L(s) = 1 | − 3.30·3-s + (−0.309 − 0.951i)5-s + (−1.74 + 1.26i)7-s + 7.90·9-s + (−0.472 + 1.45i)11-s + (1.40 + 1.02i)13-s + (1.02 + 3.14i)15-s + (−1.12 + 3.46i)17-s + (−1.89 + 1.37i)19-s + (5.76 − 4.19i)21-s + (0.714 + 0.519i)23-s + (−0.809 + 0.587i)25-s − 16.2·27-s + (−2.14 − 6.59i)29-s + (3.00 − 9.25i)31-s + ⋯ |
L(s) = 1 | − 1.90·3-s + (−0.138 − 0.425i)5-s + (−0.660 + 0.479i)7-s + 2.63·9-s + (−0.142 + 0.438i)11-s + (0.390 + 0.283i)13-s + (0.263 + 0.810i)15-s + (−0.272 + 0.839i)17-s + (−0.433 + 0.315i)19-s + (1.25 − 0.914i)21-s + (0.148 + 0.108i)23-s + (−0.161 + 0.117i)25-s − 3.11·27-s + (−0.397 − 1.22i)29-s + (0.540 − 1.66i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.186 + 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.186 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.227802 - 0.275033i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.227802 - 0.275033i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (-4.79 + 4.23i)T \) |
good | 3 | \( 1 + 3.30T + 3T^{2} \) |
| 7 | \( 1 + (1.74 - 1.26i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (0.472 - 1.45i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (-1.40 - 1.02i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.12 - 3.46i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (1.89 - 1.37i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-0.714 - 0.519i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (2.14 + 6.59i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.00 + 9.25i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.114 + 0.352i)T + (-29.9 + 21.7i)T^{2} \) |
| 43 | \( 1 + (-0.227 - 0.165i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (2.21 + 1.60i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (3.53 + 10.8i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (4.12 + 2.99i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.69 + 1.22i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (2.29 + 7.07i)T + (-54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (0.299 - 0.921i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + 5.21T + 73T^{2} \) |
| 79 | \( 1 - 12.9T + 79T^{2} \) |
| 83 | \( 1 + 14.4T + 83T^{2} \) |
| 89 | \( 1 + (13.5 - 9.87i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (3.95 + 12.1i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01969120371625493119682512167, −9.523377345767289335269503879794, −8.213497987252926624997100394520, −7.14710056485891969385344616667, −6.11610886419481995849331864146, −5.88628357507786176750801198250, −4.68273432345181241541222835789, −3.95678014647516852503810750115, −1.88488461350677779072209605216, −0.27717179558397683369273589391,
1.06446391558176659401106666687, 3.14776849742534144975268051803, 4.39032214426257219474393916141, 5.25000556013988090755143132513, 6.19971289542592203619519191308, 6.78856978256282872918000152921, 7.48169121828550302328079962089, 8.944633806056184187548472020429, 10.03715125350736388142297596935, 10.66444227904353613306003221413