1 6 145.139 even 14
725.2.r.b.24.1 12 145.23 odd 28
725.2.r.b.24.2 12 145.52 odd 28
725.2.r.b.574.1 12 145.7 odd 28
725.2.r.b.574.2 12 145.123 odd 28
841.2.a.e.1.1 3 29.25 even 7
841.2.a.f.1.3 3 29.4 even 14
841.2.b.c.840.1 6 29.10 odd 28
841.2.b.c.840.6 6 29.19 odd 28
841.2.d.a.190.1 6 29.13 even 14
841.2.d.a.571.1 6 29.28 even 2
841.2.d.b.605.1 6 29.20 even 7
841.2.d.b.645.1 6 29.24 even 7
841.2.d.c.605.1 6 29.9 even 14
841.2.d.c.645.1 6 29.5 even 14
841.2.d.d.574.1 6 29.22 even 14
841.2.d.d.778.1 6 29.6 even 14
841.2.d.e.190.1 6 29.16 even 7 inner
841.2.d.e.571.1 6 1.1 even 1 trivial
841.2.e.b.270.1 12 29.17 odd 4
841.2.e.b.270.2 12 29.12 odd 4
841.2.e.b.651.1 12 29.18 odd 28
841.2.e.b.651.2 12 29.11 odd 28
841.2.e.c.196.1 12 29.27 odd 28
841.2.e.c.196.2 12 29.2 odd 28
841.2.e.c.236.1 12 29.21 odd 28
841.2.e.c.236.2 12 29.8 odd 28
841.2.e.d.63.1 12 29.14 odd 28
841.2.e.d.63.2 12 29.15 odd 28
841.2.e.d.267.1 12 29.26 odd 28
841.2.e.d.267.2 12 29.3 odd 28
7569.2.a.p.1.1 3 87.62 odd 14
7569.2.a.r.1.3 3 87.83 odd 14