L(s) = 1 | − 0.355·3-s + (0.809 + 0.587i)5-s + (0.307 + 0.946i)7-s − 2.87·9-s + (3.39 − 2.46i)11-s + (−1.59 + 4.90i)13-s + (−0.287 − 0.209i)15-s + (2.28 − 1.65i)17-s + (2.17 + 6.68i)19-s + (−0.109 − 0.336i)21-s + (−0.101 + 0.312i)23-s + (0.309 + 0.951i)25-s + 2.08·27-s + (3.80 + 2.76i)29-s + (−2.25 + 1.64i)31-s + ⋯ |
L(s) = 1 | − 0.205·3-s + (0.361 + 0.262i)5-s + (0.116 + 0.357i)7-s − 0.957·9-s + (1.02 − 0.743i)11-s + (−0.441 + 1.36i)13-s + (−0.0743 − 0.0539i)15-s + (0.554 − 0.402i)17-s + (0.498 + 1.53i)19-s + (−0.0238 − 0.0734i)21-s + (−0.0211 + 0.0650i)23-s + (0.0618 + 0.190i)25-s + 0.402·27-s + (0.706 + 0.513i)29-s + (−0.405 + 0.294i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.445 - 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.445 - 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20153 + 0.743788i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20153 + 0.743788i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (-6.39 - 0.316i)T \) |
good | 3 | \( 1 + 0.355T + 3T^{2} \) |
| 7 | \( 1 + (-0.307 - 0.946i)T + (-5.66 + 4.11i)T^{2} \) |
| 11 | \( 1 + (-3.39 + 2.46i)T + (3.39 - 10.4i)T^{2} \) |
| 13 | \( 1 + (1.59 - 4.90i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-2.28 + 1.65i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.17 - 6.68i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (0.101 - 0.312i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-3.80 - 2.76i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (2.25 - 1.64i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (6.30 + 4.58i)T + (11.4 + 35.1i)T^{2} \) |
| 43 | \( 1 + (3.73 - 11.5i)T + (-34.7 - 25.2i)T^{2} \) |
| 47 | \( 1 + (1.76 - 5.42i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-8.16 - 5.93i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.06 - 3.26i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (4.03 + 12.4i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-7.67 - 5.57i)T + (20.7 + 63.7i)T^{2} \) |
| 71 | \( 1 + (11.8 - 8.61i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 - 6.31T + 73T^{2} \) |
| 79 | \( 1 - 8.58T + 79T^{2} \) |
| 83 | \( 1 - 3.73T + 83T^{2} \) |
| 89 | \( 1 + (4.09 + 12.6i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-9.84 - 7.15i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39590109946564389416420378382, −9.385431542632629806517873171844, −8.883971413567279907960461003490, −7.86908188225881239399784324704, −6.74944567289250589666392075471, −6.00922918902415183431887354553, −5.25196255558179139899872511910, −3.92316085178557493272748577180, −2.87139173206002953889251911530, −1.48925904307487280676240204215,
0.77156939091935421667549618268, 2.40666611473640777100803480576, 3.59531248090989077778697221685, 4.88587895638669273974768871043, 5.55484885463505584234316757573, 6.61217219345415520425449476967, 7.47299624240237237674393052576, 8.476476956502374635349165803862, 9.237271486929839322170453935313, 10.13567450582259558150059799397