Properties

Label 820.2.u.b.201.5
Level $820$
Weight $2$
Character 820.201
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.5
Character \(\chi\) \(=\) 820.201
Dual form 820.2.u.b.461.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0908517 q^{3} +(-0.309017 + 0.951057i) q^{5} +(-1.97649 - 1.43601i) q^{7} -2.99175 q^{9} +(0.753623 + 2.31941i) q^{11} +(4.00936 - 2.91297i) q^{13} +(-0.0280747 + 0.0864051i) q^{15} +(-2.34902 - 7.22953i) q^{17} +(0.0424476 + 0.0308400i) q^{19} +(-0.179568 - 0.130464i) q^{21} +(7.24674 - 5.26506i) q^{23} +(-0.809017 - 0.587785i) q^{25} -0.544361 q^{27} +(0.740816 - 2.28000i) q^{29} +(-2.43787 - 7.50298i) q^{31} +(0.0684679 + 0.210723i) q^{33} +(1.97649 - 1.43601i) q^{35} +(-2.18718 + 6.73145i) q^{37} +(0.364257 - 0.264648i) q^{39} +(-4.35499 - 4.69405i) q^{41} +(-0.252980 + 0.183801i) q^{43} +(0.924500 - 2.84532i) q^{45} +(6.04201 - 4.38978i) q^{47} +(-0.318710 - 0.980890i) q^{49} +(-0.213412 - 0.656815i) q^{51} +(-3.80300 + 11.7044i) q^{53} -2.43877 q^{55} +(0.00385644 + 0.00280187i) q^{57} +(6.95361 - 5.05210i) q^{59} +(-5.37950 - 3.90844i) q^{61} +(5.91316 + 4.29616i) q^{63} +(1.53144 + 4.71328i) q^{65} +(-2.08821 + 6.42685i) q^{67} +(0.658379 - 0.478340i) q^{69} +(0.546614 + 1.68230i) q^{71} -5.06288 q^{73} +(-0.0735006 - 0.0534013i) q^{75} +(1.84116 - 5.66650i) q^{77} -4.21972 q^{79} +8.92578 q^{81} +7.09058 q^{83} +7.60158 q^{85} +(0.0673045 - 0.207142i) q^{87} +(-4.25422 - 3.09087i) q^{89} -12.1075 q^{91} +(-0.221484 - 0.681659i) q^{93} +(-0.0424476 + 0.0308400i) q^{95} +(2.55392 - 7.86017i) q^{97} +(-2.25465 - 6.93909i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 8 q^{5} - 5 q^{7} + 46 q^{9} + q^{11} + q^{13} - 2 q^{15} + 7 q^{17} - 13 q^{19} - 6 q^{21} + 4 q^{23} - 8 q^{25} - 28 q^{27} + 3 q^{29} - q^{31} + 14 q^{33} + 5 q^{35} - 25 q^{37} + 26 q^{41}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0908517 0.0524533 0.0262266 0.999656i \(-0.491651\pi\)
0.0262266 + 0.999656i \(0.491651\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) −1.97649 1.43601i −0.747044 0.542759i 0.147865 0.989007i \(-0.452760\pi\)
−0.894909 + 0.446248i \(0.852760\pi\)
\(8\) 0 0
\(9\) −2.99175 −0.997249
\(10\) 0 0
\(11\) 0.753623 + 2.31941i 0.227226 + 0.699329i 0.998058 + 0.0622909i \(0.0198406\pi\)
−0.770832 + 0.637038i \(0.780159\pi\)
\(12\) 0 0
\(13\) 4.00936 2.91297i 1.11200 0.807913i 0.129019 0.991642i \(-0.458817\pi\)
0.982977 + 0.183730i \(0.0588171\pi\)
\(14\) 0 0
\(15\) −0.0280747 + 0.0864051i −0.00724886 + 0.0223097i
\(16\) 0 0
\(17\) −2.34902 7.22953i −0.569720 1.75342i −0.653492 0.756934i \(-0.726696\pi\)
0.0837712 0.996485i \(-0.473304\pi\)
\(18\) 0 0
\(19\) 0.0424476 + 0.0308400i 0.00973814 + 0.00707518i 0.592644 0.805465i \(-0.298084\pi\)
−0.582906 + 0.812540i \(0.698084\pi\)
\(20\) 0 0
\(21\) −0.179568 0.130464i −0.0391849 0.0284695i
\(22\) 0 0
\(23\) 7.24674 5.26506i 1.51105 1.09784i 0.545341 0.838214i \(-0.316400\pi\)
0.965709 0.259628i \(-0.0835998\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) −0.544361 −0.104762
\(28\) 0 0
\(29\) 0.740816 2.28000i 0.137566 0.423385i −0.858414 0.512957i \(-0.828550\pi\)
0.995980 + 0.0895721i \(0.0285499\pi\)
\(30\) 0 0
\(31\) −2.43787 7.50298i −0.437854 1.34758i −0.890134 0.455700i \(-0.849389\pi\)
0.452280 0.891876i \(-0.350611\pi\)
\(32\) 0 0
\(33\) 0.0684679 + 0.210723i 0.0119187 + 0.0366821i
\(34\) 0 0
\(35\) 1.97649 1.43601i 0.334088 0.242729i
\(36\) 0 0
\(37\) −2.18718 + 6.73145i −0.359570 + 1.10664i 0.593742 + 0.804656i \(0.297650\pi\)
−0.953312 + 0.301988i \(0.902350\pi\)
\(38\) 0 0
\(39\) 0.364257 0.264648i 0.0583278 0.0423777i
\(40\) 0 0
\(41\) −4.35499 4.69405i −0.680135 0.733087i
\(42\) 0 0
\(43\) −0.252980 + 0.183801i −0.0385791 + 0.0280294i −0.606908 0.794772i \(-0.707590\pi\)
0.568329 + 0.822802i \(0.307590\pi\)
\(44\) 0 0
\(45\) 0.924500 2.84532i 0.137816 0.424155i
\(46\) 0 0
\(47\) 6.04201 4.38978i 0.881318 0.640315i −0.0522816 0.998632i \(-0.516649\pi\)
0.933600 + 0.358317i \(0.116649\pi\)
\(48\) 0 0
\(49\) −0.318710 0.980890i −0.0455301 0.140127i
\(50\) 0 0
\(51\) −0.213412 0.656815i −0.0298837 0.0919726i
\(52\) 0 0
\(53\) −3.80300 + 11.7044i −0.522382 + 1.60773i 0.247055 + 0.969002i \(0.420537\pi\)
−0.769436 + 0.638724i \(0.779463\pi\)
\(54\) 0 0
\(55\) −2.43877 −0.328844
\(56\) 0 0
\(57\) 0.00385644 + 0.00280187i 0.000510798 + 0.000371116i
\(58\) 0 0
\(59\) 6.95361 5.05210i 0.905283 0.657727i −0.0345341 0.999404i \(-0.510995\pi\)
0.939818 + 0.341677i \(0.110995\pi\)
\(60\) 0 0
\(61\) −5.37950 3.90844i −0.688775 0.500424i 0.187482 0.982268i \(-0.439967\pi\)
−0.876257 + 0.481844i \(0.839967\pi\)
\(62\) 0 0
\(63\) 5.91316 + 4.29616i 0.744988 + 0.541266i
\(64\) 0 0
\(65\) 1.53144 + 4.71328i 0.189952 + 0.584611i
\(66\) 0 0
\(67\) −2.08821 + 6.42685i −0.255115 + 0.785164i 0.738692 + 0.674044i \(0.235444\pi\)
−0.993807 + 0.111121i \(0.964556\pi\)
\(68\) 0 0
\(69\) 0.658379 0.478340i 0.0792595 0.0575854i
\(70\) 0 0
\(71\) 0.546614 + 1.68230i 0.0648711 + 0.199653i 0.978238 0.207484i \(-0.0665274\pi\)
−0.913367 + 0.407136i \(0.866527\pi\)
\(72\) 0 0
\(73\) −5.06288 −0.592566 −0.296283 0.955100i \(-0.595747\pi\)
−0.296283 + 0.955100i \(0.595747\pi\)
\(74\) 0 0
\(75\) −0.0735006 0.0534013i −0.00848712 0.00616625i
\(76\) 0 0
\(77\) 1.84116 5.66650i 0.209820 0.645758i
\(78\) 0 0
\(79\) −4.21972 −0.474756 −0.237378 0.971417i \(-0.576288\pi\)
−0.237378 + 0.971417i \(0.576288\pi\)
\(80\) 0 0
\(81\) 8.92578 0.991754
\(82\) 0 0
\(83\) 7.09058 0.778292 0.389146 0.921176i \(-0.372770\pi\)
0.389146 + 0.921176i \(0.372770\pi\)
\(84\) 0 0
\(85\) 7.60158 0.824507
\(86\) 0 0
\(87\) 0.0673045 0.207142i 0.00721580 0.0222079i
\(88\) 0 0
\(89\) −4.25422 3.09087i −0.450946 0.327631i 0.339023 0.940778i \(-0.389903\pi\)
−0.789969 + 0.613147i \(0.789903\pi\)
\(90\) 0 0
\(91\) −12.1075 −1.26921
\(92\) 0 0
\(93\) −0.221484 0.681659i −0.0229669 0.0706848i
\(94\) 0 0
\(95\) −0.0424476 + 0.0308400i −0.00435503 + 0.00316411i
\(96\) 0 0
\(97\) 2.55392 7.86017i 0.259312 0.798079i −0.733638 0.679541i \(-0.762179\pi\)
0.992949 0.118538i \(-0.0378209\pi\)
\(98\) 0 0
\(99\) −2.25465 6.93909i −0.226601 0.697405i
\(100\) 0 0
\(101\) −13.0728 9.49791i −1.30079 0.945078i −0.300825 0.953679i \(-0.597262\pi\)
−0.999963 + 0.00860153i \(0.997262\pi\)
\(102\) 0 0
\(103\) 7.10825 + 5.16445i 0.700397 + 0.508868i 0.880062 0.474860i \(-0.157501\pi\)
−0.179664 + 0.983728i \(0.557501\pi\)
\(104\) 0 0
\(105\) 0.179568 0.130464i 0.0175240 0.0127319i
\(106\) 0 0
\(107\) −1.93535 1.40611i −0.187097 0.135934i 0.490294 0.871557i \(-0.336889\pi\)
−0.677391 + 0.735623i \(0.736889\pi\)
\(108\) 0 0
\(109\) −5.51693 −0.528426 −0.264213 0.964464i \(-0.585112\pi\)
−0.264213 + 0.964464i \(0.585112\pi\)
\(110\) 0 0
\(111\) −0.198709 + 0.611564i −0.0188606 + 0.0580471i
\(112\) 0 0
\(113\) −4.32616 13.3145i −0.406970 1.25253i −0.919239 0.393701i \(-0.871195\pi\)
0.512268 0.858826i \(-0.328805\pi\)
\(114\) 0 0
\(115\) 2.76801 + 8.51905i 0.258118 + 0.794406i
\(116\) 0 0
\(117\) −11.9950 + 8.71487i −1.10894 + 0.805690i
\(118\) 0 0
\(119\) −5.73883 + 17.6623i −0.526078 + 1.61910i
\(120\) 0 0
\(121\) 4.08746 2.96972i 0.371587 0.269974i
\(122\) 0 0
\(123\) −0.395658 0.426463i −0.0356753 0.0384528i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) −1.75620 + 5.40502i −0.155837 + 0.479618i −0.998245 0.0592233i \(-0.981138\pi\)
0.842408 + 0.538841i \(0.181138\pi\)
\(128\) 0 0
\(129\) −0.0229837 + 0.0166986i −0.00202360 + 0.00147023i
\(130\) 0 0
\(131\) 4.09004 + 12.5878i 0.357348 + 1.09980i 0.954635 + 0.297777i \(0.0962452\pi\)
−0.597287 + 0.802027i \(0.703755\pi\)
\(132\) 0 0
\(133\) −0.0396109 0.121910i −0.00343470 0.0105709i
\(134\) 0 0
\(135\) 0.168217 0.517718i 0.0144778 0.0445580i
\(136\) 0 0
\(137\) 7.26460 0.620656 0.310328 0.950629i \(-0.399561\pi\)
0.310328 + 0.950629i \(0.399561\pi\)
\(138\) 0 0
\(139\) 14.9123 + 10.8344i 1.26484 + 0.918963i 0.998985 0.0450494i \(-0.0143445\pi\)
0.265859 + 0.964012i \(0.414345\pi\)
\(140\) 0 0
\(141\) 0.548927 0.398819i 0.0462280 0.0335866i
\(142\) 0 0
\(143\) 9.77792 + 7.10408i 0.817671 + 0.594073i
\(144\) 0 0
\(145\) 1.93948 + 1.40912i 0.161065 + 0.117021i
\(146\) 0 0
\(147\) −0.0289554 0.0891156i −0.00238820 0.00735013i
\(148\) 0 0
\(149\) −4.22383 + 12.9996i −0.346030 + 1.06497i 0.615000 + 0.788527i \(0.289156\pi\)
−0.961030 + 0.276444i \(0.910844\pi\)
\(150\) 0 0
\(151\) −15.1338 + 10.9954i −1.23157 + 0.894791i −0.997007 0.0773092i \(-0.975367\pi\)
−0.234567 + 0.972100i \(0.575367\pi\)
\(152\) 0 0
\(153\) 7.02766 + 21.6289i 0.568153 + 1.74859i
\(154\) 0 0
\(155\) 7.88910 0.633668
\(156\) 0 0
\(157\) 1.41906 + 1.03101i 0.113254 + 0.0822835i 0.642970 0.765891i \(-0.277702\pi\)
−0.529717 + 0.848175i \(0.677702\pi\)
\(158\) 0 0
\(159\) −0.345509 + 1.06337i −0.0274006 + 0.0843305i
\(160\) 0 0
\(161\) −21.8838 −1.72468
\(162\) 0 0
\(163\) 17.1031 1.33962 0.669808 0.742534i \(-0.266376\pi\)
0.669808 + 0.742534i \(0.266376\pi\)
\(164\) 0 0
\(165\) −0.221567 −0.0172490
\(166\) 0 0
\(167\) −16.3624 −1.26616 −0.633079 0.774087i \(-0.718209\pi\)
−0.633079 + 0.774087i \(0.718209\pi\)
\(168\) 0 0
\(169\) 3.57235 10.9946i 0.274796 0.845735i
\(170\) 0 0
\(171\) −0.126992 0.0922654i −0.00971135 0.00705571i
\(172\) 0 0
\(173\) 5.19141 0.394696 0.197348 0.980334i \(-0.436767\pi\)
0.197348 + 0.980334i \(0.436767\pi\)
\(174\) 0 0
\(175\) 0.754953 + 2.32351i 0.0570691 + 0.175641i
\(176\) 0 0
\(177\) 0.631748 0.458992i 0.0474851 0.0344999i
\(178\) 0 0
\(179\) 6.94665 21.3796i 0.519217 1.59798i −0.256259 0.966608i \(-0.582490\pi\)
0.775476 0.631377i \(-0.217510\pi\)
\(180\) 0 0
\(181\) 1.08979 + 3.35403i 0.0810036 + 0.249303i 0.983354 0.181700i \(-0.0581598\pi\)
−0.902351 + 0.431003i \(0.858160\pi\)
\(182\) 0 0
\(183\) −0.488737 0.355088i −0.0361285 0.0262489i
\(184\) 0 0
\(185\) −5.72611 4.16026i −0.420992 0.305869i
\(186\) 0 0
\(187\) 14.9980 10.8967i 1.09676 0.796844i
\(188\) 0 0
\(189\) 1.07592 + 0.781705i 0.0782620 + 0.0568606i
\(190\) 0 0
\(191\) 26.4584 1.91446 0.957230 0.289328i \(-0.0934318\pi\)
0.957230 + 0.289328i \(0.0934318\pi\)
\(192\) 0 0
\(193\) −5.82774 + 17.9360i −0.419490 + 1.29106i 0.488682 + 0.872462i \(0.337478\pi\)
−0.908172 + 0.418596i \(0.862522\pi\)
\(194\) 0 0
\(195\) 0.139134 + 0.428210i 0.00996358 + 0.0306648i
\(196\) 0 0
\(197\) 0.218495 + 0.672459i 0.0155671 + 0.0479107i 0.958538 0.284964i \(-0.0919815\pi\)
−0.942971 + 0.332874i \(0.891982\pi\)
\(198\) 0 0
\(199\) −3.39156 + 2.46411i −0.240421 + 0.174676i −0.701471 0.712698i \(-0.747473\pi\)
0.461050 + 0.887374i \(0.347473\pi\)
\(200\) 0 0
\(201\) −0.189717 + 0.583890i −0.0133816 + 0.0411844i
\(202\) 0 0
\(203\) −4.73831 + 3.44258i −0.332564 + 0.241622i
\(204\) 0 0
\(205\) 5.81007 2.69130i 0.405793 0.187968i
\(206\) 0 0
\(207\) −21.6804 + 15.7517i −1.50689 + 1.09482i
\(208\) 0 0
\(209\) −0.0395411 + 0.121695i −0.00273512 + 0.00841783i
\(210\) 0 0
\(211\) −7.33009 + 5.32563i −0.504625 + 0.366631i −0.810781 0.585350i \(-0.800957\pi\)
0.306156 + 0.951981i \(0.400957\pi\)
\(212\) 0 0
\(213\) 0.0496608 + 0.152840i 0.00340270 + 0.0104724i
\(214\) 0 0
\(215\) −0.0966298 0.297396i −0.00659010 0.0202822i
\(216\) 0 0
\(217\) −5.95590 + 18.3304i −0.404313 + 1.24435i
\(218\) 0 0
\(219\) −0.459972 −0.0310820
\(220\) 0 0
\(221\) −30.4775 22.1432i −2.05014 1.48951i
\(222\) 0 0
\(223\) −0.566487 + 0.411577i −0.0379348 + 0.0275612i −0.606591 0.795014i \(-0.707463\pi\)
0.568656 + 0.822575i \(0.307463\pi\)
\(224\) 0 0
\(225\) 2.42037 + 1.75850i 0.161358 + 0.117234i
\(226\) 0 0
\(227\) −14.3588 10.4323i −0.953026 0.692414i −0.00150538 0.999999i \(-0.500479\pi\)
−0.951521 + 0.307585i \(0.900479\pi\)
\(228\) 0 0
\(229\) 7.79167 + 23.9803i 0.514888 + 1.58466i 0.783486 + 0.621410i \(0.213440\pi\)
−0.268598 + 0.963252i \(0.586560\pi\)
\(230\) 0 0
\(231\) 0.167272 0.514812i 0.0110057 0.0338721i
\(232\) 0 0
\(233\) 16.4152 11.9263i 1.07539 0.781318i 0.0985188 0.995135i \(-0.468590\pi\)
0.976874 + 0.213817i \(0.0685895\pi\)
\(234\) 0 0
\(235\) 2.30784 + 7.10281i 0.150547 + 0.463336i
\(236\) 0 0
\(237\) −0.383369 −0.0249025
\(238\) 0 0
\(239\) −11.4115 8.29093i −0.738148 0.536296i 0.153983 0.988074i \(-0.450790\pi\)
−0.892130 + 0.451778i \(0.850790\pi\)
\(240\) 0 0
\(241\) −6.16830 + 18.9841i −0.397335 + 1.22287i 0.529793 + 0.848127i \(0.322269\pi\)
−0.927128 + 0.374744i \(0.877731\pi\)
\(242\) 0 0
\(243\) 2.44400 0.156783
\(244\) 0 0
\(245\) 1.03137 0.0658917
\(246\) 0 0
\(247\) 0.260024 0.0165449
\(248\) 0 0
\(249\) 0.644191 0.0408240
\(250\) 0 0
\(251\) −0.996253 + 3.06615i −0.0628829 + 0.193534i −0.977562 0.210646i \(-0.932443\pi\)
0.914679 + 0.404180i \(0.132443\pi\)
\(252\) 0 0
\(253\) 17.6732 + 12.8403i 1.11110 + 0.807263i
\(254\) 0 0
\(255\) 0.690617 0.0432481
\(256\) 0 0
\(257\) −6.35849 19.5694i −0.396632 1.22071i −0.927684 0.373367i \(-0.878203\pi\)
0.531052 0.847339i \(-0.321797\pi\)
\(258\) 0 0
\(259\) 13.9893 10.1638i 0.869255 0.631551i
\(260\) 0 0
\(261\) −2.21633 + 6.82118i −0.137188 + 0.422220i
\(262\) 0 0
\(263\) 5.02859 + 15.4764i 0.310076 + 0.954316i 0.977734 + 0.209848i \(0.0672968\pi\)
−0.667658 + 0.744468i \(0.732703\pi\)
\(264\) 0 0
\(265\) −9.95637 7.23373i −0.611615 0.444364i
\(266\) 0 0
\(267\) −0.386503 0.280811i −0.0236536 0.0171853i
\(268\) 0 0
\(269\) −5.40228 + 3.92499i −0.329383 + 0.239311i −0.740169 0.672421i \(-0.765254\pi\)
0.410786 + 0.911732i \(0.365254\pi\)
\(270\) 0 0
\(271\) −8.85226 6.43154i −0.537736 0.390688i 0.285507 0.958377i \(-0.407838\pi\)
−0.823244 + 0.567688i \(0.807838\pi\)
\(272\) 0 0
\(273\) −1.09999 −0.0665743
\(274\) 0 0
\(275\) 0.753623 2.31941i 0.0454452 0.139866i
\(276\) 0 0
\(277\) −4.40584 13.5598i −0.264721 0.814729i −0.991757 0.128129i \(-0.959103\pi\)
0.727036 0.686599i \(-0.240897\pi\)
\(278\) 0 0
\(279\) 7.29348 + 22.4470i 0.436649 + 1.34387i
\(280\) 0 0
\(281\) 8.61872 6.26187i 0.514150 0.373552i −0.300246 0.953862i \(-0.597069\pi\)
0.814395 + 0.580310i \(0.197069\pi\)
\(282\) 0 0
\(283\) 6.03974 18.5884i 0.359025 1.10497i −0.594613 0.804012i \(-0.702695\pi\)
0.953639 0.300954i \(-0.0973052\pi\)
\(284\) 0 0
\(285\) −0.00385644 + 0.00280187i −0.000228436 + 0.000165968i
\(286\) 0 0
\(287\) 1.86691 + 15.5315i 0.110200 + 0.916797i
\(288\) 0 0
\(289\) −32.9950 + 23.9722i −1.94088 + 1.41013i
\(290\) 0 0
\(291\) 0.232028 0.714110i 0.0136017 0.0418619i
\(292\) 0 0
\(293\) 2.72113 1.97702i 0.158970 0.115499i −0.505456 0.862852i \(-0.668676\pi\)
0.664427 + 0.747354i \(0.268676\pi\)
\(294\) 0 0
\(295\) 2.65604 + 8.17446i 0.154641 + 0.475936i
\(296\) 0 0
\(297\) −0.410242 1.26260i −0.0238047 0.0732633i
\(298\) 0 0
\(299\) 13.7178 42.2191i 0.793321 2.44159i
\(300\) 0 0
\(301\) 0.763952 0.0440335
\(302\) 0 0
\(303\) −1.18768 0.862902i −0.0682306 0.0495724i
\(304\) 0 0
\(305\) 5.37950 3.90844i 0.308029 0.223796i
\(306\) 0 0
\(307\) 14.7090 + 10.6867i 0.839485 + 0.609921i 0.922227 0.386650i \(-0.126368\pi\)
−0.0827419 + 0.996571i \(0.526368\pi\)
\(308\) 0 0
\(309\) 0.645797 + 0.469199i 0.0367381 + 0.0266918i
\(310\) 0 0
\(311\) −5.96492 18.3581i −0.338239 1.04099i −0.965104 0.261866i \(-0.915662\pi\)
0.626865 0.779128i \(-0.284338\pi\)
\(312\) 0 0
\(313\) −1.51096 + 4.65027i −0.0854047 + 0.262849i −0.984634 0.174628i \(-0.944128\pi\)
0.899230 + 0.437477i \(0.144128\pi\)
\(314\) 0 0
\(315\) −5.91316 + 4.29616i −0.333169 + 0.242061i
\(316\) 0 0
\(317\) −6.52217 20.0732i −0.366321 1.12742i −0.949149 0.314826i \(-0.898054\pi\)
0.582828 0.812596i \(-0.301946\pi\)
\(318\) 0 0
\(319\) 5.84655 0.327344
\(320\) 0 0
\(321\) −0.175830 0.127748i −0.00981387 0.00713019i
\(322\) 0 0
\(323\) 0.123248 0.379320i 0.00685773 0.0211059i
\(324\) 0 0
\(325\) −4.95584 −0.274901
\(326\) 0 0
\(327\) −0.501223 −0.0277177
\(328\) 0 0
\(329\) −18.2457 −1.00592
\(330\) 0 0
\(331\) 14.4580 0.794683 0.397341 0.917671i \(-0.369933\pi\)
0.397341 + 0.917671i \(0.369933\pi\)
\(332\) 0 0
\(333\) 6.54349 20.1388i 0.358581 1.10360i
\(334\) 0 0
\(335\) −5.46700 3.97201i −0.298694 0.217014i
\(336\) 0 0
\(337\) 17.6855 0.963389 0.481694 0.876339i \(-0.340022\pi\)
0.481694 + 0.876339i \(0.340022\pi\)
\(338\) 0 0
\(339\) −0.393039 1.20965i −0.0213469 0.0656991i
\(340\) 0 0
\(341\) 15.5653 11.3088i 0.842907 0.612408i
\(342\) 0 0
\(343\) −6.06330 + 18.6609i −0.327388 + 1.00760i
\(344\) 0 0
\(345\) 0.251478 + 0.773971i 0.0135391 + 0.0416692i
\(346\) 0 0
\(347\) 22.0668 + 16.0324i 1.18461 + 0.860667i 0.992684 0.120743i \(-0.0385278\pi\)
0.191922 + 0.981410i \(0.438528\pi\)
\(348\) 0 0
\(349\) −22.7639 16.5389i −1.21852 0.885309i −0.222547 0.974922i \(-0.571437\pi\)
−0.995977 + 0.0896127i \(0.971437\pi\)
\(350\) 0 0
\(351\) −2.18254 + 1.58571i −0.116495 + 0.0846387i
\(352\) 0 0
\(353\) 21.0360 + 15.2836i 1.11963 + 0.813462i 0.984154 0.177318i \(-0.0567423\pi\)
0.135480 + 0.990780i \(0.456742\pi\)
\(354\) 0 0
\(355\) −1.76888 −0.0938823
\(356\) 0 0
\(357\) −0.521383 + 1.60465i −0.0275945 + 0.0849272i
\(358\) 0 0
\(359\) −1.32026 4.06333i −0.0696805 0.214455i 0.910152 0.414274i \(-0.135964\pi\)
−0.979833 + 0.199819i \(0.935964\pi\)
\(360\) 0 0
\(361\) −5.87047 18.0675i −0.308972 0.950919i
\(362\) 0 0
\(363\) 0.371353 0.269804i 0.0194910 0.0141610i
\(364\) 0 0
\(365\) 1.56452 4.81509i 0.0818906 0.252033i
\(366\) 0 0
\(367\) −1.51147 + 1.09815i −0.0788982 + 0.0573229i −0.626535 0.779393i \(-0.715528\pi\)
0.547637 + 0.836716i \(0.315528\pi\)
\(368\) 0 0
\(369\) 13.0290 + 14.0434i 0.678263 + 0.731070i
\(370\) 0 0
\(371\) 24.3242 17.6726i 1.26285 0.917514i
\(372\) 0 0
\(373\) 7.78644 23.9642i 0.403167 1.24082i −0.519250 0.854623i \(-0.673789\pi\)
0.922416 0.386197i \(-0.126211\pi\)
\(374\) 0 0
\(375\) 0.0735006 0.0534013i 0.00379555 0.00275763i
\(376\) 0 0
\(377\) −3.67137 11.2993i −0.189085 0.581944i
\(378\) 0 0
\(379\) 5.85405 + 18.0169i 0.300702 + 0.925467i 0.981246 + 0.192759i \(0.0617436\pi\)
−0.680544 + 0.732707i \(0.738256\pi\)
\(380\) 0 0
\(381\) −0.159553 + 0.491055i −0.00817417 + 0.0251575i
\(382\) 0 0
\(383\) 29.9723 1.53151 0.765757 0.643130i \(-0.222364\pi\)
0.765757 + 0.643130i \(0.222364\pi\)
\(384\) 0 0
\(385\) 4.82022 + 3.50209i 0.245661 + 0.178483i
\(386\) 0 0
\(387\) 0.756853 0.549886i 0.0384730 0.0279523i
\(388\) 0 0
\(389\) 5.09971 + 3.70516i 0.258566 + 0.187859i 0.709514 0.704691i \(-0.248914\pi\)
−0.450949 + 0.892550i \(0.648914\pi\)
\(390\) 0 0
\(391\) −55.0867 40.0228i −2.78585 2.02404i
\(392\) 0 0
\(393\) 0.371587 + 1.14363i 0.0187441 + 0.0576883i
\(394\) 0 0
\(395\) 1.30397 4.01320i 0.0656097 0.201926i
\(396\) 0 0
\(397\) 19.9482 14.4932i 1.00117 0.727392i 0.0388306 0.999246i \(-0.487637\pi\)
0.962339 + 0.271854i \(0.0876367\pi\)
\(398\) 0 0
\(399\) −0.00359872 0.0110757i −0.000180161 0.000554480i
\(400\) 0 0
\(401\) 6.80044 0.339598 0.169799 0.985479i \(-0.445688\pi\)
0.169799 + 0.985479i \(0.445688\pi\)
\(402\) 0 0
\(403\) −31.6303 22.9807i −1.57562 1.14475i
\(404\) 0 0
\(405\) −2.75822 + 8.48892i −0.137057 + 0.421818i
\(406\) 0 0
\(407\) −17.2613 −0.855611
\(408\) 0 0
\(409\) −32.8589 −1.62477 −0.812384 0.583123i \(-0.801830\pi\)
−0.812384 + 0.583123i \(0.801830\pi\)
\(410\) 0 0
\(411\) 0.660001 0.0325555
\(412\) 0 0
\(413\) −20.9986 −1.03327
\(414\) 0 0
\(415\) −2.19111 + 6.74354i −0.107557 + 0.331027i
\(416\) 0 0
\(417\) 1.35481 + 0.984325i 0.0663452 + 0.0482026i
\(418\) 0 0
\(419\) −12.3371 −0.602705 −0.301352 0.953513i \(-0.597438\pi\)
−0.301352 + 0.953513i \(0.597438\pi\)
\(420\) 0 0
\(421\) 2.23903 + 6.89102i 0.109124 + 0.335848i 0.990676 0.136238i \(-0.0435012\pi\)
−0.881553 + 0.472086i \(0.843501\pi\)
\(422\) 0 0
\(423\) −18.0762 + 13.1331i −0.878894 + 0.638554i
\(424\) 0 0
\(425\) −2.34902 + 7.22953i −0.113944 + 0.350684i
\(426\) 0 0
\(427\) 5.02001 + 15.4500i 0.242935 + 0.747677i
\(428\) 0 0
\(429\) 0.888341 + 0.645418i 0.0428895 + 0.0311611i
\(430\) 0 0
\(431\) 2.60803 + 1.89484i 0.125624 + 0.0912713i 0.648823 0.760939i \(-0.275262\pi\)
−0.523199 + 0.852211i \(0.675262\pi\)
\(432\) 0 0
\(433\) 14.6931 10.6752i 0.706108 0.513017i −0.175808 0.984424i \(-0.556254\pi\)
0.881916 + 0.471407i \(0.156254\pi\)
\(434\) 0 0
\(435\) 0.176205 + 0.128021i 0.00844840 + 0.00613812i
\(436\) 0 0
\(437\) 0.469981 0.0224822
\(438\) 0 0
\(439\) 10.0872 31.0451i 0.481434 1.48170i −0.355645 0.934621i \(-0.615739\pi\)
0.837079 0.547082i \(-0.184261\pi\)
\(440\) 0 0
\(441\) 0.953501 + 2.93457i 0.0454048 + 0.139742i
\(442\) 0 0
\(443\) −10.8398 33.3616i −0.515016 1.58506i −0.783253 0.621703i \(-0.786441\pi\)
0.268237 0.963353i \(-0.413559\pi\)
\(444\) 0 0
\(445\) 4.25422 3.09087i 0.201669 0.146521i
\(446\) 0 0
\(447\) −0.383743 + 1.18104i −0.0181504 + 0.0558612i
\(448\) 0 0
\(449\) 15.4759 11.2439i 0.730351 0.530631i −0.159324 0.987226i \(-0.550931\pi\)
0.889674 + 0.456596i \(0.150931\pi\)
\(450\) 0 0
\(451\) 7.60542 13.6385i 0.358125 0.642214i
\(452\) 0 0
\(453\) −1.37494 + 0.998949i −0.0646001 + 0.0469347i
\(454\) 0 0
\(455\) 3.74143 11.5149i 0.175401 0.539828i
\(456\) 0 0
\(457\) −0.744554 + 0.540950i −0.0348288 + 0.0253046i −0.605063 0.796177i \(-0.706852\pi\)
0.570235 + 0.821482i \(0.306852\pi\)
\(458\) 0 0
\(459\) 1.27871 + 3.93547i 0.0596852 + 0.183692i
\(460\) 0 0
\(461\) 12.3396 + 37.9775i 0.574715 + 1.76879i 0.637149 + 0.770740i \(0.280113\pi\)
−0.0624349 + 0.998049i \(0.519887\pi\)
\(462\) 0 0
\(463\) −4.70502 + 14.4806i −0.218661 + 0.672969i 0.780212 + 0.625515i \(0.215111\pi\)
−0.998873 + 0.0474546i \(0.984889\pi\)
\(464\) 0 0
\(465\) 0.716739 0.0332380
\(466\) 0 0
\(467\) −14.9364 10.8519i −0.691173 0.502167i 0.185872 0.982574i \(-0.440489\pi\)
−0.877046 + 0.480407i \(0.840489\pi\)
\(468\) 0 0
\(469\) 13.3563 9.70393i 0.616737 0.448086i
\(470\) 0 0
\(471\) 0.128924 + 0.0936690i 0.00594052 + 0.00431604i
\(472\) 0 0
\(473\) −0.616962 0.448249i −0.0283679 0.0206105i
\(474\) 0 0
\(475\) −0.0162135 0.0499001i −0.000743928 0.00228957i
\(476\) 0 0
\(477\) 11.3776 35.0166i 0.520944 1.60330i
\(478\) 0 0
\(479\) 11.2342 8.16213i 0.513304 0.372937i −0.300771 0.953696i \(-0.597244\pi\)
0.814076 + 0.580759i \(0.197244\pi\)
\(480\) 0 0
\(481\) 10.8393 + 33.3600i 0.494230 + 1.52108i
\(482\) 0 0
\(483\) −1.98818 −0.0904653
\(484\) 0 0
\(485\) 6.68626 + 4.85785i 0.303607 + 0.220584i
\(486\) 0 0
\(487\) 9.46081 29.1174i 0.428710 1.31943i −0.470687 0.882300i \(-0.655994\pi\)
0.899397 0.437133i \(-0.144006\pi\)
\(488\) 0 0
\(489\) 1.55384 0.0702673
\(490\) 0 0
\(491\) 4.33328 0.195558 0.0977791 0.995208i \(-0.468826\pi\)
0.0977791 + 0.995208i \(0.468826\pi\)
\(492\) 0 0
\(493\) −18.2235 −0.820746
\(494\) 0 0
\(495\) 7.29619 0.327939
\(496\) 0 0
\(497\) 1.33542 4.11000i 0.0599018 0.184359i
\(498\) 0 0
\(499\) −16.8161 12.2176i −0.752790 0.546934i 0.143900 0.989592i \(-0.454036\pi\)
−0.896690 + 0.442658i \(0.854036\pi\)
\(500\) 0 0
\(501\) −1.48655 −0.0664141
\(502\) 0 0
\(503\) −3.39018 10.4339i −0.151161 0.465224i 0.846591 0.532244i \(-0.178651\pi\)
−0.997752 + 0.0670195i \(0.978651\pi\)
\(504\) 0 0
\(505\) 13.0728 9.49791i 0.581730 0.422652i
\(506\) 0 0
\(507\) 0.324554 0.998874i 0.0144139 0.0443616i
\(508\) 0 0
\(509\) −5.41347 16.6610i −0.239948 0.738484i −0.996426 0.0844653i \(-0.973082\pi\)
0.756478 0.654019i \(-0.226918\pi\)
\(510\) 0 0
\(511\) 10.0067 + 7.27033i 0.442673 + 0.321620i
\(512\) 0 0
\(513\) −0.0231068 0.0167881i −0.00102019 0.000741211i
\(514\) 0 0
\(515\) −7.10825 + 5.16445i −0.313227 + 0.227573i
\(516\) 0 0
\(517\) 14.7351 + 10.7057i 0.648049 + 0.470835i
\(518\) 0 0
\(519\) 0.471649 0.0207031
\(520\) 0 0
\(521\) 0.976544 3.00549i 0.0427832 0.131673i −0.927383 0.374112i \(-0.877947\pi\)
0.970167 + 0.242439i \(0.0779475\pi\)
\(522\) 0 0
\(523\) 3.44468 + 10.6016i 0.150625 + 0.463578i 0.997691 0.0679102i \(-0.0216332\pi\)
−0.847066 + 0.531488i \(0.821633\pi\)
\(524\) 0 0
\(525\) 0.0685888 + 0.211095i 0.00299346 + 0.00921292i
\(526\) 0 0
\(527\) −48.5165 + 35.2493i −2.11341 + 1.53548i
\(528\) 0 0
\(529\) 17.6869 54.4348i 0.768998 2.36673i
\(530\) 0 0
\(531\) −20.8034 + 15.1146i −0.902793 + 0.655917i
\(532\) 0 0
\(533\) −31.1343 6.13419i −1.34858 0.265701i
\(534\) 0 0
\(535\) 1.93535 1.40611i 0.0836725 0.0607916i
\(536\) 0 0
\(537\) 0.631115 1.94237i 0.0272346 0.0838195i
\(538\) 0 0
\(539\) 2.03490 1.47844i 0.0876494 0.0636810i
\(540\) 0 0
\(541\) 12.5530 + 38.6343i 0.539697 + 1.66102i 0.733275 + 0.679933i \(0.237991\pi\)
−0.193577 + 0.981085i \(0.562009\pi\)
\(542\) 0 0
\(543\) 0.0990095 + 0.304720i 0.00424890 + 0.0130768i
\(544\) 0 0
\(545\) 1.70483 5.24691i 0.0730267 0.224753i
\(546\) 0 0
\(547\) 1.87759 0.0802800 0.0401400 0.999194i \(-0.487220\pi\)
0.0401400 + 0.999194i \(0.487220\pi\)
\(548\) 0 0
\(549\) 16.0941 + 11.6931i 0.686880 + 0.499047i
\(550\) 0 0
\(551\) 0.101761 0.0739337i 0.00433516 0.00314968i
\(552\) 0 0
\(553\) 8.34025 + 6.05955i 0.354663 + 0.257678i
\(554\) 0 0
\(555\) −0.520227 0.377967i −0.0220824 0.0160438i
\(556\) 0 0
\(557\) −2.55647 7.86800i −0.108321 0.333378i 0.882175 0.470923i \(-0.156079\pi\)
−0.990496 + 0.137545i \(0.956079\pi\)
\(558\) 0 0
\(559\) −0.478882 + 1.47385i −0.0202546 + 0.0623371i
\(560\) 0 0
\(561\) 1.36259 0.989982i 0.0575287 0.0417971i
\(562\) 0 0
\(563\) 0.778728 + 2.39668i 0.0328195 + 0.101008i 0.966124 0.258077i \(-0.0830888\pi\)
−0.933305 + 0.359085i \(0.883089\pi\)
\(564\) 0 0
\(565\) 13.9997 0.588973
\(566\) 0 0
\(567\) −17.6417 12.8175i −0.740883 0.538283i
\(568\) 0 0
\(569\) −12.1461 + 37.3820i −0.509193 + 1.56713i 0.284413 + 0.958702i \(0.408201\pi\)
−0.793606 + 0.608432i \(0.791799\pi\)
\(570\) 0 0
\(571\) −17.3551 −0.726288 −0.363144 0.931733i \(-0.618297\pi\)
−0.363144 + 0.931733i \(0.618297\pi\)
\(572\) 0 0
\(573\) 2.40379 0.100420
\(574\) 0 0
\(575\) −8.95746 −0.373552
\(576\) 0 0
\(577\) 20.6882 0.861262 0.430631 0.902528i \(-0.358291\pi\)
0.430631 + 0.902528i \(0.358291\pi\)
\(578\) 0 0
\(579\) −0.529461 + 1.62951i −0.0220036 + 0.0677202i
\(580\) 0 0
\(581\) −14.0145 10.1821i −0.581418 0.422425i
\(582\) 0 0
\(583\) −30.0134 −1.24303
\(584\) 0 0
\(585\) −4.58168 14.1010i −0.189429 0.583003i
\(586\) 0 0
\(587\) −23.7983 + 17.2905i −0.982260 + 0.713654i −0.958213 0.286057i \(-0.907655\pi\)
−0.0240474 + 0.999711i \(0.507655\pi\)
\(588\) 0 0
\(589\) 0.127910 0.393667i 0.00527045 0.0162208i
\(590\) 0 0
\(591\) 0.0198507 + 0.0610941i 0.000816547 + 0.00251307i
\(592\) 0 0
\(593\) −3.55177 2.58051i −0.145854 0.105969i 0.512465 0.858708i \(-0.328732\pi\)
−0.658319 + 0.752739i \(0.728732\pi\)
\(594\) 0 0
\(595\) −15.0245 10.9159i −0.615943 0.447509i
\(596\) 0 0
\(597\) −0.308129 + 0.223869i −0.0126109 + 0.00916235i
\(598\) 0 0
\(599\) 29.9661 + 21.7716i 1.22438 + 0.889565i 0.996456 0.0841133i \(-0.0268058\pi\)
0.227925 + 0.973679i \(0.426806\pi\)
\(600\) 0 0
\(601\) 2.19056 0.0893547 0.0446773 0.999001i \(-0.485774\pi\)
0.0446773 + 0.999001i \(0.485774\pi\)
\(602\) 0 0
\(603\) 6.24739 19.2275i 0.254413 0.783004i
\(604\) 0 0
\(605\) 1.56127 + 4.80510i 0.0634747 + 0.195355i
\(606\) 0 0
\(607\) 13.9397 + 42.9020i 0.565795 + 1.74134i 0.665577 + 0.746329i \(0.268185\pi\)
−0.0997821 + 0.995009i \(0.531815\pi\)
\(608\) 0 0
\(609\) −0.430484 + 0.312765i −0.0174441 + 0.0126739i
\(610\) 0 0
\(611\) 11.4373 35.2004i 0.462704 1.42406i
\(612\) 0 0
\(613\) −29.4377 + 21.3877i −1.18898 + 0.863842i −0.993156 0.116797i \(-0.962737\pi\)
−0.195821 + 0.980640i \(0.562737\pi\)
\(614\) 0 0
\(615\) 0.527855 0.244509i 0.0212852 0.00985955i
\(616\) 0 0
\(617\) 20.0362 14.5571i 0.806627 0.586049i −0.106224 0.994342i \(-0.533876\pi\)
0.912851 + 0.408294i \(0.133876\pi\)
\(618\) 0 0
\(619\) −2.11778 + 6.51785i −0.0851207 + 0.261974i −0.984553 0.175085i \(-0.943980\pi\)
0.899433 + 0.437059i \(0.143980\pi\)
\(620\) 0 0
\(621\) −3.94484 + 2.86609i −0.158301 + 0.115012i
\(622\) 0 0
\(623\) 3.96992 + 12.2182i 0.159051 + 0.489510i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) −0.00359238 + 0.0110562i −0.000143466 + 0.000441543i
\(628\) 0 0
\(629\) 53.8029 2.14526
\(630\) 0 0
\(631\) 34.8603 + 25.3275i 1.38777 + 1.00827i 0.996106 + 0.0881630i \(0.0280996\pi\)
0.391662 + 0.920109i \(0.371900\pi\)
\(632\) 0 0
\(633\) −0.665952 + 0.483842i −0.0264692 + 0.0192310i
\(634\) 0 0
\(635\) −4.59778 3.34048i −0.182457 0.132563i
\(636\) 0 0
\(637\) −4.13513 3.00435i −0.163840 0.119037i
\(638\) 0 0
\(639\) −1.63533 5.03303i −0.0646926 0.199103i
\(640\) 0 0
\(641\) −0.460958 + 1.41868i −0.0182068 + 0.0560346i −0.959747 0.280866i \(-0.909378\pi\)
0.941540 + 0.336900i \(0.109378\pi\)
\(642\) 0 0
\(643\) 33.7031 24.4868i 1.32912 0.965664i 0.329353 0.944207i \(-0.393169\pi\)
0.999770 0.0214570i \(-0.00683051\pi\)
\(644\) 0 0
\(645\) −0.00877899 0.0270190i −0.000345672 0.00106387i
\(646\) 0 0
\(647\) 17.3329 0.681428 0.340714 0.940167i \(-0.389331\pi\)
0.340714 + 0.940167i \(0.389331\pi\)
\(648\) 0 0
\(649\) 16.9583 + 12.3209i 0.665671 + 0.483639i
\(650\) 0 0
\(651\) −0.541104 + 1.66535i −0.0212075 + 0.0652701i
\(652\) 0 0
\(653\) 9.82237 0.384379 0.192190 0.981358i \(-0.438441\pi\)
0.192190 + 0.981358i \(0.438441\pi\)
\(654\) 0 0
\(655\) −13.2356 −0.517159
\(656\) 0 0
\(657\) 15.1469 0.590935
\(658\) 0 0
\(659\) −27.6114 −1.07559 −0.537794 0.843076i \(-0.680742\pi\)
−0.537794 + 0.843076i \(0.680742\pi\)
\(660\) 0 0
\(661\) −3.48879 + 10.7374i −0.135698 + 0.417636i −0.995698 0.0926581i \(-0.970464\pi\)
0.860000 + 0.510295i \(0.170464\pi\)
\(662\) 0 0
\(663\) −2.76893 2.01175i −0.107536 0.0781297i
\(664\) 0 0
\(665\) 0.128184 0.00497075
\(666\) 0 0
\(667\) −6.63584 20.4230i −0.256941 0.790782i
\(668\) 0 0
\(669\) −0.0514664 + 0.0373925i −0.00198980 + 0.00144568i
\(670\) 0 0
\(671\) 5.01116 15.4228i 0.193454 0.595389i
\(672\) 0 0
\(673\) 3.16813 + 9.75051i 0.122123 + 0.375855i 0.993366 0.114997i \(-0.0366858\pi\)
−0.871243 + 0.490851i \(0.836686\pi\)
\(674\) 0 0
\(675\) 0.440397 + 0.319967i 0.0169509 + 0.0123155i
\(676\) 0 0
\(677\) 14.6696 + 10.6581i 0.563798 + 0.409623i 0.832847 0.553503i \(-0.186709\pi\)
−0.269049 + 0.963126i \(0.586709\pi\)
\(678\) 0 0
\(679\) −16.3351 + 11.8681i −0.626882 + 0.455456i
\(680\) 0 0
\(681\) −1.30452 0.947790i −0.0499893 0.0363194i
\(682\) 0 0
\(683\) −9.72263 −0.372026 −0.186013 0.982547i \(-0.559557\pi\)
−0.186013 + 0.982547i \(0.559557\pi\)
\(684\) 0 0
\(685\) −2.24488 + 6.90904i −0.0857726 + 0.263981i
\(686\) 0 0
\(687\) 0.707887 + 2.17865i 0.0270076 + 0.0831207i
\(688\) 0 0
\(689\) 18.8470 + 58.0052i 0.718015 + 2.20982i
\(690\) 0 0
\(691\) 41.1148 29.8717i 1.56408 1.13637i 0.631522 0.775358i \(-0.282430\pi\)
0.932560 0.361015i \(-0.117570\pi\)
\(692\) 0 0
\(693\) −5.50828 + 16.9527i −0.209242 + 0.643981i
\(694\) 0 0
\(695\) −14.9123 + 10.8344i −0.565655 + 0.410973i
\(696\) 0 0
\(697\) −23.7058 + 42.5109i −0.897923 + 1.61022i
\(698\) 0 0
\(699\) 1.49135 1.08353i 0.0564079 0.0409827i
\(700\) 0 0
\(701\) 0.476152 1.46545i 0.0179840 0.0553491i −0.941662 0.336561i \(-0.890736\pi\)
0.959646 + 0.281212i \(0.0907363\pi\)
\(702\) 0 0
\(703\) −0.300438 + 0.218281i −0.0113312 + 0.00823263i
\(704\) 0 0
\(705\) 0.209672 + 0.645303i 0.00789669 + 0.0243035i
\(706\) 0 0
\(707\) 12.1991 + 37.5451i 0.458796 + 1.41203i
\(708\) 0 0
\(709\) −5.50237 + 16.9346i −0.206646 + 0.635991i 0.792996 + 0.609227i \(0.208520\pi\)
−0.999642 + 0.0267638i \(0.991480\pi\)
\(710\) 0 0
\(711\) 12.6243 0.473450
\(712\) 0 0
\(713\) −57.1703 41.5366i −2.14104 1.55556i
\(714\) 0 0
\(715\) −9.77792 + 7.10408i −0.365674 + 0.265677i
\(716\) 0 0
\(717\) −1.03675 0.753245i −0.0387183 0.0281305i
\(718\) 0 0
\(719\) 20.5101 + 14.9014i 0.764897 + 0.555730i 0.900408 0.435045i \(-0.143268\pi\)
−0.135511 + 0.990776i \(0.543268\pi\)
\(720\) 0 0
\(721\) −6.63323 20.4150i −0.247034 0.760294i
\(722\) 0 0
\(723\) −0.560400 + 1.72473i −0.0208415 + 0.0641436i
\(724\) 0 0
\(725\) −1.93948 + 1.40912i −0.0720306 + 0.0523333i
\(726\) 0 0
\(727\) 1.71149 + 5.26744i 0.0634758 + 0.195359i 0.977765 0.209704i \(-0.0672499\pi\)
−0.914289 + 0.405062i \(0.867250\pi\)
\(728\) 0 0
\(729\) −26.5553 −0.983530
\(730\) 0 0
\(731\) 1.92305 + 1.39718i 0.0711265 + 0.0516765i
\(732\) 0 0
\(733\) −6.63146 + 20.4095i −0.244938 + 0.753843i 0.750708 + 0.660634i \(0.229712\pi\)
−0.995647 + 0.0932090i \(0.970288\pi\)
\(734\) 0 0
\(735\) 0.0937016 0.00345624
\(736\) 0 0
\(737\) −16.4802 −0.607057
\(738\) 0 0
\(739\) −45.7876 −1.68432 −0.842162 0.539224i \(-0.818718\pi\)
−0.842162 + 0.539224i \(0.818718\pi\)
\(740\) 0 0
\(741\) 0.0236236 0.000867834
\(742\) 0 0
\(743\) 2.75772 8.48738i 0.101171 0.311372i −0.887642 0.460534i \(-0.847658\pi\)
0.988813 + 0.149163i \(0.0476578\pi\)
\(744\) 0 0
\(745\) −11.0581 8.03421i −0.405139 0.294351i
\(746\) 0 0
\(747\) −21.2132 −0.776150
\(748\) 0 0
\(749\) 1.80602 + 5.55834i 0.0659904 + 0.203097i
\(750\) 0 0
\(751\) −31.4486 + 22.8487i −1.14757 + 0.833762i −0.988157 0.153449i \(-0.950962\pi\)
−0.159418 + 0.987211i \(0.550962\pi\)
\(752\) 0 0
\(753\) −0.0905113 + 0.278565i −0.00329841 + 0.0101515i
\(754\) 0 0
\(755\) −5.78061 17.7909i −0.210378 0.647477i
\(756\) 0 0
\(757\) 25.1631 + 18.2820i 0.914567 + 0.664472i 0.942166 0.335147i \(-0.108786\pi\)
−0.0275987 + 0.999619i \(0.508786\pi\)
\(758\) 0 0
\(759\) 1.60564 + 1.16656i 0.0582809 + 0.0423436i
\(760\) 0 0
\(761\) 25.3336 18.4059i 0.918341 0.667214i −0.0247696 0.999693i \(-0.507885\pi\)
0.943111 + 0.332479i \(0.107885\pi\)
\(762\) 0 0
\(763\) 10.9042 + 7.92234i 0.394758 + 0.286808i
\(764\) 0 0
\(765\) −22.7420 −0.822238
\(766\) 0 0
\(767\) 13.1629 40.5113i 0.475286 1.46278i
\(768\) 0 0
\(769\) 4.30585 + 13.2520i 0.155273 + 0.477881i 0.998188 0.0601652i \(-0.0191627\pi\)
−0.842916 + 0.538046i \(0.819163\pi\)
\(770\) 0 0
\(771\) −0.577680 1.77792i −0.0208046 0.0640301i
\(772\) 0 0
\(773\) 1.14601 0.832627i 0.0412192 0.0299475i −0.566985 0.823728i \(-0.691890\pi\)
0.608204 + 0.793781i \(0.291890\pi\)
\(774\) 0 0
\(775\) −2.43787 + 7.50298i −0.0875708 + 0.269515i
\(776\) 0 0
\(777\) 1.27096 0.923403i 0.0455953 0.0331269i
\(778\) 0 0
\(779\) −0.0400943 0.333559i −0.00143653 0.0119510i
\(780\) 0 0
\(781\) −3.49002 + 2.53564i −0.124883 + 0.0907325i
\(782\) 0 0
\(783\) −0.403271 + 1.24114i −0.0144117 + 0.0443548i
\(784\) 0 0
\(785\) −1.41906 + 1.03101i −0.0506485 + 0.0367983i
\(786\) 0 0
\(787\) 9.88675 + 30.4283i 0.352425 + 1.08465i 0.957488 + 0.288474i \(0.0931479\pi\)
−0.605063 + 0.796178i \(0.706852\pi\)
\(788\) 0 0
\(789\) 0.456856 + 1.40606i 0.0162645 + 0.0500570i
\(790\) 0 0
\(791\) −10.5691 + 32.5285i −0.375795 + 1.15658i
\(792\) 0 0
\(793\) −32.9535 −1.17021
\(794\) 0 0
\(795\) −0.904554 0.657197i −0.0320812 0.0233084i
\(796\) 0 0
\(797\) 14.2213 10.3324i 0.503744 0.365991i −0.306701 0.951806i \(-0.599225\pi\)
0.810445 + 0.585814i \(0.199225\pi\)
\(798\) 0 0
\(799\) −45.9288 33.3693i −1.62485 1.18052i
\(800\) 0 0
\(801\) 12.7275 + 9.24709i 0.449705 + 0.326730i
\(802\) 0 0
\(803\) −3.81550 11.7429i −0.134646 0.414398i
\(804\) 0 0
\(805\) 6.76246 20.8127i 0.238345 0.733552i
\(806\) 0 0
\(807\) −0.490807 + 0.356592i −0.0172772 + 0.0125526i
\(808\) 0 0
\(809\) −5.34648 16.4548i −0.187972 0.578520i 0.812015 0.583637i \(-0.198371\pi\)
−0.999987 + 0.00511771i \(0.998371\pi\)
\(810\) 0 0
\(811\) 19.9396 0.700174 0.350087 0.936717i \(-0.386152\pi\)
0.350087 + 0.936717i \(0.386152\pi\)
\(812\) 0 0
\(813\) −0.804243 0.584317i −0.0282060 0.0204929i
\(814\) 0 0
\(815\) −5.28514 + 16.2660i −0.185130 + 0.569773i
\(816\) 0 0
\(817\) −0.0164068 −0.000574002
\(818\) 0 0
\(819\) 36.2226 1.26572
\(820\) 0 0
\(821\) −0.477205 −0.0166546 −0.00832728 0.999965i \(-0.502651\pi\)
−0.00832728 + 0.999965i \(0.502651\pi\)
\(822\) 0 0
\(823\) 19.9504 0.695426 0.347713 0.937601i \(-0.386958\pi\)
0.347713 + 0.937601i \(0.386958\pi\)
\(824\) 0 0
\(825\) 0.0684679 0.210723i 0.00238375 0.00733642i
\(826\) 0 0
\(827\) −10.6145 7.71187i −0.369102 0.268168i 0.387737 0.921770i \(-0.373257\pi\)
−0.756838 + 0.653602i \(0.773257\pi\)
\(828\) 0 0
\(829\) −49.7985 −1.72957 −0.864786 0.502140i \(-0.832546\pi\)
−0.864786 + 0.502140i \(0.832546\pi\)
\(830\) 0 0
\(831\) −0.400278 1.23193i −0.0138855 0.0427352i
\(832\) 0 0
\(833\) −6.34272 + 4.60825i −0.219762 + 0.159667i
\(834\) 0 0
\(835\) 5.05625 15.5615i 0.174979 0.538529i
\(836\) 0 0
\(837\) 1.32708 + 4.08433i 0.0458706 + 0.141175i
\(838\) 0 0
\(839\) 42.2118 + 30.6687i 1.45731 + 1.05880i 0.984052 + 0.177880i \(0.0569237\pi\)
0.473262 + 0.880922i \(0.343076\pi\)
\(840\) 0 0
\(841\) 18.8119 + 13.6677i 0.648686 + 0.471298i
\(842\) 0 0
\(843\) 0.783026 0.568901i 0.0269688 0.0195940i
\(844\) 0 0
\(845\) 9.35253 + 6.79501i 0.321737 + 0.233755i
\(846\) 0 0
\(847\) −12.3434 −0.424123
\(848\) 0 0
\(849\) 0.548721 1.68879i 0.0188320 0.0579591i
\(850\) 0 0
\(851\) 19.5916 + 60.2967i 0.671591 + 2.06694i
\(852\) 0 0
\(853\) 7.67956 + 23.6353i 0.262943 + 0.809256i 0.992160 + 0.124973i \(0.0398846\pi\)
−0.729217 + 0.684283i \(0.760115\pi\)
\(854\) 0 0
\(855\) 0.126992 0.0922654i 0.00434305 0.00315541i
\(856\) 0 0
\(857\) 5.52165 16.9939i 0.188616 0.580500i −0.811376 0.584525i \(-0.801281\pi\)
0.999992 + 0.00402460i \(0.00128107\pi\)
\(858\) 0 0
\(859\) 12.3840 8.99753i 0.422538 0.306992i −0.356120 0.934440i \(-0.615901\pi\)
0.778658 + 0.627448i \(0.215901\pi\)
\(860\) 0 0
\(861\) 0.169612 + 1.41107i 0.00578038 + 0.0480890i
\(862\) 0 0
\(863\) 1.92789 1.40069i 0.0656262 0.0476802i −0.554489 0.832191i \(-0.687086\pi\)
0.620115 + 0.784511i \(0.287086\pi\)
\(864\) 0 0
\(865\) −1.60423 + 4.93732i −0.0545456 + 0.167874i
\(866\) 0 0
\(867\) −2.99765 + 2.17792i −0.101805 + 0.0739660i
\(868\) 0 0
\(869\) −3.18008 9.78728i −0.107877 0.332011i
\(870\) 0 0
\(871\) 10.3488 + 31.8504i 0.350657 + 1.07921i
\(872\) 0 0
\(873\) −7.64069 + 23.5156i −0.258598 + 0.795883i
\(874\) 0 0
\(875\) −2.44308 −0.0825911
\(876\) 0 0
\(877\) 4.63719 + 3.36912i 0.156587 + 0.113767i 0.663320 0.748336i \(-0.269147\pi\)
−0.506733 + 0.862103i \(0.669147\pi\)
\(878\) 0 0
\(879\) 0.247219 0.179615i 0.00833851 0.00605828i
\(880\) 0 0
\(881\) 15.0138 + 10.9081i 0.505827 + 0.367505i 0.811238 0.584716i \(-0.198794\pi\)
−0.305411 + 0.952221i \(0.598794\pi\)
\(882\) 0 0
\(883\) −43.5183 31.6179i −1.46451 1.06403i −0.982160 0.188046i \(-0.939785\pi\)
−0.482347 0.875980i \(-0.660215\pi\)
\(884\) 0 0
\(885\) 0.241306 + 0.742664i 0.00811142 + 0.0249644i
\(886\) 0 0
\(887\) −9.49530 + 29.2235i −0.318821 + 0.981230i 0.655332 + 0.755341i \(0.272529\pi\)
−0.974153 + 0.225889i \(0.927471\pi\)
\(888\) 0 0
\(889\) 11.2327 8.16106i 0.376734 0.273713i
\(890\) 0 0
\(891\) 6.72667 + 20.7026i 0.225352 + 0.693562i
\(892\) 0 0
\(893\) 0.391850 0.0131127
\(894\) 0 0
\(895\) 18.1866 + 13.2133i 0.607910 + 0.441672i
\(896\) 0 0
\(897\) 1.24629 3.83568i 0.0416123 0.128070i
\(898\) 0 0
\(899\) −18.9128 −0.630777
\(900\) 0 0
\(901\) 93.5507 3.11663
\(902\) 0 0
\(903\) 0.0694064 0.00230970
\(904\) 0 0
\(905\) −3.52664 −0.117229
\(906\) 0 0
\(907\) −6.75293 + 20.7834i −0.224227 + 0.690101i 0.774142 + 0.633012i \(0.218182\pi\)
−0.998369 + 0.0570887i \(0.981818\pi\)
\(908\) 0 0
\(909\) 39.1104 + 28.4153i 1.29721 + 0.942478i
\(910\) 0 0
\(911\) −10.6105 −0.351543 −0.175772 0.984431i \(-0.556242\pi\)
−0.175772 + 0.984431i \(0.556242\pi\)
\(912\) 0 0
\(913\) 5.34362 + 16.4460i 0.176848 + 0.544282i
\(914\) 0 0
\(915\) 0.488737 0.355088i 0.0161572 0.0117389i
\(916\) 0 0
\(917\) 9.99228 30.7531i 0.329974 1.01556i
\(918\) 0 0
\(919\) −11.9576 36.8018i −0.394446 1.21398i −0.929392 0.369094i \(-0.879668\pi\)
0.534946 0.844886i \(-0.320332\pi\)
\(920\) 0 0
\(921\) 1.33633 + 0.970904i 0.0440337 + 0.0319924i
\(922\) 0 0
\(923\) 7.09207 + 5.15269i 0.233438 + 0.169603i
\(924\) 0 0
\(925\) 5.72611 4.16026i 0.188273 0.136789i
\(926\) 0 0
\(927\) −21.2661 15.4507i −0.698470 0.507468i
\(928\) 0 0
\(929\) −37.3282 −1.22470 −0.612349 0.790587i \(-0.709775\pi\)
−0.612349 + 0.790587i \(0.709775\pi\)
\(930\) 0 0
\(931\) 0.0167221 0.0514654i 0.000548046 0.00168671i
\(932\) 0 0
\(933\) −0.541923 1.66787i −0.0177418 0.0546035i
\(934\) 0 0
\(935\) 5.72872 + 17.6312i 0.187349 + 0.576602i
\(936\) 0 0
\(937\) 39.3414 28.5832i 1.28523 0.933773i 0.285531 0.958369i \(-0.407830\pi\)
0.999697 + 0.0245963i \(0.00783005\pi\)
\(938\) 0 0
\(939\) −0.137274 + 0.422485i −0.00447975 + 0.0137873i
\(940\) 0 0
\(941\) −8.56692 + 6.22423i −0.279273 + 0.202904i −0.718600 0.695423i \(-0.755217\pi\)
0.439327 + 0.898327i \(0.355217\pi\)
\(942\) 0 0
\(943\) −56.2739 11.0873i −1.83253 0.361051i
\(944\) 0 0
\(945\) −1.07592 + 0.781705i −0.0349998 + 0.0254289i
\(946\) 0 0
\(947\) 7.17551 22.0840i 0.233173 0.717632i −0.764186 0.644996i \(-0.776859\pi\)
0.997359 0.0726359i \(-0.0231411\pi\)
\(948\) 0 0
\(949\) −20.2989 + 14.7480i −0.658931 + 0.478741i
\(950\) 0 0
\(951\) −0.592550 1.82368i −0.0192148 0.0591370i
\(952\) 0 0
\(953\) 5.76601 + 17.7460i 0.186779 + 0.574848i 0.999974 0.00714332i \(-0.00227381\pi\)
−0.813195 + 0.581991i \(0.802274\pi\)
\(954\) 0 0
\(955\) −8.17608 + 25.1634i −0.264572 + 0.814268i
\(956\) 0 0
\(957\) 0.531169 0.0171703
\(958\) 0 0
\(959\) −14.3584 10.4320i −0.463657 0.336867i
\(960\) 0 0
\(961\) −25.2721 + 18.3612i −0.815227 + 0.592297i
\(962\) 0 0
\(963\) 5.79007 + 4.20674i 0.186583 + 0.135560i
\(964\) 0 0
\(965\) −15.2572 11.0850i −0.491148 0.356840i
\(966\) 0 0
\(967\) −2.08674 6.42231i −0.0671049 0.206528i 0.911881 0.410454i \(-0.134630\pi\)
−0.978986 + 0.203926i \(0.934630\pi\)
\(968\) 0 0
\(969\) 0.0111973 0.0344619i 0.000359710 0.00110707i
\(970\) 0 0
\(971\) 12.8576 9.34161i 0.412621 0.299786i −0.362041 0.932162i \(-0.617920\pi\)
0.774662 + 0.632376i \(0.217920\pi\)
\(972\) 0 0
\(973\) −13.9157 42.8282i −0.446118 1.37301i
\(974\) 0 0
\(975\) −0.450247 −0.0144194
\(976\) 0 0
\(977\) 32.2304 + 23.4167i 1.03114 + 0.749168i 0.968537 0.248871i \(-0.0800594\pi\)
0.0626042 + 0.998038i \(0.480059\pi\)
\(978\) 0 0
\(979\) 3.96292 12.1966i 0.126656 0.389806i
\(980\) 0 0
\(981\) 16.5053 0.526972
\(982\) 0 0
\(983\) −55.9667 −1.78506 −0.892530 0.450987i \(-0.851072\pi\)
−0.892530 + 0.450987i \(0.851072\pi\)
\(984\) 0 0
\(985\) −0.707065 −0.0225290
\(986\) 0 0
\(987\) −1.65766 −0.0527638
\(988\) 0 0
\(989\) −0.865558 + 2.66391i −0.0275232 + 0.0847076i
\(990\) 0 0
\(991\) 3.84651 + 2.79465i 0.122188 + 0.0887750i 0.647201 0.762319i \(-0.275939\pi\)
−0.525013 + 0.851094i \(0.675939\pi\)
\(992\) 0 0
\(993\) 1.31353 0.0416837
\(994\) 0 0
\(995\) −1.29546 3.98702i −0.0410689 0.126397i
\(996\) 0 0
\(997\) 25.9288 18.8384i 0.821174 0.596617i −0.0958749 0.995393i \(-0.530565\pi\)
0.917048 + 0.398776i \(0.130565\pi\)
\(998\) 0 0
\(999\) 1.19061 3.66433i 0.0376694 0.115934i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.b.201.5 32
41.10 even 5 inner 820.2.u.b.461.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.b.201.5 32 1.1 even 1 trivial
820.2.u.b.461.5 yes 32 41.10 even 5 inner