L(s) = 1 | + 0.0908·3-s + (−0.309 + 0.951i)5-s + (−1.97 − 1.43i)7-s − 2.99·9-s + (0.753 + 2.31i)11-s + (4.00 − 2.91i)13-s + (−0.0280 + 0.0864i)15-s + (−2.34 − 7.22i)17-s + (0.0424 + 0.0308i)19-s + (−0.179 − 0.130i)21-s + (7.24 − 5.26i)23-s + (−0.809 − 0.587i)25-s − 0.544·27-s + (0.740 − 2.27i)29-s + (−2.43 − 7.50i)31-s + ⋯ |
L(s) = 1 | + 0.0524·3-s + (−0.138 + 0.425i)5-s + (−0.747 − 0.542i)7-s − 0.997·9-s + (0.227 + 0.699i)11-s + (1.11 − 0.807i)13-s + (−0.00724 + 0.0223i)15-s + (−0.569 − 1.75i)17-s + (0.00973 + 0.00707i)19-s + (−0.0391 − 0.0284i)21-s + (1.51 − 1.09i)23-s + (−0.161 − 0.117i)25-s − 0.104·27-s + (0.137 − 0.423i)29-s + (−0.437 − 1.34i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0877 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0877 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.762761 - 0.698519i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.762761 - 0.698519i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 - 0.951i)T \) |
| 41 | \( 1 + (4.35 + 4.69i)T \) |
good | 3 | \( 1 - 0.0908T + 3T^{2} \) |
| 7 | \( 1 + (1.97 + 1.43i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (-0.753 - 2.31i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (-4.00 + 2.91i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.34 + 7.22i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.0424 - 0.0308i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-7.24 + 5.26i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (-0.740 + 2.27i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.43 + 7.50i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (2.18 - 6.73i)T + (-29.9 - 21.7i)T^{2} \) |
| 43 | \( 1 + (0.252 - 0.183i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (-6.04 + 4.38i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (3.80 - 11.7i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-6.95 + 5.05i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (5.37 + 3.90i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (2.08 - 6.42i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (-0.546 - 1.68i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + 5.06T + 73T^{2} \) |
| 79 | \( 1 + 4.21T + 79T^{2} \) |
| 83 | \( 1 - 7.09T + 83T^{2} \) |
| 89 | \( 1 + (4.25 + 3.09i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-2.55 + 7.86i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06103552052001682464219137085, −9.182624354272515702237150358985, −8.427544580270414219522633016969, −7.28286686510676886513350832493, −6.68990588941667827794644427409, −5.70899099260001806381672570129, −4.57618344448717394280609671666, −3.36938159859473785957969086960, −2.61508456027465797888624059799, −0.52029768424503162852316594258,
1.51670277294584929124269448159, 3.12181113106342196921489334884, 3.84370920591379568652423434698, 5.29135846808633301209043421163, 6.06912665822373330579148030936, 6.76411147465609767819807588821, 8.181847898581023069806206195889, 8.991732437177618487400954803293, 9.066610522388176267416377535528, 10.65812392917614515530467848272