Newspace parameters
Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 820.u (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.54773296574\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
141.1 | 0 | −3.40143 | 0 | 0.809017 | − | 0.587785i | 0 | −1.56474 | + | 4.81578i | 0 | 8.56970 | 0 | ||||||||||||||
141.2 | 0 | −2.80651 | 0 | 0.809017 | − | 0.587785i | 0 | 1.06034 | − | 3.26338i | 0 | 4.87650 | 0 | ||||||||||||||
141.3 | 0 | −1.37178 | 0 | 0.809017 | − | 0.587785i | 0 | −0.259586 | + | 0.798923i | 0 | −1.11821 | 0 | ||||||||||||||
141.4 | 0 | −0.355750 | 0 | 0.809017 | − | 0.587785i | 0 | 0.307592 | − | 0.946670i | 0 | −2.87344 | 0 | ||||||||||||||
141.5 | 0 | 0.300773 | 0 | 0.809017 | − | 0.587785i | 0 | −0.378452 | + | 1.16476i | 0 | −2.90954 | 0 | ||||||||||||||
141.6 | 0 | 1.58274 | 0 | 0.809017 | − | 0.587785i | 0 | −1.18200 | + | 3.63783i | 0 | −0.494940 | 0 | ||||||||||||||
141.7 | 0 | 2.57506 | 0 | 0.809017 | − | 0.587785i | 0 | 1.08833 | − | 3.34952i | 0 | 3.63096 | 0 | ||||||||||||||
141.8 | 0 | 2.85886 | 0 | 0.809017 | − | 0.587785i | 0 | 0.237547 | − | 0.731093i | 0 | 5.17308 | 0 | ||||||||||||||
201.1 | 0 | −3.30240 | 0 | −0.309017 | + | 0.951057i | 0 | −1.74674 | − | 1.26908i | 0 | 7.90585 | 0 | ||||||||||||||
201.2 | 0 | −1.57747 | 0 | −0.309017 | + | 0.951057i | 0 | 1.66472 | + | 1.20949i | 0 | −0.511595 | 0 | ||||||||||||||
201.3 | 0 | −0.435978 | 0 | −0.309017 | + | 0.951057i | 0 | 0.796401 | + | 0.578619i | 0 | −2.80992 | 0 | ||||||||||||||
201.4 | 0 | −0.279895 | 0 | −0.309017 | + | 0.951057i | 0 | 3.56351 | + | 2.58904i | 0 | −2.92166 | 0 | ||||||||||||||
201.5 | 0 | 0.0908517 | 0 | −0.309017 | + | 0.951057i | 0 | −1.97649 | − | 1.43601i | 0 | −2.99175 | 0 | ||||||||||||||
201.6 | 0 | 1.59597 | 0 | −0.309017 | + | 0.951057i | 0 | −3.74875 | − | 2.72363i | 0 | −0.452887 | 0 | ||||||||||||||
201.7 | 0 | 2.19153 | 0 | −0.309017 | + | 0.951057i | 0 | 1.32809 | + | 0.964915i | 0 | 1.80282 | 0 | ||||||||||||||
201.8 | 0 | 3.33542 | 0 | −0.309017 | + | 0.951057i | 0 | −1.68976 | − | 1.22768i | 0 | 8.12504 | 0 | ||||||||||||||
221.1 | 0 | −3.40143 | 0 | 0.809017 | + | 0.587785i | 0 | −1.56474 | − | 4.81578i | 0 | 8.56970 | 0 | ||||||||||||||
221.2 | 0 | −2.80651 | 0 | 0.809017 | + | 0.587785i | 0 | 1.06034 | + | 3.26338i | 0 | 4.87650 | 0 | ||||||||||||||
221.3 | 0 | −1.37178 | 0 | 0.809017 | + | 0.587785i | 0 | −0.259586 | − | 0.798923i | 0 | −1.11821 | 0 | ||||||||||||||
221.4 | 0 | −0.355750 | 0 | 0.809017 | + | 0.587785i | 0 | 0.307592 | + | 0.946670i | 0 | −2.87344 | 0 | ||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
41.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 820.2.u.b | ✓ | 32 |
41.d | even | 5 | 1 | inner | 820.2.u.b | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
820.2.u.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
820.2.u.b | ✓ | 32 | 41.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{16} - T_{3}^{15} - 35 T_{3}^{14} + 38 T_{3}^{13} + 461 T_{3}^{12} - 519 T_{3}^{11} - 2841 T_{3}^{10} + \cdots + 11 \)
acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\).